
Refinement Patterns for Fault Tolerant Systems

Alexei Iliasov
Newcastle University

Newcastle Upon Tyne, England
alexei.iliasov@ncl.ac.uk

Alexander Romanovsky
Newcastle University

Newcastle Upon Tyne, England
alexander.romanovsky@ncl.ac.uk

Abstract

The paper puts forward the idea of using fault toler-
ance refinement patterns to assist system developers in dis-
ciplined application of software fault tolerance mechanisms
in rigorous system design. Two patterns are proposed to
support a correct introduction of recovery blocks and N-
version programming into a system model; these are for-
mally defined and their correctness proven. We also discuss
several important issues involved in the use of these patterns
in engineering systems, including tool support and pattern
composition.

1 Introduction

It is well-known that, while designing system fault tol-
erance means, developers tend to make numerous mistakes.
First of all, these involve misuse of fault tolerance mecha-
nisms (see, for example, [4, 3]). There are many reasons for
this, including the complexity of the system and its envi-
ronment, as well as that of the abnormal system behaviour
in general and recovery in particular. The existing solution
to these problems is to offer a fault tolerance mechanism as
a set of design abstractions supported by the required mid-
dleware services (packaged as a library with a well-defined
API). Sometimes this solution is backed by design patterns
or aspects to help developers avoid mistakes in using it (e.g.
[12]). The problem with this is that this approach does not
target earlier development phases, creating a dangerous gap
between system requirements and its implementation.

Formal methods have proven to be successful in develop-
ing a number of critical systems (e.g. in transport, telecom-
munication and automotive industry). They are typically
used for system specification and validation to help in fault
avoidance or removal. Recently, there has been some re-
search carried out on modelling fault tolerance at the earlier
phases of system development (e.g. [11], [5]). A way of
applying formal methods to achieve fault tolerance, rigor-
ous design of the latter is now becoming an area of active

research, prompted a growing understanding in the indus-
try of the need to deal with earlier phases (e.g. architecture
design) as a major means for improving the quality of prod-
ucts.

Formal methods are not, however, a panacea, with the
main difficulties in applying them being complexity of use
and scalability. This is why considerable efforts are now
devoted to tool support, as exemplified by the ICT RODIN
project, which has developed an open-source extendable
Eclipse platform supporting B development [16]). How-
ever, even with powerful tool support, formal methods will
not be fully accepted as a mainstream software engineering
paradigm. The approach we have been working on, called
refinement patterns [8], helps developers in applying for-
mal methods using computer-aided model transformations
as part of rigorous stepwise system development in B. These
transformations are used to capture standardised develop-
ment steps that rigorously introduce well-defined fault tol-
erance into the system. When these patterns are formally
described, their correctness can be verified to ensure that
model transformations preserve model correctness. Patterns
can be applied and undone instantaneously in the course of
modelling; they significantly reduce the number of proofs
that need to be done to demonstrate model correctness.

We believe that once a large number of patterns has
been accumulated, the automated model transformation
supported by patterns will have a profound effect on for-
mal modelling. With pattern instantiation being little more
than a mouse click, a well-designed pattern library could do
for formal modelling what class libraries have done for the
mainstream system development using programming lan-
guages.

This paper focuses on fault tolerance refinement pat-
terns, which would help system developers to apply soft-
ware fault tolerance mechanisms in system design in a dis-
ciplined fashion. In reporting our work on developing two
fault tolerance patterns, we are fully aware that further ef-
fort needs to be made to build a useful library of patterns
that would support a wide variety of error detection, error
recovery and fault handling mechanisms. Our first pattern

models the recovery block scheme, whereas the second one
helps in introducing N-version programming into a model.

The outline of the paper is as follows. Firstly, we for-
mally define the two patterns and prove their correctness
(which, as we have found, is not a trivial task). After that we
briefly discuss several issues involved in engineering fault
tolerant systems with patterns: tool support, pattern com-
position, pattern libraries, pattern identification and design
diversity.

2 Background

2.1 Event-B

The Event-B method [16, 14] has been recently created
on the basis of the B formal method [1] to enhance develop-
ers’ understanding of and reasoning about systems, includ-
ing reactive and concurrent ones. In its core is a modelling
method based on the concept of refinement. An Event-B
specification is made ofeventswhich update a system state
andvariableswhich represent it.Invariant is used to ex-
press the desired system properties. Event-B development
is a tree of specifications linked by refinement relations. The
general form of an Event-B specification is as follows:

machine m0

variables v
invariant I
initialisation RI(v′, v)
events

. . .
evti = any pi

where

Gi(pi, v)
then

Ri(pi, v
′, v)

end

. . .
end

refinement m1

refines m0

variables w
invariant J
initialisation SI(w′, w)
events

. . .
evtj ref evti = any pj

where

Hj(pj , w)
then

Sj(pj , w
′, w)

end

. . .
end

An Event-B event has parameterspi, a guardGi(p, v)
(often represented as conjunction of individual guards), and
a before-after predicateRi(pi, v

′, v) (andS(v′, v) for an ac-
tion of a concrete model), relating the new statev′ to the
previous statev. Initialisation is a special case of the event
which provides the initial system state. The essential part
of the Event-B method is a gradual, stepwise detailisation
of the model using the refinement technique.

2.2 Refinement Patterns

The refinement pattern (initially introduced in [8]) is a
set of rules describing how an output specification is pro-
duced for some input specification. Following the structure

of Event-B, patterns are made of rules describing transfor-
mations on variables, invariants and events.

Definition Refinement. The fact thatS1 is refined byS2 is
written asS1 ⊑ S2 . The⊑ relation is reflexive (a speci-
fication is a valid refinement of itself), transitive and anti-
symmetric (S1 ⊑ S2 ∧ S2 ⊑ S1 ⇒ S1 = S2).

Definition Refinement pattern (or pattern). Let S be the
universe of specifications. Functionp : S1 → S2 where
S1 ⊆ S andS2 ⊆ S such that∀s · (s ∈ S1 ⇒ s ⊑ p(s)) is
calledrefinement pattern.

A pattern iscorrect if for any input specification it pro-
duces a correct refinement of the specification. A correct
refinement is understood as a well-formed specification that
is a refinement of its abstract specification.

We use the Event-B well-formedness and refinement
conditions as the basis for formulating pattern correctness
conditions [14]. A pattern can be proved to be correct for
a whole class of input specifications. In the most general
case, this class covers all Event-B specifications. Some re-
strictions are introduced when formulating a pattern by in-
troducing parameters and requirements. Additional restric-
tions may arise when trying to prove the pattern correctness.

Class of specifications accepted by a given pattern will
be referred to as pattern input specification class (ISC). We
can say that a pattern relates its ISC to another class of spec-
ifications. Proving pattern correctness involves demonstrat-
ing that these two classes are linked by the refinement rela-
tion. To prove pattern correctness, the following conditions
need to be shown to have been satisfied:

PAT REQ FIS ∃p · RQ(p)
PAT FIS INI ∃w′ · S(w, w′)
PAT INV INI S(w, w′) ⇒ J(v, w′)
PAT REF FIS I(v) ∧ J(v, w) ∧ H(w) ⇒ ∃w′ · S(w, w′)
PAT REF GRD I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v)
PAT REF INV I(v) ∧ J(v, w) ∧ H(w) ∧ S(w, w′) ⇒

∃v′ · (R(v, v′) ∧ J(v′, w′))
PAT REF DLKi Gi ⇒

W

Hj(w)
PAT NEW INV I(v) ∧ J(v, w) ∧ H(w)∧

S(w, w′) ⇒ J(v, w′)
PAT NEW DIV I(v) ∧ J(v, w) ∧ H(w) ∧ S(w, w′) ⇒

V (w) ∈ N ∧ V (w′) < V (w)

Wherev andw are the abstract and concrete variables,
R(v, v′) andS(w, w′) are the abstract and concrete before-
after predicates,I(v) andJ(v, w) are abstract and concrete
invariants, andG(v) andH(w) are abstract and concrete
event guards. VariantV (w) is an expression decreased by
all the new events. Finally,RQ is the conjunction of pattern
requirements.

The main difference between proving the correctness
of a pattern and that of a refinement is that rather than

pattern declarataion
pattern [s]

[parameters u1, . . . ul]
[requirements r]
[rule1 . . . rulen]

new variable
variable [v] [for p] prop.

[label varname] label
invariant T type
[action I] init

new invariant
invariant [i] [for p]

expression I
or
invariant I [for p]

new event
event [e] prop.

[label eventname] label
[refines abstractevent] refines

[v1 . . . vn] variables
[g1 . . . gk] guards

[a1 . . . am] actions

new guard
guard [g] [for p]

expression G
or
guard G [for p]

new action
action [a] [for p] prop.

label l label
style s style
expression e expression

or
action l s e [for p]

Figure 1. Summary of the notation of Event-B refinement patte rns

substituting concrete expressions for invariants, guardsand
before-after predicates, we operate on variables represent-
ing the abstract invariant, guards and before-after predi-
cates. To prove refinement conditions, we substitute con-
crete predicates forH , J , S andV , while I, G andR re-
main undefined.

2.3 Tool Support

Tool support is essential for the pattern mechanism pro-
posed. While applying patterns manually is laborious and
error-prone, this operation is easy to mechanise. We have
implemented a plug-in to the RODIN Event-B platform
[16]) which adds the pattern functionality to the platform.
Once installed, it provides the environment for working
with refinement patterns - selecting, editing and applying
patterns in an automatic or semi-automatic manner. Owing
to the open architecture of the platform, the plug-in inte-
grates into its interface and has an intuitive user interface.
It fully supports the pattern language discussed in this pa-
per and relies on the XML notation for pattern input and
editing. All the patterns presented in this paper have, in
fact, been developed using the plug-in and are available for
downloading, as well as the plug-in itself, from [7].

The plug-in also provides an interface for importing pat-
terns from an online pattern library which can be updated
by pattern developers. A pattern would come together with
information about its purpose and origin and guidance on
applying it in development.

3 Patterns for software fault tolerance

With the growing complexity of software, mistakes re-
lated to it (e.g. in applications and their components, mis-
matches between them, in data and supporting software, and

service degradation) are becoming a major source of sys-
tem downtime. The two major techniques developed for
tolerating software bugs are recovery blocks and N-version
programming [15, 2]. These techniques and their variations
have been successfully used in a number of critical indus-
trial applications. For example, book [17] reports success-
ful experience of employing such schemes in the aerospace,
transportation and atomic energy industries.

As increasingly complex computer-based systems prolif-
erate in new domains of our life, we clearly need to employ
these fault tolerance techniques in new settings and on a
wider scale. Moreover, since society now critically depends
on computer-based systems in many areas, we need to be
able to apply these techniques in a rigorous and predictable
way. The challenge here is to support formal stepwise de-
velopment of fault tolerant systems.

To this end we propose an approach to developing soft-
ware fault tolerance refinement patterns as the main means
of ensuring cost-effectiveness and correctness of employing
software fault tolerance mechanisms in formal system de-
sign. This approach is supported by a tool which allows us
to collect a set of patterns to be applied as necessary during
the development process.

Developing a refinement pattern is not a trivial task.
First, it should be generic enough to express reusable refine-
ment steps that support general concepts useful in different
contexts and development approaches. Secondly, a pattern
has to be proven to guarantee that the models produced are
well-formed and are the correct refinements of abstract in-
put models. In this paper we focus on two concrete software
fault tolerance refinement patterns inspired by well-known
design solutions. It is clear that the approach can be applied
to other software fault tolerance mechanisms.

4 Constructing a Refinement Pattern

Many standardised design solutions (e.g. design pat-
terns) can be used as a basis for constructing refinement
patterns. It is not necessarily a one-to-one mapping and
there are design solutions that are so abstract they cannot
be expressed as refinement patterns. One example is the
proxy pattern ([6]), which is an abstract rule for structuring
a complex system. The pattern is so abstract that it can-
not be described in a general form using the refinement pat-
terns mechanism. However, there can be any number of
specialised versions of the pattern formulated for particular
kind of systems which are expressable as refinement pat-
terns.

A legacy or current formal development is an impor-
tant source of ideas for refinement automation. In many
cases, concrete refinement steps are but implementation of
a more general concept. Application of the concept to a
whole range of possible abstract systems results in a refine-
ment pattern. A side effect - a deeper understanding of the
concept used in development through it formalisation - is
important by itself.

A pattern designer is likely to have a choice of a level
of pattern presentation. A refinement pattern can be more
abstract and thus be applicable to a wider range of input
specifications or more specific and restricted to a narrower
domain. More abstract patterns are generally easier to apply
as they put less restrictions on the form of an abstract spec-
ification. One of the objectives during pattern development
is to find a balance between pattern generality and details in
describing its functionality.

The first step of a pattern design is identification of the
possible pattern parameters, their types and restriction.This
stage defines the set of possible abstract specifications that
can be transformed by this pattern which loosely corre-
sponds to the notion of the problem domain of a design pat-
tern (solution). For complex patterns it is a non-trivial task
to identify the weakest set of patterns requirements. The
strategy is to start with a minimal set of requirements and
use proof obligations to add additional restrictions that are
also necessary to demonstrate pattern correctness.

It is important to carefully identify major building blocks
of a pattern: new variables and events declared by the
pattern, top-level matching blocks, refinements of abstract
variables and events. These serve as a skeleton around
which further details are added. Proofs will help to iden-
tify missing or wrong rules.

Once there is sufficiently detailed description of a refine-
ment pattern, proof obligations for pattern correctness can
be generated. With a theorem prover, many proof obliga-
tions are discharged automatically. A proof obligation not
discharged automatically may indicate a mistake in pattern
thus playing an important role in pattern design. A structure

of a proof obligation often provides valuable information on
how to rectify a problem in the patterns. Typically, several
iterations are needed to produce a correct pattern.

5 Recovery Block Pattern

This pattern helps to develop software capable of toler-
ating software faults by introducing N alternates designed
diversely following the ideas from [15]. Checkpointing is
used to save the state before executing an alternate so that
the results of unsuccessful execution can be discarded. An
alternate execution is followed by checking an acceptance
test. If the test is passed then the result of the current alter-
nate is used as the final result. Otherwise, the state is rolled
back and another alternate is activated. If no alternate is
available, an exception is propagated.

The pattern takes as input a model with two events. One
of the events is a specification of the desired behaviour. The
other event is the connection to some external recovery or
abortion mechanism. During instantiation, the pattern also
asks for the number N of behaviour block instances (alter-
nates).

Further refinements should diversify designs of be-
haviour alternates (e.g. by enforcing the use of different
solutions and by involving different developers) and adapt
or make more concrete the test conditions. A good start-
ing point for applying this pattern is a specification with
non-deterministic before-after predicates. The conjunction
of all before-after predicates of an abstract behaviour event
is used by the pattern as the acceptance test. The pattern has
three parameters

pattern recblock
parameters b, n

req typing b ∈ Event ∧ n ∈ N

req notempty card(b.actions) > 0
req notzero n > 0

Hereb is an abstract event specifying the desired system
behaviour,a is an abortion event andn is a number of re-
covery blocks. The pattern requirements state the typing of
the parameters and also state that the behaviour event con-
tains at least one action and that the number of alternates is
not zero:

This pattern can be applied to any specification with at
least two events, one of which must be not empty. The pat-
tern makes no additional assumptions about event bodies,
guards and parameters as the pattern is general enough to
handle all the possible cases.

The pattern introduces two new variables (these vari-
ables appear in the output specification) to model control
flow for the new events. Variablebr defines the currently
active behaviour block (alternate). When its value goes be-
yond the allowed block index, it indicates failure of all the
blocks. Variablest indicates the current stage: checkpoint
(st = 0), block (st = 1) or acceptance test (st = 2).

Checkpoint 0 Test

1Checkpoint Test

Checkpoint ... Test

n−1Checkpoint Test

Abort

(stage) st 1 2

1

2

n

...

(b
ra

n
ch

)

br

0
0

refines

Figure 2. The Recovery Block pattern. The
checkpoint and alternates are modelled as
new events, the Test block refines the be-
haviour abstract event.

variable br variable st
invariant br ∈ 0..(n + 1) invariant st ∈ 0..2
action br := 0 action st := 0

The pattern models checkpointing by extending system
state with new variables for hold intermediate results pro-
duced by the alternates. If the result of an alternate fails the
acceptance test, the state extension is disregarded. When
test succeeds, the state is used as the final result. This ap-
proach allows us to introduce checkpoints without knowing
the whole system state. The following pattern fragment cre-
ates a copy of each variable assigned in the eventb:

forall a where a ∈ b.actions
variable cpvar for recblock

label cp a.variable.name
invariant cpvar ∈ a.variable.type
action cpvar

a.variable.init.style a.variable.init.expr

The pattern fragment below creates a checkpoint event
which saves the current values of the variables updated in
the eventb. This event is enabled whenst = 0:

event chkpt
guard st = 0
forall a where a ∈ b.actions

action cp a.variable.name := a.variable.name
action st := 1

The event advances the stage variablest so that a cur-
rently selected alternate is enabled. An alternate contains
the same set of actions as the abstract eventb. These ac-
tions assign to the copies of the abstract variables updated
in b. Although, an alternate is formally not a refinement
of b, it is related through the actions. A designer has the
choice of changing alternates behaviour just after applying
the pattern or keeping them intact and using refinement to
gradually introduce specialisation. In the latter case, the

actions derived from the actions ofb serve as an abstract
specification for further refinements. To allow for mean-
ingful refinements these actions must be non-deterministic.
The next pattern fragment producesn events representing
recovery block alternates:

forall i where i ∈ 1..n
event alt

label b alt i
guard st = 1
guard br = i − 1
guard b.guards
variable b.variables
forall a where a ∈ b.actions

action cp a.variable.name a.style a.expr
action st := 2

Note the guardbr = i − 1 selecting the current alternate
and actionst := 2 enabling the acceptance test. The accep-
tance test event checks if the alternate has succeeded and, if
it is so, uses the its result as the final result. The acceptance
test must refineb since it is the only event which is allowed
to update inherited abstract variables which the abstract ver-
sion ofb used to produce the result. In other words, an input
specification is transformed in such a way that parts which
the pattern is not aware about are not effected.

The acceptance test is computed automatically by the
pattern from the abstract eventb. In English, the acceptance
can be informally formulated asany result that agrees with
the specification of the abstract eventb is acceptable. To
give the exact meaning toagrees withwe use the before-
after predicates of the abstract eventb:

guard st = 2 for b
forall a where a ∈ b.actions

guard [cp a.variable.name a.style a.expr] for b
action a.variable.name := cp a.variable.name for b

We also have to address the case when the acceptance
test fails. For this we declare a new event and use a guard
which is the opposite of the acceptance test rule. One of the
responsibilities of this event is to advance thebr variable so
that a new alternate is used next time.

event test
label b test fail

guard st = 2
guard

W

a∈b.actions ¬ [cp a.variable.name a.style a.expr]
action br := br + 1
action st := 0

∨
a∈b.actions . . . and other generalised versions of oper-

ators are syntax shortcuts. The actual expression for this
guard is made of three nested statements and expressed in 8
lines of XML notation.

Since we have onlyn alternates with indices0..n − 1,
a state wherebr = n indicates that all the alternates have
failed to produce an acceptable result. To cover the case of
br = n the patterns produces a new events which simply
uses the abstract eventb behaviour to produce some ”safe”
result.

event fail
label b fail

refines b
guard br = n for f
guard b.guards
variable b.variables
action b.actions

5.1 Recovery Block Pattern Correctness

In this section we demonstrate that the Recovery Block
pattern indeed produces valid refinements for any input
specification to which it can be applied. Here we write out
and analyse proof obligations manually. Most of this can be
handled by a tool and we are working on adding support for
generating proof obligations and automatically discharch-
ing them with the platform theorem prover.

Pattern requirements must allow for a non-empty set of
parameters

∃(b, f, n) · (req typing ∧ req notempty ∧ req notzero)

This proof obligation (PO) can be discharged by assert-
ing that setEvent is nonempty and there exist an event
with at least one action.

Declarations ofbr andst result in the following proof
obligations

∃br′ · (br ∈ 0..(n + 1) ∧ br′ = 0)
br ∈ 0..(n + 1) ∧ br′ = 0) ⇒ br′ ∈ 0..(n + 1)
∃st′ · (st ∈ 0..2 ∧ st′ = 0)
st ∈ 0..2 ∧ st′ = 0 ⇒ st′ ∈ 0..2

which are trivially true.
The pattern introduces new system variables supporting

checkpointing. For each variable updated in the eventb a
new variable is created with the same type and initial state.
To express this, the pattern uses theforall a where a ∈
b.actions construct. Consequently, related proof obligation
are in the form∀a . . . :

∀a · (a ∈ b.actions ⇒ ∃c′ · (c ∈ Tp(a) ∧ [c St(a) In(a)]))
∀a · (a ∈ b.actions ⇒ [c St(a) In(a)] ⇒ c′ ∈ Tp(a))

where[vse] is a before-after predicate of a B action made
from variablev, action styles (:=, :∈ and| ∈) and expres-
sions. Also, the following shortcuts are used:c = cpvar,
St(a) = a.variable.init.style, Tp(a) = a.variable.type
andIn(a) = a.variable.init.expr. The proof obligations

above can be simplified by removing quantifier∀a and treat-
ing a as a free variable. To do the proof we use information
about the abstract variables from which the copied variables
are derived

a ∈ b.actions ⇒ ∃v′ · (v ∈ Tp(a)∧ [v St(a) In(a)]) ⊢
a ∈ b.actions ⇒ ∃c′ · (c ∈ Tp(a)∧ [c St(a) In(a)])

a ∈ b.actions ⇒ [v St(a) In(a)] ⇒ v′ ∈ Tp(a)) ⊢
a ∈ b.actions ⇒ [c St(a) In(a)] ⇒ c′ ∈ Tp(a))

The proof obligations above are trivially correct as left
and right parts differ only in the names of free variables.
Note, that the proof covers the general case of creating vari-
able copies.

The checkpoint event initialises sub-states used by the
recovery blocks. The action updatingst gives rise to the
following trivial POs:

I(v) ∧ st ∈ 0..2 ∧ st = 0 ⇒ ∃st′ · (st ∈ 0..2 ∧ st′ = 1)
I(v) ∧ st ∈ 0..2 ∧ st = 0 ∧ st′ = 1 ⇒ st′ ∈ 0..2

Initialisation of checkpoint variables uses theforall
statement and hence the universal quantifier appears in the
proof obligations:

∀a · (a ∈ b.actions ⇒ I(v) ∧ c(a) ∈ Tp(a) ∧ v(a) ∈ Tp(a)∧
st = 0 ⇒ ∃c(a)′ · (c(a) ∈ Tp(a) ∧ c′(a) = var(a)))

∀a · (a ∈ b.actions ⇒ I(v) ∧ c(a) ∈ Tp(a) ∧ v(a) ∈ Tp(a)∧
st = 0 ∧ c′(a) = var(a) ⇒ c′(a) ∈ Tp(a))

where c(a) = cp a.variable.name, v(a) =
a.variable.name and St(a), In(a) and Tp(a) as de-
fined above. The quantifier can be dropped and with the
properties of the original variables as hypothesis it is trivial
to discharge these POs.

The pattern fragment creating the recovery blocks em-
ploys forall statements. The outer one runs through all the
recovery block indices. while the inner one creates a new
action for each action in the abstract eventb. The proof
obligations are the following:

∀i · (i ∈ 1..n ⇒ ∀a · (a ∈ b.actions ⇒
I(v) ∧ c ∈ Tp(a)∧ st = 1 ∧ br = i − 1 ⇒

∃c′ · (c ∈ Tp(a) ∧ [c St(a) Ex(a)])))
∀i · (i ∈ 1..n ⇒ ∀a · (a ∈ b.actions ⇒

I(v) ∧ c ∈ Tp(a)∧ st = 1 ∧ br = i − 1∧
[c St(a) Ex(a)] ⇒ c′ ∈ Tp(a)))

The proofs are easy to do for the general case of some in-
dexi and some actiona and the quantifiers can be removed.
The we know that the abstract actions are well-formed we
use this information as hypothesis to discharge the proof
obligations. The case for the action assigningst is trivial.

In the acceptance test fragment defines actions replacing
the abstract actions of eventb. We have to prove that un-
der the given conditions each such action refines its abstract
counterpart

∀a · (a ∈ b.actions ⇒
Tp(a) ⇒ ∃v(a)′ · (c(a) ∈ Tp(a)∧ v(a)′ = c(a)))

∀a · (a ∈ b.actions ⇒
I(v) ∧ [c(a) St(a) Ex(a)] ∧ v(a) = c(a) ⇒
∃v′ · ([v(a) St(a) Ex(a)] ∧ va(a) ∈ Tp(a)))

These POs are trivially correct. For concrete version
of eventb we have to demonstrate that the new guard is
stronger than its abstract counterpart.

I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v)

It is indeed so, as the pattern fragment strengthens the
guard with additional conditions.

For the new eventtest we have several obvious trivial
POs due to the actionbr := br + 1 andst := 0.

To prove the non-divergence of the new events intro-
duced by the pattern we have to demonstrate there exists
suchV ∈ N that it is decreased by all the new events.

I(v) ∧ J(v, w) ∧ H(w) ∧ S(w, w′) ⇒
V (w) ∈ N ∧ V (w′) < V (w)

Let V = (n + 1) ∗ 3 + 2 − (br ∗ 3 + st) andT = st ∈
0..2 ∧ br ∈ 0..(n + 1) ∧ n ∈ N ∧ n > 0

ConditionT ⇒ V (w) ∈ N holds sincemax(br ∗ 3 +
st) = (n+1)∗3+2. To prove that all the events decreaseV

we have to demonstrate that the following conditions hold

T ∧ st = 0 ∧ st′ = 1 ∧ br′ = br ⇒ V (st′, br′) < V (st, br)
∀i · (i ∈ 1..n ⇒ T ∧ st = 1 ∧ st′ = 2 ∧ br′ = br ⇒

V (st′, br′) < V (st, br))
T ∧ st = 2 ∧ st′ = 0 ∧ br′ = br + 1 ⇒ V (st′, br′) < V (st, br)

The first two incrementst leaving br unchanged
and hence decrease the variant expression sinceV

monotonously decreasing function. Thetest event resets
st to zero but this is compensated by the increment ofbr.

To prove relative deadlock freeness we have to demon-
strate that for any abstract state in which guardG is enabled
there is a a state in the refined version in which at least on
of the concrete guards is enabled. The disjunction of the
concrete guards is

W

Hj(w) st = 0∨
(st = 1 ∧ Gb ∧

W

i∈1..n
br = i − 1)∨

(st = 2 ∧
V

a∈b.actions act)∨
(st = 2 ∧

W

a∈b.actions ¬act)∨
br = n ∧ Gb

where Gb is the guard of eventb and act =
[cp a.variable.name a.style a.expr]. The above simplified
to

W

Hj(w) st = 0∨
„

st = 1∧
((Gb ∧

W

i∈0..(n−1) br = i) ∨ (br = n ∧ Gb))

«

∨

st = 2

Figure 3. The NVP pattern. Versions are new
events and the adjudicatorrefines the abstract
behaviour event.

and we have to prove that

PAT REF DLKb Gb ⇒ Gb ∧ (
W

i∈0..(n−1) br = i ∨ br = n)

which is true since(
∨

i∈0..(n−1) br = i∨br = n) always
holds.

6 N-Version Programming Pattern

N-Version Programming is a software engineering
method for tolerating mistakes in software implementation
by using a number of functionally-equivalent versions de-
veloped independently according to common requirements
or specifications [2]. The method is based on selecting the
majority result from the outputs of all the versions.

Our NVP pattern takes two arguments - an eventb and
number of blocksn. The result of the pattern application
is a set ofn behaviour blocks and the adjudicator which
refinesb.

pattern nvp
parameters b, n
req typing b ∈ Event ∧ n ∈ N

req grtone n > 1

Variablest defines the major state evolution stage of a
system produced by the pattern: 0 is for collecting results
from individual blocks, 1 for voting and 2 when the final re-
sult is available. The pattern introduces a Boolean variable
fl indicating inability to find a dominating (a result with
50% + 1 votes).

variable st variable fl
invariant st ∈ 0..2 invariant fl ∈ B

action st := 0 action fl := FALSE

All the N versions produce their results independently
and thus they must operate on disjoint state spaces. A sim-
ple solution is to introduce a function from a block id into a

state associated with the block and let each block modify its
own state using the function. Such approach, however, re-
sults in several unattractive properties of the pattern. First,
it introduces a variable shared by all the blocks - the state
function variable - and there is nothing preventing an inex-
perienced designer from accidentally mixing block states,
both in a model and in implementation. It also prohibits
an automated refinement into an efficient, concurrent im-
plementation. Second, and more important, a refinement
produced by such pattern may not easily legible. State of
a block is likely to be a complex type. Dealing with such
involved structures is much more difficult than with indi-
vidual variables. Hence decided to have a separate set of
variables for each behaviour block. This complicates the
pattern definition and makes the pattern correctness proofs
slightly more difficult but the result is refinement pattern
which easy to use. After applying it, a designer gets N new
events which are similar to the abstract event to which the
pattern was applied.

Each behaviour block is attached a Boolean variable in-
dicating that the block has finished and the voter event can
use the current result. This variable can also be used to dis-
able permanently faulty blocks, although we do not do this
in the current version to keep the pattern general.

The body of a behaviour block is almost an exact copy
of eventb with the only difference being actions assigning
values to copies of the original abstract variables. Each be-
haviour block has its own set of copied variables.

forall i where i ∈ 1..n
variable rd

label rd i
invariant rd ∈ B

action rd := FALSE

event alt
label alt i
guard st = 0
guard rd = FALSE

forall a where a ∈ b.actions
variable cp

label a.variable.name i
invariant cp ∈ a.variable.type
action cp a.variable.init.style a.variable.init.expr

action cp a.stylea.expr
action rd := TRUE

When the results from all the blocks are available, the
voter can select the final result. To produce a scalable solu-
tion we have to aggregate individual variables used in dif-
ferent blocks into a single variable, which is a function from
a block id into the block state. We do not expect designers
to change this part of the specification thus we are free to
use the most suitable approach here.

variable rs for nvp
label b result

invariant rs : N →֒ ("a∈b.actions a.variable.type)
action rs := ⊘

where("a∈b.actions a.variable.type) is the type of a tu-
ple (v1, v2, . . . vn) used to store all the variable assigned in
eventb. The general cartesian product is a syntax sugar;
interested readers will find the actual representation in the
pattern source available from the plug-in web page [7].

The following event constructs the function of results
from the result of the individual blocks

event accum
label b collect

guard st = 0
guard

V

i∈1..n
rd i = TRUE

action rs :=
S

i∈1..n{i 7→ (7→a∈b.actions var i)}
action st := 1

wherevar i = a.variable.name i.
The adjudicator event refines abstract eventb. The pat-

tern adds additional guards, parameters and actions and also
changes the abstract action. The parameters are used as lo-
cal variables which help to select the final result. The event
guards describes a simple voting protocol and there is an
action indicating if the winning result has got the majority
of votes.

Parameterk is the index of the winning result, param-
etersa.variable.name t are used to extract solution from
functionrs.

variable k for b
invariant k ∈ dom(rs)

forall a where a ∈ b.actions
variable t for b

a.variable.name t

invariant t ∈ a.variable.type

The first guard makes the event enabled at stage 1, the
next one selectsk such thatk is an index of a winning solu-
tion (k is the index of a winning solution if for allj different
from k the number of indices pointing at the same solution
ask is greater or equal to the number of solutions pointed
to byj) and the last guard binds parameters to the values of
the solution.

guard st = 1 for b
guard ∀j · (j ∈ dom(rs) ∧ j 6= k ⇒

card(rs−1[{rs(k)}]) ≥ card(rs−1[{rs(j)}])) for b
guard (7→a∈b.actions a.variable.name t) = rs(k) for b

In the event body abstract action are replaced with action
copying values from the parameters used to extract the solu-
tion. The stage variable is advanced to indicate that the final
result is available and for all the blocks the status variable
is to false to prepare for a possible next iteration.

forall a where a ∈ b.actions
action a.variable.name := a.variable.name t for b

action st := 2 for b
forall i where i ∈ 1..n

action rd i := FALSE for b
action fl := bool(card(rs−1[{rs(k)}]) < (n/2 + 1)) for b

Herefl is a Boolean flag indicating whether the solution
has got the majority of votes or not.

6.1 NVP Pattern Correctness

Most proof obligations for this pattern are trivially dis-
charged and the techniques employed are the same as those
used for the Recovery Block pattern.

The only non-trivial part is to demonstrate that the voting
event refines the abstract behaviour event. In other words, a
solution selected by the voting event must satisfy the spec-
ification of the abstract eventb. However, since the pattern
does not itself produce diverse version blocks and further re-
finements of version blocks satisfy the abstract eventb spec-
ification by definition of refinement, the voting mechanism
has no effect on the selection of the result. It is enough to
demonstrate that the values carried through thers function
are the results collected from version blocks. It is obviously
so, since the function is only assigned in the eventaccum,
which copies version results.

7 Applying Patterns

Our experience indicates that the refinement pattern
mechanism can make a considerable impact on the devel-
opment process as patterns support reuse and make devel-
opment easier and less error-prone.

One of the most attractive features of refinement patterns
is that, if supported by the right tool, pattern applicationis
almost instantaneous and straightforward. Various refine-
ment paths can be investigated, rather than by investing a
considerable time and modelling effort, just by selecting
different patterns. If a result is unsatisfactory, the pattern
is undone to allow trying a different one. This is a consider-
able advantage over manual refinement, where a developer
would be reluctant to redo modelling steps once committed
to a particular solution.

Reading and applying refinement patterns is much eas-
ier than writing them, allowing us to draw a line between
a formal method expert who designs high-quality reusable
patterns and an engineer using patterns to design a system
model. The fact that applying patterns does not require a
high level of expertise in formal methods can contribute to a
wider adoption of formal modelling as a cost-effective soft-
ware engineering technique for safety-critical and depend-
able systems.

The effect of patterns on the development process de-
pends on the number and quality of available patterns. We
consider pattern correctness as a sufficient measure of pat-
tern quality: while there are some correct patterns which do
not produce any useful transformations, this measure will
not allow any patterns which construct invalid refinements.
Unlike concrete refinement steps, patterns are designed to
be reusable. An important part of the pattern mechanism
is its capacity to look for patterns which can do the re-
quired transformation. The current tool implementation of-
fers some support for importing from an online pattern li-
brary using a dialogue, with patterns sorted into a tree ac-
cording to their functionality. We are now working on a
finer pattern search mechanism that would allow the engi-
neer to search for a pattern by specifying a design goal.

A refinement pattern is a complete, self-sufficient unit of
modelling that can be communicated between developers to
support reuse and experience sharing. It can do to formal
model development what components and libraries do to
program development. With an extensive pattern library, the
entire system design can be performed through employing
third-party patterns with some custom logic filled in places.

The proposed software fault tolerance patterns are de-
signed to be applied as part of formal system development.
This should be followed by further refinement steps which
will specify recovery block alternates and NVP versions.
This approach fits in well with stepwise incremental system
development, as different parts of models are to be refined
separately and independently. We realise that it is very un-
likely that this will achieve the complete independence of
the version/alternate failure modes [13], but the subsequent
development steps can be enriched by enforcing the use of
different solutions and formalisms, and by involving differ-
ent developers to diversify their designs.

Using nested units of design and execution to build
systems is the main way of dealing with system com-
plexity, and, in particular, of ensuring system fault toler-
ance by defining error containment and error recovery units
([15, 2]). Composing patterns (i.e. their sequential applica-
tion) is a very useful mechanism for creating nested units of
structuring and development in the course of stepwise sys-
tem development. It is fairly easy to compose the two pro-
posed software fault tolerance patterns, with several com-
positions possible, including iterative application of the Re-
covery Block pattern to obtain nested recovery blocks and
using the NVP pattern to refine one of the recovery block
alternates.

8 Conclusion

The proposed mechanisms will help to build systems that
would tolerate faults of several types. First of all, these
would include mistakes made in the later refinement phases

by developers working on different versions/alternates as
well as those in coding different versions/alternates. Due
to diversity in refinement and coding, faults in the run time
environment (e.g. OS, middleware) can be tolerated as well.
Moreover, when versions/alternates are distributed (e.g.as
in [10]) the proposed patterns can help to tolerate faults of
a wider class, including hardware crashes.

The two patterns presented in the paper, along with a
number of other refinement patterns, have been applied in
the development of the Ambient Campus case study within
the ICT RODIN Project [9]. In this case study we have de-
veloped several application scenarios for PDAs and smart-
dust devices in which fault tolerance is essential just to
achieve a reasonable usability level. In particular, we use
the Recovery Block pattern to alternate between different
positioning services: GPS (fails indoors), motes (fails when
there are not enough motes in proximity) and, finally, WiFi-
based positioning.

9 Acknowledgements

This work is supported by the FP6 ICT RODIN and
FP7 ICT DEPLOY Projects, and by the EPSRC/UK TrAmS
Platform Grant. Alexei Iliasov is partially supported by the
ORS award (UK).

References

[1] J. R. Abrial.The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

[2] A. Avizienis. The n-version approach to fault-tolerantsoft-
ware. IEEE Transaction on Software Engineering SE-11, 12
(December), 1491-1501., 1985.

[3] M. Bruntink, A. van Deursen, and T. Tourwé. Discover-
ing faults in idiom-based exception handling. InICSE ’06:
Proceeding of the 28th international conference on Software
engineering, pages 242–251, New York, NY, USA, 2006.
ACM Press.

[4] F. Cristian. Exception Handling and Fault Tolerance of Soft-
ware Faults. In M. Lyu, editor,Software Fault Tolerance,
pages 81–107. Wiley, NY, 1995.

[5] F. C. Filho, P. H. da S. Brito, and C. M. F. Rubira. Speci-
fication of exception flow in software architectures. journal
of systems and software.Journal of Systems and Software,
(79(10)):1397–1418, 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley. ISBN 0-201-63361-2, 1995.

[7] A. Iliasov. Finer Plugin Web Page.http://finer.iliasov.org,
Last accessed: 21 Feb 2008.

[8] A. Iliasov. Refinement patterns for rapid development of
dependable systems.Proc. Engineering Fault Tolerant Sys-
tems Workshop (at ESEC/FSE, Croatia), ACM, September
4, 2007.

[9] A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and
E. Troubitsyna. On rigorous design and implementation of

fault tolerant ambient systems. InISORC ’07: Proceed-
ings of the 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Comput-
ing, pages 141–145, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] K. H. Kim and H. O. Welch. Distributed execution of recov-
ery blocks: An approach for uniform treatment of hardware
and software faults in real-time applications.IEEE Transac-
tions on Computers, 38(5):626–636, 1989.

[11] L. Laibinis and E. Troubitsyna. Refinement of Fault Tol-
erant Control Systems in B. In M.Heisel, P.Liggesmeyer,
and S.Wittmann, editors,Computer Safety, Reliability, and
Security - Proceedings of SAFECOMP 2004, number 3219
in Lecture Notes in Computer Science, pages 254–268.
Springer-Verlag, Sep 2004.

[12] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. InICSE
’00: Proceedings of the 22nd international conference on
Software engineering, pages 418–427, New York, NY, USA,
2000. ACM Press.

[13] B. Littlewood, P. Popov, and L. Strigini. Modeling software
design diversity: a review.ACM Comput. Surv., 33(2):177–
208, 2001.

[14] C. Metayer, J.-R. Abrial, and L. Voisin.Rodin Deliverable
D7: Event B language. Project IST-511599, School of Com-
puting Science, University of Newcastle, 2005.

[15] B. Randell. System structure for software fault tolerance.
IEEE Transactions on Software Engineering. IEEE Press,
SE-1(2):220–232, 1975.

[16] Rodin. Rigorous Open Development Environment
for Complex Systems. IST FP6 STREP project,
http://rodin.cs.ncl.ac.uk/, Last accessed: 18 June 2007.

[17] U. Voges, editor.Software diversity in computerized control
systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1988.

