Summary of Mathematical Notation

Jean-Raymond Abrial (ETHZ)

March 2008

Purpose of this Presentation

- Topics:
- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic
- WARNING: This presentation does not contain an exhaustive treatment of proof, first order logic, set theory, and arithmetic
- It is a REMINDER of notions supposedly already encountered
- Reason: We want to understand how proofs can be mechanized
- Topics:
- Concepts of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules

Sequent

- Sequent is the generic name for "something we want to prove"
- We shall be more precise later
- An inference rule is a tool to perform a formal proof
- It is denoted by:

$$
\frac{A}{C} \quad R
$$

- \mathbf{A} is a (possibly empty) collection of sequents: the antecedents
- \mathbf{C} is a sequent: the consequent
- \mathbf{R} is the name of the rule

The proofs of each sequent of \mathbf{A}
__ together give you -_
a proof of sequent \mathbf{C}

- Concepts of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

Forward reasoning: $\frac{A}{C} \downarrow$
Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: $\frac{A}{C} \uparrow$
In order to get a proof of C, it is sufficient to have proofs of each sequent in A

Most steps done in a proof are backward steps

- We are given:
- a collection \mathcal{T} of inference rules of the form $\frac{A}{C}$
- a sequent container K, containining S initially

$$
\text { WHILE } K \text { is not empty }
$$

CHOOSE a rule $\frac{A}{C}$ in \mathcal{T} whose consequent C is in K;
REPLACE C in K by the antecedents A (if any)

This proof method is said to be goal oriented

Example of a Proof

- We are given the following set of inference rules

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3}{S 4} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

- We have 7 rules r1 to r7
- S1 to S7 are supposed to denote some sequents
- Notice that rules r1, r4, r6, and r7 have no antecedents
- Our intention is to prove sequent $S 1$ using backward reasoning

$$
\begin{array}{|llllll}
\hline S 2 \\
\mathrm{r} 1 & \frac{S 7}{S 4} \mathrm{r} 2 & \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 & \overline{S 5} \mathrm{r} 4 & \frac{S 5 S 6}{S 3} \mathrm{r} 5 & \overline{S 6} \mathrm{r} 6 \quad \\
\overline{S 7} & \mathrm{r} 7
\end{array}
$$

$$
S 1
$$

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

$$
\begin{array}{ccc}
& S 1 \\
& \\
& \mathrm{r} 3 & \\
& \nearrow \uparrow & \\
S 2 & S 3 & S 4 \\
? & ? & ?
\end{array}
$$

Proof of Sequent $S 1$

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5} \mathrm{r} 4 \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7} \mathrm{r} 7
$$

		$S 1$
	r 3	
	\nearrow	
$S 2$	$S 3$	
r1	$?$	$?$

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

	$S 1$	
	r 3	
	$\nearrow \uparrow \nwarrow$	
$S 2$	$S 3$	$S 4$
r 1	r 5	$?$
	$\nearrow \uparrow$	
$S 5$	$S 6$	
$?$	$?$	

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

S1		
r3		
	$\nearrow \uparrow$	
S2	S3	S4
r1	r5	?
	$\nearrow \uparrow$	
$S 5$	S6	
r4	?	

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3}{S 4} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7} \mathrm{r} 7
$$

		$S 1$
	r 3	
	$\nearrow \uparrow \nwarrow$	
$S 2$	$S 3$	$S 4$
r 1	r 5	$?$
	$\nearrow \uparrow$	
$S 5$	$S 6$	
r 4	r 6	

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

Proof of Sequent $S 1$

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

Recording the Proof of Sequent $S 1$

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5} \mathrm{r} 4 \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7} \mathrm{r} 7
$$

- The proof is a tree

Alternate Representation of the Proof Tree

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

- A vertical representation of the proof tree:

- Concepts of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules
- We supposedly have a PREDICATE Language (NOT DEFINED YET)
- A sequent is denoted by the following construct:

$\mathbf{H} \vdash \mathbf{G}$

- \mathbf{H} is a (possibly empty) collection of predicates: the hypotheses
- \mathbf{G} is a predicate: the goal

Under the hypotheses of collection \mathbf{H}, prove the goal \mathbf{G}

Basic Inference Rules of Mathematical Reasoning

- There are three basic inference rules
- These rules are independent of our future Predicate Language
- HYP: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,

- MON: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,

$$
\mathbf{H} \vdash \mathbf{Q}
$$

MON

$$
\mathbf{H}, \mathbf{P} \vdash \mathbf{Q}
$$

- CUT: If you succeed in proving \mathbf{P} under \mathbf{H}, then
\mathbf{P} can be added to the collection \mathbf{H} for proving a goal \mathbf{Q}.

$$
\mathbf{H} \vdash \mathbf{P} \quad \mathbf{H}, \mathbf{P} \vdash \mathbf{Q}
$$

CUT

$$
\mathbf{H} \vdash \mathbf{Q}
$$

Presentation of the Mathematical Language

- It will be done by successive refinements:
(1) Propositional Language
(2) First Order Predicate Language
(3) Equality and Pairs
(4) Set theory
(5) Arithmetic
- Each additional language is built on top of the previous ones
- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

Basic Constructs of Propositional Calculus

- Given predicates \boldsymbol{P} and \boldsymbol{Q}, we can construct:
- NEGATION: $\quad \neg \boldsymbol{P}$
- CONJUNCTION: $\boldsymbol{P} \wedge \boldsymbol{Q}$
- IMPLICATION: $\quad \boldsymbol{P} \Rightarrow \boldsymbol{Q}$

Syntax

Predicate ::= \neg Predicate Predicate \wedge Predicate Predicate \Rightarrow Predicate

- This syntax is ambiguous
- Pairs of matching parentheses can be added freely.
- Operator \wedge is associative: $P \wedge Q \wedge R$ is allowed.
- Operator \Rightarrow is not associative: $\quad P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitely either $(P \Rightarrow Q) \Rightarrow R \quad$ or $\quad P \Rightarrow(Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: $\neg, \wedge, \Rightarrow$.
- Example:

$$
\neg P \Rightarrow Q \wedge R \quad \text { is to be read as } \quad(\neg P) \Rightarrow(Q \wedge R)
$$

Propositional Calculus Rules of Inference (1)

- Rules about conjunction

$$
\frac{\mathbf{H}, \mathbf{P}, \mathbf{Q} \vdash \mathbf{R}}{\overline{\mathbf{H}, \mathbf{P} \wedge \mathbf{Q} \vdash \mathbf{R}}} \mathbf{A N D} \mathbf{L}
$$

$$
\frac{\mathbf{H} \vdash \mathbf{P} \quad \mathbf{H} \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \wedge \mathbf{Q}} \text { AND R }
$$

- Rules about implication

$$
\begin{gathered}
\mathbf{H}, \mathbf{P}, \mathbf{Q} \quad \vdash \\
\hline \mathbf{H}, \mathbf{P}, \mathbf{P} \Rightarrow \mathbf{Q} \\
\vdash
\end{gathered}
$$

IMP R

Note: Rules with a double horizontal line can be applied in both directions

Propositional Calculus Rules of Inference (2)

- Rules about negation

Extensions: Falsity, Truth, Disjunction and Equivalence

- FALSITY: \perp
- TRUTH: T
- DISJUNCTION: $\boldsymbol{P} \vee \boldsymbol{Q}$
- EQUIVALENCE: $\boldsymbol{P} \Leftrightarrow \boldsymbol{Q}$

$$
\begin{array}{ll}
\perp & ==P \wedge \neg P \\
\top & ==\neg \perp \\
P \vee Q & ==\neg P \Rightarrow Q \\
P \Leftrightarrow Q & ==(P \Rightarrow Q) \wedge(Q \Rightarrow P)
\end{array}
$$

Predicate ::= $\frac{\perp}{\top}$

$$
\neg \text { Predicate }
$$

Predicate \wedge Predicate
Predicate \vee Predicate Predicate \Rightarrow Predicate Predicate \Leftrightarrow Predicate

More on Syntax

- Pairs of matching parentheses can be added freely.
- Operators \wedge and \vee are associative.
- Operator \Rightarrow and \Leftrightarrow are not associative.
- Precedence decreasing order: \neg, \wedge and \vee, \Rightarrow and \Leftrightarrow.
- The mixing of \wedge and \vee without parentheses is not allowed.
- You have to write either $\boldsymbol{P} \wedge(Q \vee \boldsymbol{R}) \quad$ or $\quad(\boldsymbol{P} \wedge \boldsymbol{Q}) \vee \boldsymbol{R}$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $\quad \boldsymbol{P} \Rightarrow(Q \Leftrightarrow \boldsymbol{R}) \quad$ or $\quad(P \Rightarrow Q) \Leftrightarrow \boldsymbol{R}$
- Example:

$$
R \wedge(\neg P \Rightarrow Q) \Leftrightarrow(P \vee Q) \wedge R
$$

More Rules

- Rules about disjunction

- Rule about negation

- Transforming a disjunctive goal

$$
\frac{\mathbf{H}, \neg \mathbf{P} \vdash \mathbf{Q}}{\overline{\mathbf{H} \vdash \mathbf{P} \vee \mathbf{Q}}} \quad \mathbf{N E G}
$$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \perp \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \text { predicate } \Leftrightarrow \text { predicate }
\end{aligned}
$$

- The letter $\boldsymbol{P}, \boldsymbol{Q}$, etc. we have used are generic variables
- Each of them stands for a predicate

```
predicate ::= \perp
        \negpredicate
        predicate ^ predicate
        predicate \vee predicate
        predicate }=>\mathrm{ predicate
        predicate \Leftrightarrow predicate
        \forallvarlist . predicate
expression ::= variable
variable ::= identifier
var_list ::= variable
    variable,var list
```

- A Predicate is a formal text that can be proved
- An Expression is a formal text denoting an object.
- A Predicate denotes nothing.
- An Expression cannot be proved.
- Predicates and Expressions are incompatible.
- Expressions will be considerably extended in the set-theoretic and arithmetic notations.

$$
\frac{\mathbf{H}, \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x}), \mathbf{P}(\mathrm{E}) \vdash \mathbf{Q}}{\mathbf{H}, \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}} \quad \text { ALL_L }
$$

where E is an expression

- In rule ALL R, variable \mathbf{x} is not free in \mathbf{H}

$$
\exists x \cdot P==\neg \forall x \cdot \neg P
$$

$$
\begin{gathered}
\mathbf{H}, \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q} \\
\mathbf{H}, \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}
\end{gathered}
$$

- In rule XST L, variable \mathbf{x} is not free in \mathbf{H} and \mathbf{Q}

$$
\frac{H \vdash P(E)}{H \vdash \exists x \cdot P(x)} \quad \text { XST } R
$$

where E is an expression

Comparing the Quantification Rules

$$
\frac{\mathbf{H}, \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x}), \mathbf{P}(\mathbf{E}) \vdash \mathbf{Q}}{\mathbf{H}, \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}} \quad \mathbf{A L L} \mathbf{L} \quad \frac{\mathbf{H} \vdash \mathbf{P}(\mathbf{x})}{\mathbf{H} \vdash \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x})} \quad \text { ALL } \mathbf{R}
$$

$$
\frac{\mathbf{H}, \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}}{\mathbf{H}, \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}} \quad \mathbf{X S T} L \quad \frac{\mathbf{H} \vdash \mathbf{P}(\mathbf{E})}{\mathbf{H} \vdash \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x})} \quad \text { CST R }
$$

$P \wedge Q$	$\neg P$
$P \vee Q$	$\forall x \cdot P$
$P \Rightarrow Q$	$\exists x \cdot P$

Refining our Language: Equality and Pairs

```
predicate ::= \perp
            \negredicate
        predicate ^ predicate
        predicate \vee predicate
        predicate }=>\mathrm{ predicate
        predicate \Leftrightarrow predicate
        \forallvarlist - predicate
        \existsvarlist\cdotpredicate
        expression = expression
    expression ::= variable
        expression \mapsto expression
variable
varlist
```

$$
\begin{array}{ll|l}
\mathbf{H}(F), E=F \vdash P(F) \\
\hline \mathbf{H}(E), E=F \vdash P(E)
\end{array} \quad E Q _L R \quad \begin{aligned}
& H(E), E=F \vdash P(E) \\
& \hline \mathbf{H}(F), E=F \vdash P(F)
\end{aligned} \quad E Q _R L
$$

\square

$$
\frac{\mathbf{H} \vdash \mathbf{E}=\mathbf{G} \wedge \mathbf{F}=\mathbf{I}}{\mathbf{H} \vdash \mathbf{E} \mapsto \mathbf{F}=\mathbf{G} \mapsto \mathbf{I}} \quad \text { PAIR }
$$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \perp \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \forall \text { var } 1 \text { predicat } \cdot \text { predicate } \\
& \exists \text { var_list } \cdot \text { predicate } \\
& \text { expression }=\text { expression } \\
& \text { expression } \in \text { set }
\end{aligned}
$$

$$
\begin{aligned}
& \text { expression }::=\text { variable } \\
& \text { expression } \mapsto \text { expression } \\
& \text { set } \\
& \text { variable } \quad::=\text { identifier } \\
& \text { varlist } \quad::=\text { variable } \\
& \text { variable, var_list } \\
& \text { set } \\
& ::=\text { set } \times \text { set } \\
& \mathbb{P}(\text { set }) \\
& \text { \{varlist•predicate|expression \}}
\end{aligned}
$$

- When expression is the same as var_list, the last construct can be written $\quad\{$ var list \mid predicate $\}$

Set Theory

- Basis
- Basic operators
- Extensions
- Elementary operators
- Generalization of elementary operators
- Binary relation operators
- Function operators

Set Theory: Membership

- Set theory deals with a new predicate, the membership predicate:

$$
E \in S
$$

- where \boldsymbol{E} is an expression and \boldsymbol{S} is a set

Set Theory: Basic Constructs

There are three basic constructs in set theory:

Cartesian product	$S \times T$
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x \cdot x \in S \wedge P(x) \mid F(x)\}$
Comprehension 2	$\{x \mid x \in S \wedge P(x)\}$

where \boldsymbol{S} and \boldsymbol{T} are sets, \boldsymbol{x} is a variable and \boldsymbol{P} is a predicate.

Cartesian Product

Power Set

$\mathbf{P}(\mathbf{S})$

These axioms are defined by equivalences.

Left Part	Right Part
$E \mapsto F \in S \times T$	$E \in S \wedge F \in T$
$S \in \mathbb{P}(T)$	$\forall x \cdot x \in S \Rightarrow x \in T$
$E \in\{x \cdot x \in S \wedge P(x) \mid F(x)\}$	$\exists x \cdot x \in S \wedge P(x) \wedge E=F(x)$
$E \in\{x \mid x \in S \wedge P(x)\}$	$E \in S \wedge P(E)$

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

Union	$S \cup T$
Intersection	$S \cap T$
Difference	$S \backslash T$
Extension	$\{a, \ldots, b\}$
Empty set	\varnothing

Intersection

$E \in S \cup T$	$E \in S \quad \vee \quad E \in T$
$E \in S \cap T$	$E \in S \wedge E \in T$
$E \in S \backslash T$	$E \in S \wedge E \notin T$
$E \in\{a, \ldots, b\}$	$\boldsymbol{E}=\boldsymbol{a} \quad \vee \ldots \ldots \vee{ }^{\text {a }}$
$\boldsymbol{E} \in \varnothing$	\perp

Summary of Basic and Elementary Operators

$S \times T$	$S \cup T$
$\mathbb{P}(S)$	$S \cap T$
$\{x \mid x \in S \wedge P\}$	$S \backslash T$
$S \subseteq T$	$\{a, \ldots, b\}$
$S=T$	\varnothing

Generalizations of Elementary Operators

Generalized Union	union (S)
Union Quantifier	$\cup x \cdot x \in S \wedge P(x) \mid T(x)$
Generalized Intersection	$\operatorname{inter}(S)$
Intersection Quantifier	$\cap x \cdot x \in S \wedge P(x) \mid T(x)$

Generalized Union

S

union(S)

Generalized Intersection

S

inter(S)

Generalizations of Elementary Operator Memberships

$E \in$ union (S)	$\exists s \cdot s \in S \wedge E \in s$
$E \in \cup x \cdot x \in S \wedge P(x) \mid T(x)$	$\exists x \cdot x \in S \wedge P(x) \wedge E \in T(x)$
$E \in \operatorname{inter}(S)$	$\forall s \cdot s \in S \Rightarrow E \in s$
$E \in \cap x \cdot x \in S \wedge P(x) \mid T(x)$	$\forall x \cdot x \in S \wedge P(x) \Rightarrow E \in T(x)$

Well-definedness condition for case 3: $S \neq \varnothing$
Well-definedness condition for case 4: $\exists x \cdot x \in S \wedge P(x)$

Binary relations	$S \leftrightarrow T$
Domain	$\operatorname{dom}(r)$
Range	$\operatorname{ran}(r)$
Converse	r^{-1}

A Binary Relation r from a Set A to a Set B

$$
r \in A \leftrightarrow B
$$

$$
\operatorname{ran}(r)=\{b 1, b 2, b 4, b 6\}
$$

Converse of Binary Relation r

$$
r^{-1}=\{b 1 \mapsto a 3, b 2 \mapsto a 1, b 2 \mapsto a 5, b 2 \mapsto a 7, b 4 \mapsto a 3, b 6 \mapsto a 7\}
$$

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E \in \operatorname{dom}(r)$	$\exists y \cdot E \mapsto y \in r$
$F \in \operatorname{ran}(r)$	$\exists x \cdot x \mapsto F \in r$
$E \mapsto F \in r^{-1}$	$F \mapsto E \in r$

Partial surjective binary relations	$S \leftrightarrow T$
Total binary relations	$S \leftrightarrow T$
Total surjective binary relations	$S \leftrightarrow T$

A Partial Surjective Relation

$$
r \in A \leftrightarrow B
$$

$$
r \in A \leftrightarrow B
$$

A Total Surjective Relation

$$
r \in A \leftrightarrow B
$$

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{ran}(r)=T$
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{dom}(r)=T$
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge r \in S \leftrightarrow T$

Domain restriction	$S \triangleleft r$
Range restriction	$r \triangleright T$
Domain subtraction	$S \notin r$
Range subtraction	$r \triangleright T$

$\{a 3, a 7\} \triangleleft F$

$$
\{a 3, a 7\} \notin \boldsymbol{F}
$$

Left Part	Right Part
$E \mapsto F \in S \triangleleft r$	$E \in S \wedge E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \wedge F \in T$
$E \mapsto F \in S \notin r$	$E \notin S \wedge E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \wedge F \notin T$

Image	$r[w]$
Composition	$p ; q$
Overriding	$p \nrightarrow q$
Identity	id (S)

$\mathbf{S} \quad \mathbf{T}$

$$
r[\{a, b\}]=\{m, n, p\}
$$

Forward Composition

Binary Relation Operator Memberships (4)

$F \in r[w]$	$\exists x \cdot x \in w \wedge x \mapsto F \in r$
$E \mapsto F \in(p ; q)$	$\exists x \cdot E \mapsto x \in p \wedge x \mapsto F \in q$
$p \nrightarrow q$	$(\operatorname{dom}(q) \notin p) \cup q$
$E \mapsto F \in \operatorname{id}(S)$	$E \in S \wedge F=E$

Direct Product	$p \otimes q$	
First Projection	$\operatorname{prj}_{1}(S, T)$	
Second Projection	$\operatorname{prj}_{2}(S, T)$	
Parallel Product	$p \\| q$	

Binary Relation Operator Memberships (5)

$E \mapsto(F \mapsto G) \in p \otimes q$	$E \mapsto F \in p \wedge E \mapsto G \in q$	
$(E \mapsto F) \mapsto G \in \operatorname{prj}_{1}(S, T)$	$E \in S \wedge F \in T \wedge G=E$	
$(E \mapsto F) \mapsto G \in \operatorname{prj}_{2}(S, T)$	$E \in S \wedge F \in T \wedge G=F$	
$(E \mapsto G) \mapsto(F \mapsto H) \in p \\| q$	$E \mapsto F \in p \wedge G \mapsto H \in q$	

Summary of Binary Relation Operators

$S \leftrightarrow T$	$S \triangleleft r$	$r[w]$	$\operatorname{prj}_{1}(S, T)$	
$\operatorname{dom}(r)$	$r \triangleright T$	$p ; q$	$\operatorname{prj}_{2}(S, T)$	
$\operatorname{ran}(r)$	$S \notin r$	$p \nrightarrow q$	$\operatorname{id}(S)$	
r^{-1}	$r \triangleright T$	$p \otimes q$	$p \\| q$	

$$
\begin{aligned}
& r^{-1-1}=r \\
& \operatorname{dom}\left(r^{-1}\right)=\operatorname{ran}(r) \\
& (S \triangleleft r)^{-1}=r^{-1} \triangleright S \\
& (p ; q)^{-1}=q^{-1} ; p^{-1} \\
& (p ; q) ; r=q ;(p ; r) \\
& (p ; q)[w]=q[p[w]] \\
& p ;(q \cup r)=(p ; q) \cup(p ; r) \\
& r[a \cup b]=r[a] \cup r[b]
\end{aligned}
$$

Given a relation r such that $r \in S \leftrightarrow S$

$$
\begin{array}{ll}
r=r^{-1} & r \text { is symmetric } \\
r \cap r^{-1}=\varnothing & r \text { is asymmetric } \\
r \cap r^{-1} \subseteq \operatorname{id}(S) & r \text { is antisymmetric } \\
\operatorname{id}(S) \subseteq r & r \text { is reflexive } \\
r \cap \operatorname{id}(S)=\varnothing & r \text { is irreflexive } \\
r ; r \subseteq r & r \text { is transitive }
\end{array}
$$

Given a relation r such that $r \in S \leftrightarrow S$

$$
\begin{array}{ll}
r=r^{-1} & \forall x, y \cdot x \in S \wedge y \in S \Rightarrow(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r) \\
r \cap r^{-1}=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\
r \cap r^{-1} \subseteq \operatorname{id}(S) & \forall x, y \cdot x \mapsto y \in r \wedge y \mapsto x \in r \Rightarrow x=y \\
\operatorname{id}(S) \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\
r \cap \operatorname{id}(S)=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\
r ; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \wedge y \mapsto z \in r \Rightarrow x \mapsto z \in r
\end{array}
$$

Set-theoretic statements are far more readable than predicate calculus statements

Partial functions	$S \rightarrow T$
Total functions	$\boldsymbol{S} \rightarrow \boldsymbol{T}$
Partial injections	$\boldsymbol{S} \rightarrow \boldsymbol{T}$
Total injections	$\boldsymbol{S} \mapsto \boldsymbol{T}$

A Partial Function F from a Set A to a Set B

$$
F \in A \rightarrow B
$$

A Total Function F from a Set A to a Set B

$$
\boldsymbol{F} \in A \rightarrow B
$$

A Partial Injection F from a Set A to a Set B

$$
F \in A \nrightarrow B
$$

A Total Injection F from a Set A to a Set B

$$
\boldsymbol{F} \in \boldsymbol{A} \mapsto \boldsymbol{B}
$$

Left Part	Right Part
$f \in S \leftrightarrow T$	$f \in S \leftrightarrow T \wedge\left(f^{-1} ; f\right)=\operatorname{id}(\operatorname{ran}(f))$
$f \in S \rightarrow T$	$f \in S \leftrightarrow T \wedge S=\operatorname{dom}(f)$
$f \in S \leftrightarrow T$	$f \in S \leftrightarrow T \wedge f^{-1} \in T \leftrightarrow S$
$f \in S \mapsto T$	$f \in S \rightarrow T \wedge f^{-1} \in T \leftrightarrow S$

Partial surjections	$S \rightarrow T$
Total surjections	$S \rightarrow T$
Bijections	$S \nrightarrow T$

A Partial Surjection F from a Set A to a Set B

$$
\boldsymbol{F} \in \boldsymbol{A} \oiint \boldsymbol{B}
$$

A Total Surjection F from a Set A to a Set B

$$
\boldsymbol{F} \in \boldsymbol{A} \rightarrow \boldsymbol{B}
$$

A Bijection F from a Set A to a Set B

$$
F \in A \nrightarrow B
$$

Left Part	Right Part
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \nrightarrow T$	$f \in S \mapsto T \wedge f \in S \rightarrow T$

$S \leftrightarrow T$	$S \nrightarrow T$
$S \rightarrow T$	$S \rightarrow T$
$S \nrightarrow T$	$S \nrightarrow T$
$S \mapsto T$	

Summary of all Set-theoretic Operators (40)

$S \times T$	$S \backslash T$	r^{-1}	$r[w]$	id (S)	$\{x \mid x \in S \wedge P\}$	
$\mathbb{P}(S)$	$\begin{aligned} & S \leftrightarrow T \\ & S \leftrightarrow T \end{aligned}$	$\begin{aligned} & S \triangleleft r \\ & S \nleftarrow r \end{aligned}$	$p ; q$	$\begin{aligned} & S \rightarrow T \\ & S \rightarrow T \end{aligned}$	$\{x \cdot x \in S \wedge P \mid E\}$	
$S \subseteq T$	$\underset{S}{S} \underset{\leftrightarrow}{\leftrightarrow} T$	$\begin{gathered} \boldsymbol{r} \triangleright \boldsymbol{T} \\ \boldsymbol{r} \end{gathered}$	$p \nleftarrow q$	$\underset{S}{S} \underset{\mapsto}{\mapsto} \boldsymbol{T}$	$\{a, b, \ldots, n\}$	
$S \cup T$	$\underset{\operatorname{ran}(r)}{\operatorname{dom}(r)}$	prj ${ }_{1}$	$p \otimes q$	$\underset{S}{S \rightarrow T} \underset{T}{\boldsymbol{S}}$	union U	
$S \cap T$	\varnothing	prj_{2}	$p \\| q$	$S \leftrightarrows T$	inter $\quad \cap$	

Applying a Function

Given a partial function f, we have

Well-definedness conditions: $\quad f$ is a partial function

$$
E \in \operatorname{dom}(f)
$$

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

```
men \subseteqPERSON
women = PERSON\men
```

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

$$
\begin{aligned}
& \text { men } \subseteq P E R S O N \\
& \text { women }=P E R S O N \backslash \text { men } \\
& \text { husband } \in \text { women } \leftrightarrow \text { men }
\end{aligned}
$$

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

$$
\begin{aligned}
& \text { men } \subseteq \text { PERSON } \\
& \text { women }=P E R S O N \backslash \text { men } \\
& \text { husband } \in \text { women } \mapsto \text { men } \\
& \text { mother } \in P E R S O N \rightarrow \operatorname{dom}(\text { husband })
\end{aligned}
$$

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

```
men \subseteqPERSON
women = PERSON\men
husband \in women }\leftrightarrow\mathrm{ men
mother \in PERSON }->\mathrm{ dom(husband)
```

wife $=$
spouse $=$
father $=$

```
men \subseteqPERSON
women = PERSON\men
husband \in women }\leftrightarrow\mathrm{ men
mother \in PERSON }->\mathrm{ dom(husband)
```

 \(w i f e=h u s b a n d^{-1}\)
 spouse \(=\)
 father \(=\)
    ```
men \subseteqPERSON
women = PERSON\men
husband \in women }\leftrightarrow\mathrm{ men
mother }\inPERSON->\operatorname{dom(husband)
```

$$
\begin{aligned}
& \text { wife }=\text { husband }^{-1} \\
& \text { spouse }=\text { husband } \cup \text { wife } \\
& \text { father }=
\end{aligned}
$$

```
men \subseteqPERSON
women = PERSON\men
husband \in women }\leftrightarrow\mathrm{ men
mother }\inPERSON->\operatorname{dom(husband)
```

$$
\begin{aligned}
& \text { wife }=\text { husband }^{-1} \\
& \text { spouse }=\text { husband } \cup \text { wife } \\
& \text { father }=\text { mother } ; \text { husband }
\end{aligned}
$$

```
men \subseteqPERSON
women = PERSON\men
husband \in women }\leftrightarrow\mathrm{ men
mother \inPERSON}->\mathrm{ dom(husband)
```

father $=$ mother $;$ husband
children $=$
daughter $=$
sibling $=$

```
men \subseteqPERSON
women = PERSON\men
husband \in women }->\mathrm{ men
mother \inPERSON}->\mathrm{ dom(husband)
```

father $=$ mother $;$ husband
children $=(\text { mother } \cup \text { father })^{-1}$
daughter $=$
sibling $=$

```
men \subseteqPERSON
women = PERSON \men
husband \in women }->\mathrm{ men
mother \in PERSON }->\mathrm{ dom(husband)
```

father $=$ mother $;$ husband
children $=(\text { mother } \cup \text { father })^{-1}$
daughter $=$ children \triangleright women
sibling $=$

```
men \subseteqPERSON
women = PERSON \men
husband \in women }->\mathrm{ men
mother \in PERSON }->\mathrm{ dom(husband)
```

father $=$ mother $;$ husband
children $=(\text { mother } \cup \text { father })^{-1}$
daughter $=$ children \triangleright women
sibling $=\left(\right.$ children $^{-1} ;$ children $) \backslash \operatorname{id}($ PERSON $)$

$$
\begin{aligned}
& \text { brother }=? \\
& \text { sibling - in - law }=? \\
& \text { nephew - or }- \text { niece }=? \\
& \text { uncle }- \text { or }- \text { aunt }=? \\
& \text { cousin }=?
\end{aligned}
$$

$$
\begin{aligned}
& \text { mother }=\text { father } \text { wife } \\
& \text { spouse }=\text { spouse }^{-1} \\
& \text { sibling }=\operatorname{sibling}^{-1} \\
& \text { cousin }=\text { cousin }^{-1}
\end{aligned}
$$

$$
\text { father } ; \text { father } r^{-1}=\text { mother } ; \text { mother }{ }^{-1}
$$

$$
\text { father } ; \text { mother }^{-1}=\varnothing
$$

$$
\text { mother } ; \text { father }^{-1}=\varnothing
$$

$$
\text { father } ; \text { children }=\text { mother } ; \text { children }
$$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \perp \\
& \text { ᄀpredicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \forall \text { varcate } \Leftrightarrow \text { predicate } \\
& \exists \text { varlist } \cdot \text { predicate } \\
& \text { expression }=\text { expression } \\
& \text { expression } \in \text { set } \\
& \text { number } \leq \text { number } \\
& \text { number } \lesssim \text { number } \\
& \text { number }>\text { number } \\
& \text { number } \geq \text { number } \\
& \text { finite }(s e t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { expression }::=\text { variable } \\
& \text { expression } \mapsto \text { expression } \\
& \text { set } \\
& \text { number } \\
& \text { variable } \quad::=\text { identifier } \\
& \text { var_list } \quad:=\text { variable } \\
& \text { variable, var list } \\
& \text { set } \\
& ::=\text { set } \times \text { set } \\
& \mathbb{P}(\text { set }) \\
& \text { \{varlist•predicate|expression \} } \\
& \mathbb{N} \\
& \text { number .. number }
\end{aligned}
$$

Arithmetic and Summary of Syntax (3)

```
number ::= 0
    1
        - number
        number + number
        number - number
        number * number
        number/number
        number mod number
        number ^ number
        card(set)
        min(set)
        max(set)
```


Summary of the Well-definedness Conditions

| inter (S) | $S \neq \varnothing$ |
| :--- | :--- |
| $\cap x \cdot x \in S \wedge P(x) \mid T(x)$ | $\exists x \cdot x \in S \wedge P(x)$ |
| $f(E)$ | f is a partial function
 $E \in \operatorname{dom}(f)$ |
| E / F | $F \neq 0$ |
| $E \bmod F$ | $F \neq 0$ |
| $\operatorname{card}(S)$ | finite (S) |
| $\min (S)$ | $S \subseteq \mathbb{Z}$
 $\exists x \in x \in \mathbb{Z} \wedge(\forall n \cdot n \in S \Rightarrow x \leq n)$ |
| $\max (S)$ | $S \subseteq \mathbb{Z}$
 $\exists x \in x \in \mathbb{Z} \wedge(\forall n \cdot n \in S \Rightarrow x \geq n)$ |

