
Summary of Mathematical Notation

Jean-Raymond Abrial (ETHZ)

March 2008

Purpose of this Presentation 1

- Topics:

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic

- WARNING: This presentation does not contain an exhaustive

treatment of proof, first order logic, set theory, and arithmetic

- It is a REMINDER of notions supposedly already encountered

1

Foundation for Deductive and Formal Proofs 2

- Reason: We want to understand how proofs can be mechanized

- Topics:

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules

2

Sequent 3

- Sequent is the generic name for “something we want to prove”

- We shall be more precise later

3

Inference Rule 4

- An inference rule is a tool to perform a formal proof

- It is denoted by:

A
—— R

C

- A is a (possibly empty) collection of sequents: the antecedents

- C is a sequent: the consequent

- R is the name of the rule

The proofs of each sequent of A
———— together give you ———–

a proof of sequent C

4

Foundation for Deductive (and formal) Proofs 5

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules

5

Backward and Forward Reasoning 6

Given an inference rule A
C with antecedents A and consequent C

Forward reasoning: A
C ↓

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: A
C ↑

In order to get a proof of C, it is sufficient to have proofs of each

sequent in A

Most steps done in a proof are backward steps

6

“Executing” the Proof of a Sequent S (backward reasoning) 7

- We are given:

- a collection T of inference rules of the form A
C

- a sequent container K, containining S initially

WHILE K is not empty

CHOOSE a rule A
C in T whose consequent C is in K;

REPLACE C in K by the antecedents A (if any)

This proof method is said to be goal oriented

7

Example of a Proof 8

- We are given the following set of inference rules

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

- We have 7 rules r1 to r7

- S1 to S7 are supposed to denote some sequents

- Notice that rules r1, r4, r6, and r7 have no antecedents

- Our intention is to prove sequent S1 using backward reasoning

8

Proof of sequent S1 9

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
?

9

Proof of Sequent S1 10

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
? ? ?

10

Proof of Sequent S1 11

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 ? ?

11

Proof of Sequent S1 12

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
? ?

12

Proof of Sequent S1 13

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 ?

13

Proof of Sequent S1 14

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 r6

14

Proof of Sequent S1 15

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 ?

15

Proof of Sequent S1 16

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

16

Recording the Proof of Sequent S1 17

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

- The proof is a tree

17

Alternate Representation of the Proof Tree 18

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

- A vertical representation of the proof tree:

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

S1 r3
S2 r1
S3 r5

S5 r4
S6 r6

S4 r2
S7 r7

18

Foundation for Deductive (and formal) Proofs 19

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules

19

Being (a Little) more Precise About Sequents 20

- We supposedly have a PREDICATE Language

(NOT DEFINED YET)

- A sequent is denoted by the following construct: H ` G

- H is a (possibly empty) collection of predicates: the hypotheses

- G is a predicate: the goal

Under the hypotheses of collection H, prove the goal G

20

Basic Inference Rules of Mathematical Reasoning 21

- There are three basic inference rules

- These rules are independent of our future Predicate Language

- HYP: If the goal belongs to the hypotheses of a sequent,

then the sequent is proved,

H, P ` P
HYP

21

Basic Inference Rules of Mathematical Reasoning (cont’d) 22

- MON: Once a sequent is proved, any sequent with the

same goal and more hypotheses is also proved,

H ` Q

H, P ` Q
MON

- CUT: If you succeed in proving P under H, then

P can be added to the collection H for proving a goal Q.

H ` P H, P ` Q

H ` Q
CUT

22

Presentation of the Mathematical Language 23

- It will be done by successive refinements:

(1) Propositional Language

(2) First Order Predicate Language

(3) Equality and Pairs

(4) Set theory

(5) Arithmetic

- Each additional language is built on top of the previous ones

23

Purpose of this Presentation 24

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic

24

Basic Constructs of Propositional Calculus 25

- Given predicates P and Q, we can construct:

- NEGATION: ¬P

- CONJUNCTION: P ∧Q

- IMPLICATION: P ⇒ Q

25

Syntax 26

Predicate ::= ¬ Predicate
Predicate ∧ Predicate
Predicate ⇒ Predicate

- This syntax is ambiguous

26

More on Syntax 27

- Pairs of matching parentheses can be added freely.

- Operator ∧ is associative: P ∧ Q ∧ R is allowed.

- Operator ⇒ is not associative: P ⇒ Q ⇒ R is not allowed.

- Write explicitely either (P ⇒ Q) ⇒ R or P ⇒ (Q ⇒ R) .

- Operators have precedence in this decreasing order: ¬ , ∧ , ⇒ .

- Example:

¬P ⇒ Q ∧R is to be read as (¬P) ⇒ (Q ∧R)

27

Propositional Calculus Rules of Inference (1) 28

- Rules about conjunction

H, P, Q ` R

H, P ∧ Q ` R
AND L

H ` P H ` Q
H ` P ∧ Q

AND R

- Rules about implication

H, P, Q ` R
H, P, P⇒ Q ` R

IMP L
H, P ` Q

H ` P⇒ Q
IMP R

Note: Rules with a double horizontal line can be applied in both directions

28

Propositional Calculus Rules of Inference (2) 29

- Rules about negation

P, ¬P ` Q
NOT L

H, P ` Q H, P ` ¬Q
H ` ¬P

NOT R

H,¬P ` Q H,¬P ` ¬Q
H ` P

NOT R

29

Extensions: Falsity, Truth, Disjunction and Equivalence 30

- FALSITY: ⊥

- TRUTH: >

- DISJUNCTION: P ∨ Q

- EQUIVALENCE: P ⇔Q

30

Definitions of the New Constructs 31

⊥ == P ∧ ¬P

> == ¬ ⊥

P ∨ Q == ¬P ⇒ Q

P ⇔Q == (P ⇒Q) ∧ (Q⇒ P)

31

Syntax 32

Predicate ::= ⊥
>
¬ Predicate
Predicate ∧ Predicate
Predicate ∨ Predicate
Predicate ⇒ Predicate
Predicate ⇔ Predicate

32

More on Syntax 33

- Pairs of matching parentheses can be added freely.

- Operators ∧ and ∨ are associative.

- Operator⇒ and⇔ are not associative.

- Precedence decreasing order: ¬ , ∧ and ∨ ,⇒ and⇔.

33

More on Syntax (cont’d) 34

- The mixing of ∧ and ∨ without parentheses is not allowed.

- You have to write either P ∧ (Q ∨R) or (P ∧Q) ∨R

- The mixing of ⇒ and ⇔ without parentheses is not allowed.

- You have to write either P ⇒ (Q⇔R) or (P ⇒ Q)⇔R

- Example:

R ∧ (¬P ⇒Q) ⇔ (P ∨Q) ∧R

34

More Rules 35

- Rules about disjunction

H, P ` R H, Q ` R
H, P ∨ Q ` R

OR L

H ` P
H ` P ∨ Q

OR R1
H ` Q

H ` P ∨ Q
OR R2

35

More Rules 36

- Rule about negation

⊥ ` P CNTR

- Transforming a disjunctive goal

H,¬P ` Q

H ` P ∨ Q
NEG

36

Purpose of this Presentation 37

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic

37

Syntax of our Predicate Language so far 38

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate

- The letter P , Q, etc. we have used are generic variables

- Each of them stands for a predicate

38

Refining our Language: Predicate Calculus 39

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var list · predicate

expression ::= variable

variable ::= identifier

var list ::= variable
variable, var list

39

On Predicates and Expressions 40

- A Predicate is a formal text that can be proved

- An Expression is a formal text denoting an object.

- A Predicate denotes nothing.

- An Expression cannot be proved.

- Predicates and Expressions are incompatible.

- Expressions will be considerably extended in the set-theoretic and

arithmetic notations.
40

Inference Rules for Predicate Calculus 41

H, ∀x · P(x), P(E) ` Q

H, ∀x · P(x) ` Q
ALL L

where E is an expression

H ` P(x)

H ` ∀x · P(x)
ALL R

- In rule ALL R, variable x is not free in H

41

Extending the language: Existential Quantification 42

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate⇒ predicate
predicate⇔ predicate
∀var list · predicate
∃var list · predicate

expression ::= variable

variable ::= identifier

var list ::= variable
variable, var list

42

Definition of Existential Quantification 43

∃x · P == ¬∀x · ¬P

43

Rules of Inference for Existential Quantification 44

H, P(x) ` Q

H, ∃x · P(x) ` Q
XST L

- In rule XST L, variable x is not free in H and Q

H ` P(E)

H ` ∃x · P(x)
XST R

where E is an expression

44

Comparing the Quantification Rules 45

H, ∀x · P(x), P(E) ` Q
H, ∀x · P(x) ` Q

ALL L
H ` P(x)

H ` ∀x · P(x)
ALL R

H, P(x) ` Q
H, ∃x · P(x) ` Q

XST L
H ` P(E)

H ` ∃x · P(x)
XST R

45

Summary of Logical Operators 46

P ∧Q ¬P

P ∨ Q ∀x · P

P ⇒Q ∃x · P

46

Refining our Language: Equality and Pairs 47

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var list · predicate
∃var list · predicate
expression = expression

expression ::= variable
expression 7→ expression

variable ::= · · ·

var list ::= · · ·

47

Equality Rules of Inference 48

H(F), E = F ` P(F)
H(E), E = F ` P(E)

EQ LR
H(E), E = F ` P(E)
H(F), E = F ` P(F)

EQ RL

` E = E EQL

H ` E = G ∧ F = I
H ` E 7→ F = G 7→ I

PAIR

48

Purpose of this Presentation 49

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic

49

Refining our Language: Set Theory (1) 50

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀ var list · predicate
∃ var list · predicate
expression = expression
expression ∈ set

50

Refining our Language: Set Theory (2) 51

expression ::= variable
expression 7→ expression
set

variable ::= identifier

var list ::= variable
variable, var list

set ::= set× set
P(set)
{ var list · predicate | expression }

- When expression is the same as var list, the last construct can

be written { var list | predicate }
51

Set Theory 52

- Basis

- Basic operators

- Extensions

- Elementary operators

- Generalization of elementary operators

- Binary relation operators

- Function operators

52

Set Theory: Membership 53

- Set theory deals with a new predicate, the membership predicate:

E ∈ S

- where E is an expression and S is a set

53

Set Theory: Basic Constructs 54

There are three basic constructs in set theory:

Cartesian product S × T

Power set P(S)

Comprehension 1 {x · x ∈ S ∧ P (x) | F (x)}

Comprehension 2 {x | x ∈ S ∧ P (x) }

where S and T are sets, x is a variable and P is a predicate.

54

Cartesian Product 55

S T

S x T

a1

a2

b1

b2

b3

55

Power Set 56

a2a1

a1 a2 a3

a1

a2

a3

S

a3a1 a2

a3a1 a3a2

P(S)

56

Set Comprehension 57

a1

a8

a7

a3

a2

a6

a5

a4

S

Subset of S

57

Basic Set Operator Memberships (Axioms) 58

These axioms are defined by equivalences.

Left Part Right Part

E 7→ F ∈ S × T E ∈ S ∧ F ∈ T

S ∈ P(T) ∀x · x ∈ S ⇒ x ∈ T

E ∈ {x · x ∈ S ∧ P (x) |F (x)} ∃x · x ∈ S ∧ P (x) ∧ E = F (x)

E ∈ {x | x ∈ S ∧ P (x)} E ∈ S ∧ P (E)

58

Set Inclusion and Extensionality Axiom 59

Left Part Right Part

S ⊆ T S ∈ P(T)

S = T S ⊆ T ∧ T ⊆ S

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

59

Elementary Set Operators 60

Union S ∪ T

Intersection S ∩ T

Difference S \ T

Extension {a, . . . , b}

Empty set ∅

60

Union, Difference, Intersection 61

Intersection

DifferenceUnion

61

Elementary Set Operator Memberships 62

E ∈ S ∪ T E ∈ S ∨ E ∈ T

E ∈ S ∩ T E ∈ S ∧ E ∈ T

E ∈ S \ T E ∈ S ∧ E /∈ T

E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

E ∈ ∅ ⊥

62

Summary of Basic and Elementary Operators 63

S × T S ∪ T

P(S) S ∩ T

{x | x ∈ S ∧ P } S \ T

S ⊆ T {a, . . . , b}

S = T ∅

63

Generalizations of Elementary Operators 64

Generalized Union union (S)

Union Quantifier ⋃
x · x ∈ S ∧ P (x) | T (x)

Generalized Intersection inter (S)

Intersection Quantifier ⋂
x · x ∈ S ∧ P (x) | T (x)

64

Generalized Union 65

a1

a2
a3

a4

a5

a1

a3

a2

a3

a5
a4

a2

a1

S union(S)

65

Generalized Intersection 66

a2

a4

a1

S

a3
a4

a3
a5

a1

a1
a3

a2

a1

a3

inter(S)

66

Generalizations of Elementary Operator Memberships 67

E ∈ union (S) ∃s · s ∈ S ∧ E ∈ s

E ∈
⋃

x · x ∈ S ∧ P (x) | T (x) ∃x · x ∈ S ∧ P (x) ∧ E ∈ T (x)

E ∈ inter (S) ∀s · s ∈ S ⇒ E ∈ s

E ∈
⋂

x · x ∈ S ∧ P (x) | T (x) ∀x · x ∈ S ∧ P (x) ⇒ E ∈ T (x)

Well-definedness condition for case 3: S 6= ∅

Well-definedness condition for case 4: ∃x · x ∈ S ∧ P (x)

67

Summary of Generalizations of Elementary Operators 68

union (S)

⋃
x · x ∈ S ∧ P | T

inter (S)

⋂
x · x ∈ S ∧ P | T

68

Binary Relation Operators (1) 69

Binary relations S↔ T

Domain dom (r)

Range ran (r)

Converse r−1

69

A Binary Relation r from a Set A to a Set B 70

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔B

70

Domain of Binary Relation r 71

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5
a4

r
a1

dom(r) = {a1, a3, a5, a7}

71

Range of Binary Relation r 72

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

ran(r) = {b1, b2, b4, b6}

72

Converse of Binary Relation r 73

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r−1 = {b1 7→ a3, b2 7→ a1, b2 7→ a5, b2 7→ a7, b4 7→ a3, b6 7→ a7}

73

Binary Relation Operator Memberships (1) 74

Left Part Right Part

r ∈ S↔ T r ⊆ S × T

E ∈ dom (r) ∃y · E 7→ y ∈ r

F ∈ ran (r) ∃x · x 7→ F ∈ r

E 7→ F ∈ r−1 F 7→ E ∈ r

74

Binary Relation Operators (2) 75

Partial surjective binary relations S↔→ T

Total binary relations S←↔ T

Total surjective binary relations S↔↔ T

75

A Partial Surjective Relation 76

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔→B

76

A Total Relation 77

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A←↔B

77

A Total Surjective Relation 78

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔↔B

78

Binary Relation Operator Memberships (2) 79

Left Part Right Part

r ∈ S↔→ T r ∈ S↔ T ∧ ran(r) = T

r ∈ S←↔ T r ∈ S↔ T ∧ dom(r) = T

r ∈ S↔↔ T r ∈ S↔→ T ∧ r ∈ S←↔ T

79

Binary Relation Operators (3) 80

Domain restriction S � r

Range restriction r � T

Domain subtraction S �− r

Range subtraction r �− T

80

The Domain Restriction Operator 81

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7} � F

81

The Range Restriction Operator 82

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F � {b2, b4}

82

The Domain Restriction Operator 83

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7} �− F

83

The Range Restriction Operator 84

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F �− {b2, b4}

84

Binary Relation Operator Memberships (3) 85

Left Part Right Part

E 7→ F ∈ S � r E ∈ S ∧ E 7→ F ∈ r

E 7→ F ∈ r � T E 7→ F ∈ r ∧ F ∈ T

E 7→ F ∈ S �− r E /∈ S ∧ E 7→ F ∈ r

E 7→ F ∈ r �− T E 7→ F ∈ r ∧ F /∈ T

85

Binary Relation Operators (4) 86

Image r[w]

Composition p ; q

Overriding p �− q

Identity id (S)

86

Image of {a, b} under r 87

S T

r

b
a m

d

c

s

r

q
n

p

r[{a, b}] = {m, n, p}

87

Forward Composition 88

S T U

S U

F G

F ; G

88

The Overriding Operator 89

F G

89

The Overriding Operator 90

F G

F �−G

90

Special Case 91

F {x |−> y}

91

Special Case 92

F <+ {x |−> y}

F {x |−> y}

92

The Identity Relation 93

a1

a2

a3

a4

a1

a2

a3

a4

S S

93

Binary Relation Operator Memberships (4) 94

F ∈ r[w] ∃x · x ∈ w ∧ x 7→ F ∈ r

E 7→ F ∈ (p ; q) ∃x · E 7→ x ∈ p ∧ x 7→ F ∈ q

p �− q (dom(q) �− p) ∪ q

E 7→ F ∈ id (S) E ∈ S ∧ F = E

94

Binary Relation Operators (5) 95

Direct Product p⊗ q

First Projection prj1(S, T)

Second Projection prj2(S, T)

Parallel Product p ‖ q

95

Binary Relation Operator Memberships (5) 96

E 7→ (F 7→ G) ∈ p⊗ q E 7→ F ∈ p ∧ E 7→ G ∈ q

(E 7→ F) 7→ G ∈ prj1(S, T) E ∈ S ∧ F ∈ T ∧ G = E

(E 7→ F) 7→ G ∈ prj2(S, T) E ∈ S ∧ F ∈ T ∧ G = F

(E 7→ G) 7→ (F 7→ H) ∈ p ‖ q E 7→ F ∈ p ∧ G 7→ H ∈ q

96

Summary of Binary Relation Operators 97

S↔ T S � r r[w] prj1 (S, T)

dom (r) r � T p ; q prj2 (S, T)

ran (r) S �− r p �− q id (S)

r−1 r �− T p⊗ q p ‖ q

97

Classical Results with Relation Operators 98

r−1−1 = r

dom(r−1) = ran(r)

(S � r)−1 = r−1 � S

(p ; q)−1 = q−1 ; p−1

(p ; q) ; r = q ; (p ; r)

(p ; q)[w] = q[p[w]]

p ; (q ∪ r) = (p ; q) ∪ (p ; r)

r[a ∪ b] = r[a] ∪ r[b]

. . .

98

More Definitions 99

Given a relation r such that r ∈ S↔ S

r = r−1 r is symmetric

r ∩ r−1 = ∅ r is asymmetric

r ∩ r−1 ⊆ id(S) r is antisymmetric

id(S) ⊆ r r is reflexive

r ∩ id(S) = ∅ r is irreflexive

r; r ⊆ r r is transitive

99

Translations into First Order Predicates 100

Given a relation r such that r ∈ S↔ S

r = r−1 ∀x, y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)

r ∩ r−1 = ∅ ∀x, y · x 7→ y ∈ r ⇒ y 7→ x /∈ r

r ∩ r−1 ⊆ id(S) ∀x, y · x 7→ y ∈ r ∧ y 7→ x ∈ r ⇒ x = y

id(S) ⊆ r ∀x · x ∈ S ⇒ x 7→ x ∈ r

r ∩ id(S) = ∅ ∀x, y · x 7→ y ∈ r ⇒ x 6= y

r; r ⊆ r ∀x, y, z · x 7→ y ∈ r ∧ y 7→ z ∈ r ⇒ x 7→ z ∈ r

Set-theoretic statements are far more readable than predicate calculus statements

100

Function Operators (1) 101

Partial functions S 7→ T

Total functions S→ T

Partial injections S 7� T

Total injections S � T

101

A Partial Function F from a Set A to a Set B 102

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F ∈ A 7→B

102

A Total Function F from a Set A to a Set B 103

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F ∈ A→B

103

A Partial Injection F from a Set A to a Set B 104

A B

a3

a6

F

b4

b5

b6

b2

a1 b3

a5

a4

F ∈ A 7� B

104

A Total Injection F from a Set A to a Set B 105

A B

a3

a6

F

b4

b5

b6

b2

a1 b3

F ∈ A � B

105

Function Operator Memberships (1) 106

Left Part Right Part

f ∈ S 7→ T f ∈ S↔ T ∧ (f−1 ; f) = id(ran(f))

f ∈ S→ T f ∈ S 7→ T ∧ S = dom(f)

f ∈ S 7� T f ∈ S 7→ T ∧ f−1 ∈ T 7→ S

f ∈ S � T f ∈ S→ T ∧ f−1 ∈ T 7→ S

106

Function Operators (2) 107

Partial surjections S 7� T

Total surjections S � T

Bijections S �� T

107

A Partial Surjection F from a Set A to a Set B 108

A B

a3

a6

F

b4

b6

b2

a1

a5

a4

a2

F ∈ A 7� B

108

A Total Surjection F from a Set A to a Set B 109

A B

a3

a6

F

b4

b6

b2

a1

a5

a4

a2

F ∈ A � B

109

A Bijection F from a Set A to a Set B 110

A B

a3

a6

F

b4

b5

b6

b2

a1 b3

a5

a4

F ∈ A �� B

110

Function Operator Memberships (2) 111

Left Part Right Part

f ∈ S 7� T f ∈ S 7→ T ∧ T = ran(f)

f ∈ S � T f ∈ S→ T ∧ T = ran(f)

f ∈ S �� T f ∈ S � T ∧ f ∈ S � T

111

Summary of Function Operators 112

S 7→ T S 7� T

S→ T S � T

S 7� T S �� T

S � T

112

Summary of all Set-theoretic Operators (40) 113

S × T S \ T r−1 r[w] id (S) {x |x ∈ S ∧ P }

P(S)
S↔ T
S↔↔ T

S � r
S �− r p ; q

S 7→ T
S→ T {x · x ∈ S ∧ P | E}

S ⊆ T
S↔→ T
S←↔ T

r � T
r �− T p �− q

S 7� T
S � T { a, b, . . . , n }

S ∪ T
dom (r)
ran (r) prj1 p⊗ q

S 7� T
S � T union

⋃
S ∩ T ∅ prj2 p ‖ q S �� T inter

⋂

113

Applying a Function 114

Given a partial function f , we have

Left Part Right Part

F = f(E) E 7→ F ∈ f

Well-definedness conditions: f is a partial function

E ∈ dom (f)

114

Example: a Very Strict Society 115

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time

- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women

115

Formal Representation 116

men ⊆ PERSON

women = PERSON \men

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time

- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women
116

Formal Representation 117

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time

- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women
117

Formal Representation 118

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time

- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women
118

Defining New Concepts 119

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

wife =

spouse =

father =

119

Defining New Concepts 120

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

wife = husband−1

spouse =

father =

120

Defining New Concepts 121

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

wife = husband−1

spouse = husband ∪ wife

father =

121

Defining New Concepts 122

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

wife = husband−1

spouse = husband ∪ wife

father = mother ; husband

122

Defining New Concepts 123

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

father = mother ; husband

children =

daughter =

sibling =

123

Defining New Concepts 124

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

father = mother ; husband

children = (mother ∪ father)−1

daughter =

sibling =

124

Defining New Concepts 125

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

father = mother ; husband

children = (mother ∪ father)−1

daughter = children � women

sibling =

125

Defining New Concepts 126

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7� men

mother ∈ PERSON → dom(husband)

father = mother ; husband

children = (mother ∪ father)−1

daughter = children � women

sibling = (children−1 ; children) \ id(PERSON)

126

Exercises. To be defined 127

brother = ?

sibling − in− law = ?

nephew − or − niece = ?

uncle− or − aunt = ?

cousin = ?

127

Exercises. To be proved 128

mother = father ; wife

spouse = spouse−1

sibling = sibling−1

cousin = cousin−1

father ; father−1 = mother ; mother−1

father ; mother−1 = ∅

mother ; father−1 = ∅

father ; children = mother ; children

128

Purpose of this Presentation 129

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic

129

Arithmetic and Summary of Syntax (1) 130

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀ var list · predicate
∃ var list · predicate
expression = expression
expression ∈ set
number < number
number ≤ number
number > number
number ≥ number
finite(set)

130

Arithmetic and Summary of Syntax (2) 131

expression ::= variable
expression 7→ expression
set
number

variable ::= identifier

var list ::= variable
variable, var list

set ::= set× set
P(set)
{ var list · predicate | expression }
Z
N
number .. number

131

Arithmetic and Summary of Syntax (3) 132

number ::= 0
1
· · ·
−number
number + number
number − number
number ∗ number
number/number
number mod number
number ̂ number
card(set)
min(set)
max(set)

132

Summary of the Well-definedness Conditions 133

inter (S) S 6= ∅

⋂
x · x ∈ S ∧ P (x) | T (x) ∃x · x ∈ S ∧ P (x)

f(E)
f is a partial function
E ∈ dom(f)

E/F F 6= 0

E mod F F 6= 0

card(S) finite(S)

min(S)
S ⊆ Z
∃x · x ∈ Z ∧ (∀n · n ∈ S ⇒ x ≤ n)

max(S)
S ⊆ Z
∃x · x ∈ Z ∧ (∀n · n ∈ S ⇒ x ≥ n)

133

