Summary of Mathematical Notation

Jean-Raymond Abrial (ETHZ)

March 2008

- Topics:
 - Foundation for deductive and formal proofs
 - A quick review of Propositional Calculus
 - A quick review of First Order Predicate Calculus
 - A quick review of Set Theory
 - A quick review of Arithmetic
- WARNING: This presentation does not contain an exhaustive treatment of proof, first order logic, set theory, and arithmetic
- It is a **REMINDER** of notions supposedly already encountered

- Reason: We want to understand how proofs can be mechanized
- Topics:
 - Concepts of Sequent and Inference Rule
 - Backward and Forward Reasoning
 - Basic Inference Rules

- Sequent is the generic name for "something we want to prove"
- We shall be more precise later

- An inference rule is a tool to perform a formal proof
- It is denoted by:

- A is a (possibly empty) collection of sequents: the antecedents
- **C** is a sequent: the consequent
- R is the name of the rule

- Concepts of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

Forward reasoning: $\frac{A}{C} \downarrow$

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: $\frac{A}{C} \uparrow$ In order to get a proof of *C*, it is sufficient to have proofs of each sequent in *A*

Most steps done in a proof are backward steps

- We are given:
 - a collection \mathcal{T} of inference rules of the form $\frac{A}{C}$
 - a sequent container K, containing S initially

WHILE K is not empty

CHOOSE a rule $\frac{A}{C}$ in \mathcal{T} whose consequent C is in K;

REPLACE C in K by the antecedents A (if any)

This proof method is said to be goal oriented

- We are given the following set of inference rules

- We have 7 rules r1 to r7
- S1 to S7 are supposed to denote some sequents
- Notice that rules **r1**, **r4**, **r6**, and **r7** have **no antecedents**
- Our intention is to prove sequent S1 using backward reasoning

Proof of sequent S1

S1 ?

- The proof is a tree

- A vertical representation of the proof tree:

- Concepts of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules

- We supposedly have a PREDICATE Language (NOT DEFINED YET)

- A sequent is denoted by the following construct:

- H is a (possibly empty) collection of predicates: the hypotheses
- G is a predicate: the goal

Under the hypotheses of collection H, prove the goal G

- There are three basic inference rules
- These rules are independent of our future Predicate Language
- **HYP**: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,

Basic Inference Rules of Mathematical Reasoning (cont'd) 22

- MON: Once a sequent is proved, any sequent with the

same goal and more hypotheses is also proved,

- CUT: If you succeed in proving P under H, then

P can be added to the collection **H** for proving a goal **Q**.

- It will be done by successive refinements:
 - (1) Propositional Language
 - (2) First Order Predicate Language
 - (3) Equality and Pairs
 - (4) Set theory
 - (5) Arithmetic
- Each additional language is built on top of the previous ones

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

- Given predicates P and Q, we can construct:
- NEGATION: $\neg P$
- CONJUNCTION: $P \wedge Q$
- IMPLICATION: $P \Rightarrow Q$

- This syntax is ambiguous

- Pairs of matching parentheses can be added freely.
- Operator \land is associative: $P \land Q \land R$ is allowed.
- Operator \Rightarrow is not associative: $P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitely either $(P \Rightarrow Q) \Rightarrow R$ or $P \Rightarrow (Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: \neg , \land , \Rightarrow .
- Example:

$$\neg P \Rightarrow Q \land R$$
 is to be read as $(\neg P) \Rightarrow (Q \land R)$

- Rules about conjunction

- Rules about implication

$$\begin{array}{c|cccc} H, P, Q & \vdash & R \\ \hline H, P, P \Rightarrow Q & \vdash & R \end{array} \quad IMP_L \end{array} \quad \begin{array}{c|ccccccc} H, P & \vdash & Q \\ \hline H & \vdash & P \Rightarrow Q \end{array} \quad IMP_R \end{array}$$

Note: Rules with a double horizontal line can be applied in both directions

- Rules about negation

$$P, \neg P \vdash Q$$
 NOT_L

$$\begin{array}{c|cccc} \mathbf{H}, \mathbf{P} & \vdash & \mathbf{Q} & & \mathbf{H}, \mathbf{P} & \vdash & \neg \mathbf{Q} \\ & & \mathbf{H} & \vdash & \neg \mathbf{P} \end{array} & \mathbf{NOT}_{-}\mathbf{R} \end{array}$$

- FALSITY: ⊥
- TRUTH: T
- DISJUNCTION: $P \lor Q$
- EQUIVALENCE: $P \Leftrightarrow Q$

$$\begin{array}{cccc} \bot & = = & P \land \neg P \\ \\ \top & = = & \neg \bot \\ \\ P \lor Q & = = & \neg P \Rightarrow Q \\ \\ P \Leftrightarrow Q & = = & (P \Rightarrow Q) \land (Q \Rightarrow P) \end{array}$$

Syntax

- Pairs of matching parentheses can be added freely.
- Operators \land and \lor are associative.
- Operator \Rightarrow and \Leftrightarrow are not associative.
- Precedence decreasing order: \neg , \land and \lor , \Rightarrow and \Leftrightarrow .

- The mixing of \land and \lor without parentheses is not allowed.
- You have to write either $P \wedge (Q \vee R)$ or $(P \wedge Q) \vee R$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $P \Rightarrow (Q \Leftrightarrow R)$ or $(P \Rightarrow Q) \Leftrightarrow R$
- Example:

$$R \wedge (\neg P \Rightarrow Q) \Leftrightarrow (P \lor Q) \wedge R$$

- Rules about disjunction

- Rule about negation

- Transforming a disjunctive goal

$$\begin{array}{|c|c|c|c|}\hline \mathbf{H}, \neg \mathbf{P} & \vdash \mathbf{Q} \\ \hline \mathbf{H} & \vdash \mathbf{P} \lor \mathbf{Q} \end{array} \quad \mathbf{NEG} \end{array}$$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

- The letter P, Q, etc. we have used are generic variables
- Each of them stands for a *predicate*

- A Predicate is a formal text that can be proved
- An Expression is a formal text denoting an object.
- A Predicate denotes nothing.
- An Expression cannot be proved.
- Predicates and Expressions are incompatible.
- Expressions will be considerably extended in the set-theoretic and arithmetic notations.

$$\begin{array}{c} \mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}), \ \mathsf{P}(\mathsf{E}) \ \vdash \ \mathsf{Q} \\ \\ \mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}) \ \vdash \ \mathsf{Q} \end{array} \qquad \mathsf{ALL}_{-}\mathsf{L} \end{array}$$

where **E** is an expression

$$\frac{\mathsf{H} \vdash \mathsf{P}(\mathsf{x})}{\mathsf{H} \vdash \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x})} \quad \mathsf{ALL}_{\mathsf{R}}$$

- In rule **ALL_R**, variable **x** is not free in **H**

```
predicate ::=
                    \neg predicate
                    predicate \land predicate
                    predicate \lor predicate
                    predicate \Rightarrow predicate
                    predicate \Leftrightarrow predicate
                    \forall var\_list \cdot predicate
                    \exists var\_list \cdot predicate
expression ::= variable
variable ::= identifier
var\_list ::= variable
                    variable, var\_list
```

$$\exists x \cdot P = \neg \forall x \cdot \neg P$$

$$\frac{H, P(x) \vdash Q}{H, \exists x \cdot P(x) \vdash Q} \quad XST_L$$

- In rule **XST**₋**L**, variable **x** is not free in **H** and **Q**

where **E** is an expression

Summary of Logical Operators

$P \wedge Q$	$\neg P$
$P \lor Q$	$orall x \cdot P$
$P \Rightarrow Q$	$\exists x \cdot P$

```
predicate ::= \perp
                    \neg predicate
                    predicate \land predicate
                    predicate \lor predicate
                    predicate \Rightarrow predicate
                    predicate \Leftrightarrow predicate
                    \forall var\_list \cdot predicate
                    \exists var\_list \cdot predicate
                    expression = expression
expression ::= variable
                    expression \mapsto expression
variable
var\_list
```

$$\begin{array}{c|c} H(F), \ E = F \ \vdash \ P(F) \\ \hline H(E), \ E = F \ \vdash \ P(E) \end{array} \qquad EQ_LR \qquad \qquad \begin{array}{c|c} H(E), \ E = F \ \vdash \ P(E) \\ \hline H(F), \ E = F \ \vdash \ P(F) \end{array} \qquad EQ_RL \end{array}$$

$$\vdash \mathbf{E} = \mathbf{E}$$
 EQL

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

```
predicate ::= \bot
                  \neg predicate
                  predicate \land predicate
                  predicate \lor predicate
                  predicate \Rightarrow predicate
                  predicate \Leftrightarrow predicate
                  \forall var\_list \cdot predicate
                  \exists var_list \cdot predicate
                  expression = expression
                  expression \in set
```

expression	::=	$variable \\ expression \mapsto expression \\ set$
variable	::=	identifier
var_list	::=	$variable\ variable, var_list$
set	::=	$set imes set \ \mathbb{P}(set) \ \{var_list \cdot predicate \mid expression \}$

When *expression* is the same as *var_list*, the last construct can be written { *var_list* | *predicate* }

- Basis

- Basic operators
- Extensions
 - Elementary operators
 - Generalization of elementary operators
 - Binary relation operators
 - Function operators

- Set theory deals with a new predicate, the membership predicate:

$E \in S$

- where E is an expression and S is a set

There are three basic constructs in set theory:

Cartesian product	$oldsymbol{S} imes oldsymbol{T}$
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x\cdotx\in S\ \wedge\ P(x)\mid F(x)\}$
Comprehension 2	$\set{x \mid x \in S \ \land \ P(x)}$

where S and T are sets, x is a variable and P is a predicate.

Cartesian Product

Power Set

Set Comprehension

These axioms are defined by equivalences.

Left Part	Right Part
$E\mapsto F\in S imes T$	$E \in S \land F \in T$
$S\in \mathbb{P}(T)$	$orall x \cdot x \in S \Rightarrow x \in T$
$E \in \{x \cdot x \in S \ \land \ P(x) F(x)\}$	$\exists x \cdot x \in S \ \land \ P(x) \ \land \ E = F(x)$
$E \in \{x \mid x \in S \ \land \ P(x)\}$	$E\in S \ \wedge \ P(E)$

Left Part	Right Part
$S\subseteq T$	$S\in \mathbb{P}(T)$
S=T	$S \subseteq T \hspace{.1in} \wedge \hspace{.1in} T \subseteq S$

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

Union	$S \cup T$
Intersection	$S\cap T$
Difference	$old S \setminus T$
Extension	$\{a,\ldots,b\}$
Empty set	Ø

Union, Difference, Intersection

$E\in S\cup T$	$E\in S \hspace{0.2cm} \lor \hspace{0.2cm} E\in T$
$E\in S\cap T$	$E\in S \ \land \ E\in T$
$E\in S\setminus T$	$E\in S \ \land \ E otin T$
$E\in\{a,\ldots,b\}$	$E=a \hspace{0.2cm} \cdot \hspace{0.2cm} \cdot \hspace{0.2cm} \cdot \hspace{0.2cm} \cdot \hspace{0.2cm} \cdot \hspace{0.2cm} E=b$
$E\in arnothing$	

$oldsymbol{S} imes oldsymbol{T}$	$S \cup T$
$\mathbb{P}(S)$	$S\cap T$
$\set{x \mid x \in S \land P}$	$old S \setminus T$
$S\subseteq T$	$\{a,\ldots,b\}$
S=T	Ø

Generalized Union	union (S)
Union Quantifier	$\cup x \cdot x \in S \land P(x) \mid T(x)$
Generalized Intersection	inter (S)
Intersection Quantifier	$\cap x \cdot x \in S \land P(x) \mid T(x)$

Generalized Union

65

Generalized Intersection

$E \in union(S)$	$\exists s \cdot s \in S \ \land \ E \in s$
$E \in \bigcup x \cdot x \in S \land P(x) \mid T(x)$	$\exists x \cdot x \in S \land P(x) \land E \in T(x)$
$E \in inter(S)$	$\forall s \cdot s \in S \implies E \in s$
$E \in \bigcap x \cdot x \in S \land P(x) \mid T(x)$	$\forall x \cdot x \in S \land P(x) \Rightarrow E \in T(x)$

Well-definedness condition for case 3: $S \neq \emptyset$

Well-definedness condition for case 4: $\exists x \cdot x \in S \land P(x)$

```
union (S)
\cup \ x \cdot x \in S \ \land \ P \ \mid \ T
inter (S)
\cap x \cdot x \in S \land P \mid T
```

Binary relations	$S \leftrightarrow T$
Domain	$dom\left(r ight)$
Range	$\operatorname{ran}\left(r ight)$
Converse	r^{-1}

A Binary Relation r from a Set A to a Set B

 $r \in A \leftrightarrow B$

Domain of Binary Relation *r*

dom $(r) = \{a1, a3, a5, a7\}$
Range of Binary Relation *r*

 $ran(r) = \{b1, b2, b4, b6\}$

Converse of Binary Relation *r*

 $r^{-1} = \{b1 \mapsto a3, b2 \mapsto a1, b2 \mapsto a5, b2 \mapsto a7, b4 \mapsto a3, b6 \mapsto a7\}$

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E\in dom(r)$	$\exists y \cdot E \mapsto y \in r$
$F\in ran\left(r ight)$	$\exists x \cdot x \mapsto F \in r$
$E \mapsto F \in r^{-1}$	$F \mapsto E \in r$

Partial surjective binary relations	$S \leftrightarrow T$
Total binary relations	$S \nleftrightarrow T$
Total surjective binary relations	$S \nleftrightarrow T$

A Partial Surjective Relation

 $r \in A \nleftrightarrow B$

A Total Relation

 $r \in A \nleftrightarrow B$

A Total Surjective Relation

 $r \in A \nleftrightarrow B$

78

Left Part	Right Part
$r \in S \nleftrightarrow T$	$r \in S \leftrightarrow T \land \operatorname{ran}(r) = T$
$r \in S \nleftrightarrow T$	$r \in S \leftrightarrow T \land \operatorname{dom}(r) = T$
$r \in S \nleftrightarrow T$	$r \in S \nleftrightarrow T \land r \in S \nleftrightarrow T$

Domain restriction	$S \lhd r$
Range restriction	$r \rhd T$
Domain subtraction	$S \lhd r$
Range subtraction	$r \triangleright T$

The Domain Restriction Operator

 $\{a3,\ a7\} \lhd F$

The Range Restriction Operator

 $F
ho \{b2, b4\}$

The Domain Restriction Operator

83

 $\{a3, a7\} \triangleleft F$

The Range Restriction Operator

 $F \Rightarrow \{b2, b4\}$

Left Part	Right Part
$E \mapsto F \in S \triangleleft r$	$E \in S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \in T$
$E \mapsto F \in S \triangleleft r$	$E \notin S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \notin T$

Image	r[w]
Composition	$p \ ; q$
Overriding	$p \Leftrightarrow q$
Identity	$id\left(S ight)$

Image of $\{a, b\}$ under r

 $r[\{a,b\}] = \{m,n,p\}$

Forward Composition

The Overriding Operator

The Overriding Operator

Special Case

Special Case

The Identity Relation

$F \in r[w]$	$\exists x \cdot x \in w \land x \mapsto F \in r$
$E \mapsto F \in (p \ ; q)$	$\exists x \cdot E \mapsto x \in p \land x \mapsto F \in q$
$p \nleftrightarrow q$	$(\operatorname{dom}(q) \triangleleft p) \cup q$
$E \mapsto F \in id(S)$	$E \in S \land F = E$

Direct Product	$p\otimes q$
First Projection	$prj_1(S,T)$
Second Projection	$prj_2(S,T)$
Parallel Product	$p \parallel q$

$$E \mapsto (F \mapsto G) \in p \otimes q \qquad \qquad E \mapsto F \in p \land E \mapsto G \in q$$
$$(E \mapsto F) \mapsto G \in \operatorname{prj}_1(S,T) \qquad \qquad E \in S \land F \in T \land G = E$$
$$(E \mapsto F) \mapsto G \in \operatorname{prj}_2(S,T) \qquad \qquad E \in S \land F \in T \land G = F$$
$$(E \mapsto G) \mapsto (F \mapsto H) \in p \parallel q \qquad \qquad E \mapsto F \in p \land G \mapsto H \in q$$

Summary of Binary Relation Operators

$S \leftrightarrow T$	$S \lhd r$	r[w]	$prj_1(S,T)$
$dom\left(r ight)$	$r \rhd T$	p ; q	$\operatorname{prj}_2(S,T)$
ran(r)	$S \lhd r$	$p \Leftrightarrow q$	$id\left(S ight)$
r^{-1}	$r \triangleright T$	$p\otimes q$	$p \parallel q$

Classical Results with Relation Operators

. . .

$$r^{-1-1} = r$$

 $\operatorname{dom}(r^{-1}) = \operatorname{ran}(r)$
 $(S \triangleleft r)^{-1} = r^{-1} \triangleright S$
 $(p;q)^{-1} = q^{-1}; p^{-1}$
 $(p;q); r = q; (p;r)$
 $(p;q)[w] = q[p[w]]$
 $p; (q \cup r) = (p;q) \cup (p;r)$
 $r[a \cup b] = r[a] \cup r[b]$

98

Given a relation r such that $r \in S \leftrightarrow S$

 $r = r^{-1}$ r is symmetric $r \cap r^{-1} = \emptyset$ r is asymmetric $r \cap r^{-1} \subseteq \operatorname{id}(S)$ r is antisymmetric $\operatorname{id}(S) \subseteq r$ r is reflexive $r \cap \operatorname{id}(S) = arnothing$ r is irreflexive $r;r\subseteq r$ r is transitive

Given a relation r such that $r \in S \leftrightarrow S$

$r=r^{-1}$	$\forall x, y \cdot x \in S \land y \in S \Rightarrow (x \mapsto y \in r \Leftrightarrow y \mapsto x \in r)$
$r\cap r^{-1}=arnothing$	$orall x,y\cdot x\mapsto y\in r\Rightarrow y\mapsto x otin r$
$r \cap r^{-1} \subseteq \operatorname{id}(S)$	$\forall x,y \cdot x \mapsto y \in r \land y \mapsto x \in r \Rightarrow x = y$
$\operatorname{id}(S) \ \subseteq \ r$	$\forall x \cdot x \in S \Rightarrow x \mapsto x \in r$
$r \cap \operatorname{id}(S) = arnothing$	$orall x,y\cdot x\mapsto y\in r\Rightarrow x eq y$
$r;r\subseteq r$	$orall x,y,z\cdot x\mapsto y\in r\wedge y\mapsto z\in r\Rightarrow x\mapsto z\in r$

Set-theoretic statements are far more readable than predicate calculus statements

Partial functions	$S \nleftrightarrow T$
Total functions	S o T
Partial injections	old S ightarrow old T
Total injections	$oldsymbol{S} ightarrow oldsymbol{T}$

A Partial Function F from a Set A to a Set B

 $F \in A \twoheadrightarrow B$

A Total Function F from a Set A to a Set B

 $F \in A \rightarrow B$

A Partial Injection F from a Set A to a Set B

 $F\in A\rightarrowtail B$

A Total Injection F from a Set A to a Set B

 $F\in A
ightarrow B$

Left Part	Right Part
$f\in S woheadrightarrow T$	$f\in S \leftrightarrow T ~~\wedge~~(f^{-1};f) = \operatorname{id}(\operatorname{ran}(f))$
$f\in S o T$	$f\in S woheadrightarrow T headrightarrow S=\mathrm{dom}(f)$
$f\in S\rightarrowtail T$	$f\in S \nleftrightarrow T \wedge f^{-1}\in T \nleftrightarrow S$
$f\in S ightarrow T$	$f\in S o T \ \wedge \ f^{-1}\in T o S$

Partial surjections	$S \twoheadrightarrow T$
Total surjections	$old S woheadrightarrow oldsymbol{T}$
Bijections	$old S imposes oldsymbol{T}$
A Partial Surjection F from a Set A to a Set B

 $F\in A\twoheadrightarrow B$

108

A Total Surjection F from a Set A to a Set B

 $F\in A woheadrightarrow B$

109

A Bijection F from a Set A to a Set B

Left Part	Right Part
$f\in S woheadrightarrow T$	$f\in S woheadrightarrow T o T= ext{ran}(f)$
$f\in S woheadrightarrow T$	$f\in S o T \ \wedge \ T=\mathrm{ran}(f)$
$f\in S impose T$	$f\in S ightarrow T\ \land\ f\in S woheadrightarrow T$

Summary of Function Operators

S woheadrightarrow T	$S \twoheadrightarrow T$
S o T	S woheadrightarrow T
$egin{array}{c} egin{array}{c} egin{array}$	old S arrow T
$oldsymbol{S} ightarrow oldsymbol{T}$	

S imes T	$old S \setminus old T$	r^{-1}	r[w]	id(S)	$\{ x x\in S \ \land \ P \}$
$\mathbb{P}(S)$	$egin{array}{c} S \leftrightarrow T \ S \nleftrightarrow T \end{array}$	$egin{array}{c} S \lhd r \ S \lhd r \end{array} ightarrow r$	p;q	$egin{array}{c} S & \!$	$\set{x\cdot x\in S\ \land\ P\mid E}$
$S\subseteq T$	$egin{array}{c} S \nleftrightarrow T \ S \nleftrightarrow T \end{array}$	$egin{array}{c} r arphi T \ r arphi T \end{array} \ r ightarrow T \end{array}$	$p \Leftrightarrow q$	$egin{array}{c} S ightarrow T \ S ightarrow T \end{array} egin{array}{c} T \ S ightarrow T \end{array}$	$\set{a,b,\ldots,n}$
$S \cup T$	$dom\left(r ight) \\ ran\left(r ight)$	prj_1	$p\otimes q$	$egin{array}{ccc} S \twoheadrightarrow T \ S \twoheadrightarrow T \end{array}$	union U
$S\cap T$	Ø	prj ₂	$p \parallel q$	S ightarrow T	inter \cap

Given a partial function f, we have

Well-definedness conditions: f is a partial function $E \in \text{dom}(f)$

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

```
men \subseteq PERSON
women = PERSON \setminus men
husband \in women \rightarrowtail men
mother \in PERSON \rightarrow dom(husband)
```

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

wife =spouse =father =

 $wife = husband^{-1}$ spouse =father =

 $wife = husband^{-1}$ $spouse = husband \cup wife$ father =

 $wife = husband^{-1}$ $spouse = husband \cup wife$ father = mother; husband

father = mother; husband
children =
daughter =
sibling =

```
father = mother; husband
children = (mother \cup father)^{-1}
daughter =
sibling =
```

```
father = mother; husband
children = (mother \cup father)^{-1}
daughter = children \triangleright women
sibling =
```

$$father = mother; husband$$

 $children = (mother \cup father)^{-1}$
 $daughter = children \triangleright women$
 $sibling = (children^{-1}; children) \setminus id(PERSON)$

$$brother = ?$$

 $sibling - in - law = ?$
 $nephew - or - niece = ?$
 $uncle - or - aunt = ?$
 $cousin = ?$

$$mother = father; wife$$

$$spouse = spouse^{-1}$$

$$sibling = sibling^{-1}$$

$$cousin = cousin^{-1}$$

$$father; father^{-1} = mother; mother^{-1}$$

$$father; mother^{-1} = \emptyset$$

$$mother; father^{-1} = \emptyset$$

$$father; children = mother; children$$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory
- A quick review of Arithmetic

```
predicate ::= \bot
                 \neg predicate
                 predicate \land predicate
                 predicate \lor predicate
                 predicate \Rightarrow predicate
                 predicate \Leftrightarrow predicate
                 \forall var\_list \cdot predicate
                 \exists var_list \cdot predicate
                 expression = expression
                 expression \in set
                finite(set)
```

expression	::=	$variable \\ expression \mapsto expression \\ set \\ number$
variable	::=	identifier
var_list	::=	variable variable, var_list
set	::=	$set \times set \\ \mathbb{P}(set) \\ \{var_list \cdot predicate \mid expression \} \\ \mathbb{Z} \\ \mathbb{N} \\ number number$

Arithmetic and Summary of Syntax (3)

```
number ::= 0
            -number
           number + number
           number - number
           number * number
           number/number
            number mod number
           number ^ number
           card(set)
           \min(set)
           \max(set)
```

$\mathrm{inter}\left(S ight)$	S eq arnothing
$igcap x \cdot x \in S \ \land \ P(x) \mid T(x)$	$\exists x \cdot x \in S \ \land P(x)$
f(E)	f is a partial function $E\in \mathrm{dom}(f)$
E/F	F eq 0
E mod F	F eq 0
$\operatorname{card}(S)$	$\operatorname{finite}(S)$
$\min(S)$	$S \subseteq \mathbb{Z} \ \exists x \cdot x \in \mathbb{Z} \ \land \ (orall n \cdot n \in S \ \Rightarrow \ x \leq n)$
$\max(S)$	$egin{array}{lll} S \subseteq \mathbb{Z} \ \exists x \cdot x \in \mathbb{Z} \ \land \ (orall n \cdot n \in S \ \Rightarrow \ x \geq n) \end{array}$