
Formal Modelling and Analysis of Business Information Applications with
Fault Tolerant Middleware

Submission Category: Practical Experience Report
Material has been cleared through the author affiliations

approximate word count: 4500

Jeremy Bryans, John Fitzgerald, Alexander Romanovsky
School of Computing Science

Newcastle University
Newcastle upon Tyne NE1 7RU, UK

Firstname.Lastname@ncl.ac.uk
t: +44 191 222-7999
f: +44 191 222-8788

Affiliation: Newcastle University

Andreas Roth
SAP Research CEC Darmstadt

SAP AG, Bleichstr. 8,
64283 Darmstadt, Germany

Andreas.Roth@sap.com
t: +49 6227 7-68469

f: +49 6227 78-47155
Affiliation: SAP AG

KEYWORDS: Verification, Fault Assumptions, Service-
Oriented Architectures, Event-B, Tool Support

Abstract

Distributed information systems are critical to the func-
tioning of many businesses; designing them to be depend-
able is a challenging but important task. We report our
experience in using formal methods to enhance processes
and tools for development of business information software
based on service-oriented architectures. In our work, which
takes place in an industrial setting, we focus on the config-
uration of middleware, verifying application-level require-
ments in the presence of faults. In pilot studies provided by
SAP, we used the Event-B formalism and the open RODIN
tools platform to prove properties of models of business pro-
tocols and expose weaknesses of certain middleware con-
figurations with respect to particular protocols. We then
extended the approach to use models automatically gener-
ated from diagrammatic design tools, opening the possibil-
ity of seamless integration with current development envi-
ronments. Increased automation in the verification process,
through domain-specific models and theories, is a goal for
future work.

1. Introduction

Many business information applications are large-scale
software systems that provide essential support to compa-
nies in their business processes; their design is therefore

0Contact author:John.Fitzgerald@newcastle.ac.uk

a demanding but important task. The software engineer-
ing challenge is to integrate various organisational partsand
functions into one large and complex but consistent system.
The principles of service-oriented architecture (SOA) can
help to master this complexity. In SOA systems, such as
manufactured by SAP, complex applications are composed
from independent business components that offer enterprise
services.

Although SOA can help to manage complexity, the de-
sign decisions for business information applications, es-
pecially those made at early stages, are critical because,
if made wrongly, they can be expensive to correct later.
This is particularly true of decisions relating to the depend-
ability characteristics of components and systems. Formal
modelling and analysis techniques offer the possibility of
analysing design alternatives at an early design stage, andto
a level of rigour not supported by conventional approaches.

In spite of the potential benefits, formal methods are
rarely used in the development of business information sys-
tems. This is in part because they are associated with high-
cost critical applications, and in part because they are per-
ceived to present high barriers to adoption in terms of the
training required and the modifications to existing processes
and tools. Successful developers therefore have little incen-
tive to adopt them.

The challenge we address is that of gaining the bene-
fits of formal modelling and analysis in the development of
SOA-based business information systems, while retaining a
beneficial trade-off between the effort invested by develop-
ers insights that they gain. Our approach aims for a smooth
transition between the traditional development processes



and formal approaches. Initially, developers might not di-
rectly interact with a formal modelling tool, but continue to
use pre-existing diagrammatic domain-specific modelling
environments. The models developed in these environments
could be automatically translated into a suitable formal no-
tation and treated with automated analysis tools. While the
insights gained from such purely automatic analysis might
be less than those arising from a more thorough adoption,
we expect that the formal methods would be seen by de-
velopers as a benefit demanding little additional effort. In
the long run, we expect that subjectively experienced and
objectively measurable benefits will lead to a positive atti-
tude towards the methods and tools and then to their more
extensive direct use.

This paper reports our experience investigating the tech-
nical feasibility of our approach. We aimed to establish
whether formal methods could be used beneficially in the
early design stages of SOA-based business information sys-
tems of the kind developed by SAP, and to show that the
application of such modelling may be automated, so that
developers could continue to use existing tools in the man-
ner described above. In Sections 3 and 2 we consider the
background and industrial setting of our studies. Section 4
introduces our chosen technology, and Section 5 describes
the pilot studies undertaken. Section 6 discusses the lessons
learned, and Section 7 gives directions for future work. This
work was carried out as part of the EU project DEPLOY [5].

2 The Industrial Setting

In the business setting in which our work has taken
place, developers construct applications supporting compa-
nies’ business processes from components describing parts
of processes, such as buying, selling, planning, site logistics
and accounting. These components, based on an SOA, form
a complex network using (mostly asynchronous) messaging
to satisfy the components’ communication needs without
giving up their loose coupling.

In an ideal development process, the interior of the com-
ponents is designed alongside their communication with
other components. Developers decide on the inbound and
outbound service interfaces and operations the components
offer, as well as on the types and structure of the mes-
sages. The developers then also decide on how to config-
ure the process integration layer or middleware (e.g., SAP
NetWeaver Process Integration [14]) which is responsible
for actually transferring the messages. This includes the
choice of one of a set of reliability parameters as defined
by the WS Reliable Messaging [12] standard. These in-
clude that messages should arrive “exactly once” (EO), or
“exactly once in order” (EOIO). EOIO middleware will de-
liver all messages sent between two parties in the order they
are sent without losing, corrupting or duplicating them and

without inserting any new random messages, while EO mid-
dleware is the same except that it may reorder messages.
A wrong choice can have serious consequences, since an
EOIO configuration is a more expensive run-time option
than EO. However, carelessly deciding on a weaker mid-
dleware and correcting the protocol in later stages of devel-
opment will lead to high costs of revising design and imple-
mentation.

In current practice, the design steps sketched above are
accompanied by modelling the systems with the help of do-
main specific diagrammatic languages. A strict validation
process is in place to manually check the models for con-
sistency. Then, the models are transformed into executable
code and the code is tested.

A significant source of errors in distributed systems is
poor communication media, which can, for example, de-
lay, corrupt, reorder, lose or duplicate messages. Typical
examples of such media are the internet and wireless intra-
organisational networks. Our work develops an approach
to systematic modelling of a family of middleware compo-
nents ensuring a range of fault assumptions and to analysing
the correctness of the business applications built by formal
refinement using this middleware. We aim to allow, at an
early stage of design, the selection the least expensive mid-
dleware with which the designed application will operate
correctly.

3 Fault Tolerance and Formal Modelling

Ensuring high availability of modern business informa-
tion applications depends, among other things, on a sys-
tematic use of the appropriate fault tolerance mechanisms.
Fault tolerance [10] is a general means of attaining system
dependability, applied when faults, and errors caused by
them, cannot be avoided or eliminated during system de-
sign. Achieving dependability attributes, such as reliability,
availability and safety, heavily relies on the use of the ap-
propriate error detection and recovery mechanisms.

The choice of these fault tolerance mechanisms largely
depends on the fault assumptions under which the system
will function. Fault assumptions for distributed systems are
typically classified into some of the following [4, 13]: omis-
sion, timing, value, state transition, impromptu and crash
failures of the system components.

Applying formal modelling to specify and verify fault
tolerance properties is becoming now an area of active re-
search (see, for example [3]). This work often focuses on in-
tegrating fault tolerance means (for example exception han-
dling, replication, error monitoring, reconfiguration) into
application system models. Another area of active research
is formal reasoning about correctness of distributed fault
tolerance protocols (for example [9]). In the context of soft-
ware architecture there is a substantial body of work on for-



mal specification and verification of fault tolerance connec-
tors (for example [6]).

4. Event-B and the RODIN Platform

Event-B and the RODIN [15] tools platform have sev-
eral features that make them appropriate as a basis for our
study. The formal modelling language itself allows descrip-
tion both of structured data and behaviour. The available
abstractions form a promising basis for describing informa-
tion systems applications. The availability of a range of
extensible tools, including proof support, model checking
and animation is also important. Openness of the tool set is
crucial for integration with existing development environ-
ments.

Event-B uses a model-oriented language in which data is
modelled through a collection of built-in abstract data types
from which more sophisticated types may be constructed.
Data values may be constrained by logical predicates in the
form of invariants. State variables modelling persistent data
may be modified byeventswhich describe functionality.
Events are guarded byconditionsthat must hold in order
for them to be enabled. The functionality performed by an
event is described as anaction.

A machineincludes a set of invariants and a set of events.
The logical conjecture that a machine is internally consis-
tent (e.g. that events will not cause invariant properties to be
violated) is given as a collection ofproof obligations. Proof
obligations may be discharged manually or, more likely,
with the aid of an automated proof tool.Contextscontain
carrier sets(which model abstract types) andconstants, and
are visible to machines.

Figure 1 gives a fragment from an Event-B machine.
The syntax is slightly simplified. Three invariants and one
event are shown. The first two invariants restrict the type of
(previously declared) variablesa andb. The eventchange

uses a parameterx. A proof tool quickly demonstrates
that the event respects the first and third invariants, but the
proof obligation arising from the second invariant cannot be
proved. To make the machine consistent, either the second
invariant or the event definition must be changed.

invariants:
inv1 a ∈ N

inv2 b ∈ 1 .. 100
inv3 a < b

change
any x where

x ∈ 1..5
then

a := a + x

b := b + x

end

Figure 1. An Event-B fragment

A system model in Event-B typically consists of a chain
of Event-B machines. Each machine (apart from the first)
is linked to its predecessor by arefinement relation. Link-
ing invariantsrelate the state of a machine with the state of
its predecessor. Proof obligations ensure behaviour preser-
vation between the linked machines. In a typical Event-B
model, the initial machine is extremely simple, with detail
being added in a controlled way step by step through a chain
of refinements.

Using the RODIN tools platform, Event-B machines and
refinement steps are constructed via a model editing inter-
face. Proof obligations are automatically generated and
discharged (so far as is possible) by proof tools built into
the platform. In the event of an obligation not being auto-
matically proved, an interface for manual proof guidance
is used. The use of the Eclipse framework means that
the tools may be extended with specialised provers, inter-
preters, model checkers, pretty printers and other new ca-
pabilities. In the work reported here, we focus mainly on
the proof capability of the RODIN platform. Achieving a
high level of automated proof is, however, important for
our studies because we aim to give developers the benefits
of proof-based analysis of models without the overhead of
interacting directly with the Event-B formalism.

5. The Pilot Studies

As indicated in Section 1, the purpose of our study is
to determine the technical feasibility of using formal mod-
elling (in Event-B/RODIN) to support the analysis of de-
sign models of SOA-based business information applica-
tions. The specific focus is on selecting an appropriate con-
figuration for middleware from among alternatives offering
different levels of fault tolerance (EO or EOIO). The appli-
cations models should be derived automatically from exist-
ing graphical design tools and there should be a good level
of automation in the analysis of the models.

Our approach is to use a series of case studies, with the
aim of producing a proof-of-concept of the automated anal-
ysis discussed above. In our studies, we needed to:

1. Establish that formal proof tools such as Event-
B/RODIN can indeed support the comparison of
alternative middleware components with respect to
application-level properties.

2. Define the process for interfacing alternative mid-
dleware models (e.g. EO or EOIO) to pre-existing
application-level models.

3. Develop appropriate strategies for combining middle-
ware models with application models derived from the
pre-existing graphical design tools so as to yield a good
degree of automation in the analysis.



These are the subjects of the studies described in Sec-
tions 5.1 to 5.3 respectively. The studies used two realis-
tic but simplified SOA choreography examples. The first
example is a business-to-business (B2B) choreography (or
protocol) [16]. Two components, a buyer and seller, ex-
change messages in order to negotiate the price of a product
or service. The negotiation is initiated by a proposal from
the buyer detailing purchase conditions such as price, quan-
tity, or delivery date. The two parties may then arbitrarily
exchange further proposals. A party indicates agreement to
a proposal by returning that proposal. The negotiation may
be cancelled at any time. The critical property that B2B is
designed to establish is:

Property 1 When a run of the protocol terminates, either
the buyer and seller should have agreed to the same price,
or they should agree that the negotiation has been can-
celled.

The second example is an application-to-application (A2A)
choreography in which two components interact to meet a
requirement from a customer. Theordering componentis
responsible for managing customer requirements, and the
supply chain requirements componentcoordinates the ser-
vices used to process these requirements. The protocol
starts when the supply chain component receives customer
requirements from the ordering component. The supply
chain component may then send notification of (partial) ful-
filment of these requirements (e.g. delivery) back to the or-
dering component. The ordering component may also send
queries and preliminary reservation requests and the supply
chain component sends current supply planning and deliv-
ery information to the ordering component.

5.1. Study 1: Middleware Models

The aim of the initial study was to confirm that the Event-
B/RODIN tools could support the comparison of alternative
middleware components with respect to application-level
properties. It used the B2B protocol. The application is
built from a buyer and a seller component, and either EO or
EOIO middleware. Our method was first to build Event-B
models of EO and EOIO middleware, and an abstract model
of the B2B protocol that did not contain an explicit com-
ponent representing middleware. Each of the middleware
models was composed in turn with the B2B model, and the
Event-B/RODIN tools were used to compare the two com-
binations.

Each application-level event involves both a protocol
party (buyer or seller) and the middleware. It is therefore
partially described in each model. The protocol model de-
scribes the effects of the action local to the buyer or seller
and the middleware model describes the effects of the ac-
tion local to the middleware. Composing the middleware
with the protocol involves composing each of these actions.

Buyer send
any p where

p ∈ PROPOSAL

p 6∈ {empty, cancel}
p 6= last s o rec

BAgreeStatus = NoAgreement

BCancelStatus = NotCancelled

then
curr b o := p

end

Figure 2. Buyer send in the protocol

For example, the application-level action of the buyer
sending a proposalp to the seller appears in the protocol
model asBuyer send (see Figure 2).PROPOSAL is a
carrier set defined in a context visible to the protocol model.
It contains all legitimate proposals;empty andcancel are
designated elements ofPROPOSAL. The state variable
last s o rec is the last seller offer received by the buyer. A
separate event describes the case wherep = last s o rec.
BAgreeStatusandBCancelStatusrecord whether or not the
protocol has been agreed or cancelled, from the point of
view of the buyer. The current buyer offer is given by
curr b o.

In EO middleware, in the case where the proposal is
already in the middleware, the local effects of the buyer
sending a proposal are defined asBuyer send mw, shown
in Figure 3. The variablemware to seller represents the
middleware carrying messages to the seller, and has type
PROPOSAL 7→ N1. A separate event describes the case
where the proposal being sent is already in the middleware.

Buyer send mw
any p where

p 6∈ dom(mware to seller)
then

mware to seller(p) := 1
end

Figure 3. Buyer send in middleware

The combined event in the application model retains the
parameterp and conjoins guards and actions from each of
the events above. Property 1 is added as an invariant to the
combined model. This process is automated by a composi-
tion plugin available for the Event-B tool.

When the B2B protocol runs on EO middleware, Prop-
erty 1 cannot be proved. A sequence of events which fal-
sifies Property 1 is depicted in Figure 4, in which both the
buyer and the seller accept old proposals as representing the



Figure 4. Falsifying Property 1

current state of the other party. This sequence can be iden-
tified on the combined model using an Event-B animator
(e.g. ProB [11] or AnimB [1]).

5.2. Study 2: Refinement-based modelling
and analysis

In this study our aim was to further investigate how to
develop models of business applications which allow for the
introduction of middleware representations from a range of
components and to develop standards for the integration of
middleware into application models.

In this study, we integrated the middleware models with
an independently developed model of the B2B protocol.
This allowed us to identify more clearly the interface be-
tween the middleware and the protocol parties, and to de-
velop a set of guidelines for protocols developers wishing
to use the middleware.

The identified guidelines include:

• protocol parties should be developed in one machine,
with no representation of middleware. Each send or
receive event should instead use a reserved variable
name as a parameter (e.g. “p” in Section 5.1).

• correctness criteria for the protocol should be ex-
pressed as application invariants, (although they will
not in general be provable before a middleware model
is integrated).

• complex message setsshould be defined in a new con-
text visible to both the protocol model and the middle-
ware model.

5.3 Study 3: Investigating modelling op-
tions

Process components and middleware may be modelled
in many different ways. The choice of level of abstraction
and the particular representations of the data and events has
an impact on the ease of comprehension and the ease of
automated analysis. In this study, we sought to find suit-
able representations that would support automated analysis

Figure 5. Two refinement techniques

where the process component models are derived from the
pre-existing modelling language and tools.

We used two different techniques to produce a new ma-
chine containing EOIO middleware, illustrated in Figure 5.
The first technique produced the new machine by refining a
machine in the original model containing the abstract chore-
ography, and the second by refining a machine containing
the low-level behaviour of the protocol.

An Event-B model of the A2A protocol was auto-
matically generated from existing diagrammatic domain-
specific modelling languages, rather than hand-crafted. It
contained two machines,m choreography andEO A2A.
The first machine,m choreography, had a high-level
view of behaviour and no explicit component represent-
ing the middleware. It contained seven events and two
invariants, and produced no proof obligations. The sec-
ond machine,EO A2A, contained the local behaviour of
the ordering and supplier components and a model of
EO middleware. InEO A2A each of the events from
m choreography was refined by a “send” and a “re-
ceive” event, giving 14 events. It had 22 invariants and 268
proof obligations of which 263 were proved automatically
and 5 required (trivial) intervention.

To investigate the modelling options, two machines
containing EOIO middleware were developed by hand.
EOIO A2A ONE was a refinement ofm choreography
andEOIO A2A TWO was a refinement ofEO A2A.

There were 257 proof obligations inEOIO A2A ONE,
162 of which were proved automatically. The remaining
95 were significantly more complex than the invariants in
EO A2A. The primary source of the increased complexity
was ten invariants that relate messages in middleware to
states within the machine. InEO A2A the process com-
ponents exchange messages from the setMESSAGES.
The EO middleware does not offer an ordering guarantee,
so the representation is an unordered bagchannelof type
MESSAGES → N. The quantity of a messageM in the
middleware is given aschannel(M).

In EOIO A2A ONE the middleware offers an ordering
guarantee, so the middleware representation is a sequence
of type

1 .. max chan len 7→ MESSAGES

and the quantity of a messageM in middlewaremw is given



by
card(dom((f .. l ⊳ mw) ⊲ {M}))

wheref andl are the first and last unread messages inmw.
EOIO A2A TWO includes EO A2A in the refine-

ment chain. Linking invariants are defined between
EOIO A2A TWO andEO A2A. This gave rise to 25 invari-
ants inEOIO A2A TWO. Seven of these are “linking in-
variants” linking the value of the middleware variables in
EOIO A2A TWO to the value of the middleware variables
in EO A2A. These have the form

channel(M) = card(dom((f .. l ⊳ mw) ⊲ {M}))

EOIO A2A TWO contains 186 proof obligations, of which
116 were proved automatically. The remainder required
about 6 hours of effort. The bulk of this effort went in prov-
ing the linking invariants between the two middleware rep-
resentations.

The benefit of the first approach is that there is no need
for the local machineEO A2A. It represents the case where
a machine containing a representation of EO middleware
is not available, or the developer is interested exclusively
in EOIO middleware. The (overwhelming) disadvantage is
that the level of manual intervention required to prove the
proof obligations is too high. Conversely, the second ap-
proach requires an intermediate machine (EO A2A) to be
built and proved. It represents the case where a machine
containing a representation of EO middleware is available
to be used.

The level of manual intervention required for the proofs
at the second refinement stage is manageable, although we
believe it could be further reduced significantly.

6. Lessons

The objective of our studies was to provide a proof of
concept for our vision of verification tools supporting the
selection of process components for business information
applications built on service-oriented architectures. We
have focussed on design decisions that affect the depend-
ability of the application built from distributed components
and middleware in a service-oriented architecture.

Our experience has shown that it is possible to use the
Event-B language and tools to analyse design alternatives in
the manner described. The approach and tools make it pos-
sible to assess the consequences of selecting different mid-
dleware configurations. The level of abstraction in the mod-
els allows this analysis to be done at an early stage in the
development process. The formal tools underpinning the
analysis can be integrated with existing non-formal design
tools and augment the engineering judgement and experi-
ence that form the basis of such design decisions at present.

The conjectures that can already be proved represent a sig-
nificant step forward in tool support from the level of infor-
mal analysis offered by less formal design tools.

The verification technology that we have studied is in-
tended for broad deployment in the sense that a large num-
ber of developers will use the tools without needing deep
training in Event-B directly, although we expect that, in
time, a proportion of developers would like to interact di-
rectly with the RODIN platform. This implies that the de-
gree of automation in the verification process is important.
Although a large proportion of proof obligations are dis-
charged by the tools without user intervention, the overall
proportion is rather lower than for some Event-B applica-
tions, suggesting that this level of automation can be raised
substantially [2].

Our ability to discriminate between suitable and unsuit-
able middlewares is limited by the capabilities of the proof
framework. In particular, failure to prove a property of mid-
dleware does not necessarily mean that the property does
not hold. Thus a proportion of proof failures are “false
alarms”, as is inevitable in an expressive formal language.

It is important to select a good series of refinement steps
to introduce a middleware model to a protocol, and consid-
erable care is needed to choose abstractions which are ef-
fective in proof. Our objective is high automation in proof,
but there is a risk that the models produced are less easily
comprehended by the human reader. This is a challenge we
expect to address in the future.

The protocols and middleware that we have examined
so far are realistic, although relatively simple. As Study 3
showed, there are many modelling options and trade-offs
that can affect ease of comprehension, the richness of fault
assumptions considered and the degree of automation in
proof.

The discovery of an invalid conjecture during verifica-
tion may lead to either the selection of a middleware con-
figuration offering stronger guarantees or the redesign of
the process components to handle the identified faults. As a
general observation, we think that the selection of stronger
middleware needs to be traded off against the possible in-
crease in complexity of protocol and component logic that
results from the latter course of action. The advantage of
our approach appears to be that this trade-off, which must
be done at some point during system design, can be done
explicitly and at an early design stage.

Although our results are preliminary at this stage, our ob-
servation is that this level of automated analysis represents a
good trade-off of time for insight [7]. In the longer term, we
expect that some enhanced support for failing proofs will
prove valuable.



7. Future Work

Both the level of automation and the power of the tools to
discriminate valid and invalid conjectures can be improved
substantially. In Event-B, the refinement chain breaks the
verification task down into steps that can be handled more
readily by tools. In our case, when the middleware model is
introduced in two refinement steps the proportion of proofs
automatically discharged is substantially higher than when
the middleware is introduced in a single step. A more so-
phisticated approach to the introduction of the middleware
model could have a further significant effect on our auto-
mated proof completion rates. We expect further improve-
ments in the level of automation from the ongoing develop-
ments of the RODIN provers, tactics and theories, encour-
aged by the openness of the platform.

Although we have focussed on an immediate industrial
benefit, the breadth of possible applications suggests that
there may be value in developing a library of middleware
models (represented as patterns [8]) offering different fault
assumptions corresponding to a range of media including
wireless, internet and other communications mechanisms.
A suitable structure for such a library may be a lattice, sim-
ilar to the lattice of failure modes in [13].

Acknowledgements

This work has been supported by the EU project DE-
PLOY. We are grateful to many colleagues in the project for
their contributions to this work, especially Thai Son Hoang,
Vitaly Kozyura and Renato Silva.

References

[1] AnimB: B model animator. http://www.animb.org. accessed
2008-12-01.

[2] F. Badeau and A. Amelot. Using B as a High Level Pro-
gramming Language in an Industrial Project: Roissy VAL.
In H. Treharne, S. King, M. Henson, and S. Schneider, ed-
itors, ZB 2005: Formal Specification and Development in Z
and B, volume 3455 ofLecture Notes in Computer Science,
pages 334–354. Springer, 2005.

[3] M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna,
editors. Rigorous Development of Complex Fault-Tolerant
Systems, volume 4157 ofLecture Notes in Computer Sci-
ence. Springer, 2006. ISBN 978-3-540-48265-9.

[4] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, February 1991.

[5] DEPLOY. http://www.deploy-project.eu/. accessed 2008-
12-08.

[6] F. C. Filho, P. H. da S. Brito, and C. M. F. Rubira. Specifi-
cation of exception flow in software architectures.Journal
of Systems and Software, 79(10):1397–1418, 2006.

[7] J. S. Fitzgerald and P. G. Larsen. Balancing Insight and Ef-
fort: the Industrial Uptake of Formal Methods. In C. B.
Jones, Z. Liu, and J. Woodcock, editors,Formal Methods
and Hybrid Real-Time Systems, pages 237–254, Volume
4700, September 2007. Springer, Lecture Notes in Com-
puter Science. ISBN 978-3-540-75220-2.

[8] A. Iliasov. Refinement patterns for rapid development ofde-
pendable systems. In N. Guelfi, H. Muccini, P. Pelliccione,
and A. Romanovsky, editors,Proceedings of the 2007 Work-
shop on Engineering Fault Tolerant Systems. ACM, 2007.

[9] L. Lamport. Lower bounds for asynchronous consensus. In
A. Schiper, A. A. Shvartsman, H. Weatherspoon, and B. Y.
Zhao, editors,Future Directions in Distributed Computing,
volume 2584 ofLecture Notes in Computer Science, pages
22–23. Springer, 2003.

[10] P. Lee and T. Anderson.Fault Tolerance Principles and
Practice. Springer-Verlag, Second edition, 1990.

[11] M. Leuschel and M. Butler. ProB: An Automated Analysis
Toolset for the B Method.Software Tools for Technology
Transfer, 2008. to appear.

[12] OASIS. Web Services Reliable Messaging TC
WS-Reliability 1.1. available at http://docs.oasis-
open.org/wsrm/ws-reliability/v1.1/wsrm-wsreliability-1.1-
spec-os.pdf, accessed 2008-12-05.

[13] D. Powell. Failure mode assumptions and assumption cov-
erage. InProcs. 22nd IEEE Intl. Symp. Fault-Tolerant Com-
puting (FTCS-22), pages 386–395, June 1992.

[14] S. Raju and C. Wallacher.B2B Integration Using SAP
Netweaver PI. SAP Press, 2008. ISBN 978-1-59229-163-2.

[15] RODIN. http://www.event-b.org/. accessed 2008-12-08.
[16] S. Wieczorek, A. Roth, A. Stefanescu, and A. Charfi. Pre-

cise Steps for Choreography Modeling for SOA Validation
and Verification. InProceedings of the IEEE 4th Interna-
tional Symposium on Service-Oriented Software Engineer-
ing (SOSE’08). IEEE Computer Society, 2008.


