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Abstract

This paper summarises roughly ten years of experience using
declarative programming for developing tools to validate formal
specifications. More precisely, we present insights gained and
lessons learned while implementing animators and model checkers
in Prolog for various specification languages, ranging from process
algebras such as CSP to model-based specifications such as Z and
B.

Categories and Subject Descriptors 1.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Logic Programming; D.2.4
[Software Engineering]: Software/Program Verification—Model
Checking; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechancial verfi-
cation; Specification techniques

General Terms Languages; Verification

Keywords Logic Programming; formal methods; model check-
ing; verification; animation.'

1. Introduction

A recurring theme within our research has been the use of declara-
tive programming in general and Prolog in particular to both model
and validate various high-level specification formalisms. This work
started roughly ten years ago. At that time it was already well es-
tablished that Prolog was a convenient language to model other lan-
guages, although some of the features such as co-routining where
not yet fully appreciated (and probably still are not widely appre-
ciated). Also, the idea of using (constraint) logic programming to
analyse and validate programs and specifications only just started
to become popular (leading, e.g., to workshops and special issues
on verification and computational logic).?

! This research is partially supported by the EU funded FP7 project 214158:
DEPLOY (Industrial deployment of advanced system engineering methods
for high productivity and dependability).

2 This situation has definitely changed now, and logic programming (in the
form of Datalog) now has even appeared in the second version of the Dragon
book [1] in the chapters on interprocedural dataflow analysis.
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In this paper, I would like to convey the lessons that have been
learnt during this undertaking. First, Section 2, discusses how var-
ious specification formalisms have been implemented (and parsed)
in Prolog. We also briefly touch upon using Haskell for pars-
ing. Section 3 then describes the implementation of various model
checkers in Prolog. Finally, Section 4, summarises the lessons
learned, and presents an outlook.

2. Modelling Specification Languages
21 CSp

CSP is a process algebra defined by Hoare [22]. The first semantics
associated with CSP was a denotational semantics in terms of
traces, failures and (failure and) divergences. Later an operational
semantics was developed [41]. This semantics was the starting
point of the implementation in [25]; one goal being to animate and
validate (cf. Section 3.1) CSP specifications.

While Prolog is touted as a logic programming language, it is
often impossible to translate logical inference rules or operational
semantics rules directly in Prolog. Indeed, a literal translation often
results in non-termination of the Prolog code, or, in case arithmetic
built-ins are used, to calls which are not instantiated enough. That is
why, e.g., [51] tries to statically infer a moding of the Z operators.
This restricts the specifications which can be dealt with. Indeed,
while for a program it may be reasonable to require well-moding,
for specification this is often undesirable as it restricts the expres-
sivity of the modeller. Further below we will show how we have
overcome this limitation. But let us first turn to the problem of ac-
tually parsing in a CSP specification.

2.1.1 Experiences with DCGs

DCGs (definite clause grammars) are considered to be a convenient
way of writing parsers within Prolog. Hence, in [25], we naturally
implemented the parser using a DCG. However, our experience of
using DCGs was mixed.

Indeed, to avoid constructing an inefficient, backtracking parser,
one needs to carefully insert cuts. This issue is far from trivial and
thus error-prone if done by hand. To keep matters under control
we decided to adapt the CSP syntax, rather than supporting the
existing (and sometimes very complex’) syntax [44] used by FDR
[19]. In hindsight, this was a bad idea, as it discouraged CSP users
and researchers from using our tool.

Also, while writing the context free grammar is simple in Pro-
log, writing a lexer (i.e., tokeniser) is not as straightforward. Hence,
initially we encoded the whole parsing process within a single

3 The reference implementation of the CSP-M parser [44] uses the bison
parser generator, but the grammar, that actually serves as input for bison, is
itself generated with a Perl script.



DCG. However, this obviously means that the grammar becomes
less readable (mainly because whitespace and comments have to
be dealt with) and it is also more difficult to get an efficient, predic-
tive parser (as one token can consist of an arbitrarily long sequence
of characters). We thus soon wrote a separate lexer in Prolog.

The bottom line is that DCGs are useful, but that they should
be used in conjunction with a lexer (possibly generated using a
tool, e.g., [39]). Also, it is difficult for a user to know where to put
the cuts and to know if the parsing process will be deterministic.
Hence, it does make sense to perform a separate analysis of the
DCG (e.g., computing the nullable, first, follow sets from [1]),
in order to know whether the grammar is suitable for predictive
parsing and also to place the cuts according to the outcome of the
analysis.

In [18] our interpreter was adapted for compensating CSP; the
parser was now written using flex and bison. In a more recent ver-
sion of our own tool, now supporting full machine readable CSP
and being compliant with FDR, we have actually written the parser
in Haskell and used the Parsec combinator parser library [23]. To
allow interoperability, this new parser can deliver parse-results in
different output formats, e.g., as a set Prolog facts or as a Java ob-
ject representing the abstract syntax tree. Our parser was devel-
oped with the Glasgow Haskell Compiler (GHC) and is currently
available as dynamic-link-library for four different architectures.
No knowledge of Haskell is required to use the parser. Our prac-
tical experience, implementing a combinator parser for CSP-M in
Haskell, was overall positive. The complete CSP-M syntax is spec-
ified in an single file ParserCore . hs with approximately 21KB of
code (plus a separate lexer); which is still manageable. In total the
parsing library contains about 4400 lines of Haskell. The specifica-
tion of the CSP-M syntax is clearly separated from the generation
of the results (for Prolog/Java/Haskell). The performance of our
CSP-M parser is very satisfactory and it is also capable of parsing
big auto generated files. For example, we used the parser to process
a 3.5MB file which is the CSP encoding of a large labelled transi-
tions system in about 22 seconds (on a 1.3GHz Pentium laptop).

2.1.2 Co-routining

The interpreter for CSP was obtained by translating the opera-
tional semantics rules from [41] into Prolog. The synchronisation
between different CSP processes was achieved using unification.
Another important aspect, which made a translation of the opera-
tional semantics possible, was the use of co-routining, as provided
by several modern Prolog systems such SICStus Prolog [46], Ciao
or now also SWI-Prolog.

Pure logic programs are independent of the selection rule [3,
33]. Co-routines (sometimes also called delay or wait declarations;
first implemented in MU-Prolog by Naish [35]) build on this, by
allowing the programmer to influence the selection rule via when,
block or freeze declarations.* For a pure logic program, these
declarations do not modify the logical meaning, but they can be
used to improve the operational behaviour of the program. In par-
ticular, one can sometimes ensure that execution will terminate, or
be much more efficient, in circumstances where Prolog’s classical
left-to-right selection rule would lead to non-termination or to un-
acceptable performance.

Take the following simple CSP specification, where MAIN is the
process to be animated:

channel ch:Int
MAIN = ch?x:{0..99} -> ch!x -> STOP [| {lchl} |]
ch!55 -> ch?y:{1..100} -> STOP

4One lesson we learned very recently—thanks to Michael Hanus—is that
the block declarations are much more efficient than when declarations. A
rewriting of our interpreter resulted in a roughly 30 % performance increase.

Here [|{lchl|}|] is a synchronisation operator that forces all
events on channel ch to synchronise. The process ch?x:{0..99}
-> ch!x -> STOP first reads a value on the channel ch, provided
the value is in the range of 0 to 99. It then outputs this value
again on the same channel and then stops. Similarly, ch!55 ->
ch?y:{1..100} -> STOP first outputs value 2 on the channel ch
and then reads a value, provided the value is in the given range (and
then stops).

Let us examine how to handle the synchronisation operator
[1{lIchl|}I] by looking at one of the inference rules from [41]:

PLP Q%@
Pl xQ = P'|| xQ
Here we have P = ch?x:{0..99} -> ch!x -> STOP, @@ =
ch!55 -> ch?y:{1..100} -> STOP, a = ch.55, and X is the
(event) closure of ch, i.e., X = {ch.0,ch.1,...}. An interpreter
now has a dilemma: either we first compute the outgoing transitions
of P, but then we will compute 99 irrelevant transitions. Also, in
general, an infinite number of solutions may exist. We could also
compute first the outgoing transitions of (). For this particular ex-
ample, this would be the ideal order, as after that we only need to
check whether P can perform the single event ch.55. However,
at the next stage the roles of sender and receiver become reversed,
and first computing the second process would be the bad choice.
Also, in CSP more than two processes can synchronise, in which
case possibly neither P nor ) would constrain the channel values.
We have overcome this problem by employing co-routining:
basically, we first start to compute the outgoing transitions of P, but
the value of x will be left uninstantiated (a free Prolog variable) and
the membership test delays until the value is known. Afterwards we
compute the outgoing transitions of @), and via unification = will
become instantiated to 55, immediately triggering the suspended
membership test.
The following tiny interpreter, covering the three CSP con-
structs used above, captures the essence of our solution:

(a € X)

trans (out (X,T) ,X,T).
trans(in(X,L,T),X,T) :-
when (ground (X) ,member (X,L)) .
trans (sync(X,Y),A,sync(NX,NY)) :-
trans(X,A,NX), trans(Y,A,NY).

With this interpreter we can compute the next two events of the
above CSP process:

| ?- trans(sync(in(X, [0,...,99],0ut(X,stop)),
out(55,in(Y,[1,...,100],stop))),E1,N1),
trans (N1,E2,N2).
El1 = 55,
E2 = 55,

N1 = sync(out(55,stop),in(55, [1,55,100],stop)),
N2 = sync(stop,stop) 7 ;
no

Our full interpreter is obviously much more complex. Also, as
it is possible that some channel fields are never given an explicit
value, the full interpreter is wrapped into an outer layer which will
enumerate any remaining uninstantiated channel fields at the very
end.

In summary, the co-routines allowed a much more straightfor-
ward and still efficient translation of the operational semantics rules
into Prolog.

The co-routines also allowed our tool to deal with certain speci-
fications which cannot be dealt with by existing tools such as FDR.
Indeed, it is a natural specification style is to have sub-processes
which are infinite-state and only the global composition of the sub-
processes makes the overall system finite state. For example, the



following is a quite natural pattern, having an infinite state server
process, but which is constrained by the environment so that the en-
tire system (MAIN) is finite state. FDR cannot deal with this spec-
ification because the tool tries to expand and normalise the infinite
state Server process before synchronising it with the User pro-
cess. In our case, co-routining and unification, enable us to exhaus-
tively animate the specification.

ID = {0..3}

channel new, ping, ack: ID

channel shutdown

Server = new?id -> (Server ||| Serve(id)) []
shutdown -> STOP

Serve(id) = ping?id -> ack'id -> Serve(id)

User = new?i -> UserActive(di)

UserActive(i) = ping!i -> ack!i -> UserActive(i)

MAIN = Server [| {| new,ping,ack,shutdown |} |] User

2.1.3 The Non-Ground Representation

While core CSP [22] is a relatively succinct language, full CSP-M
as supported by FDR is a very extensive and expressive specifica-
tion language. For example, CSP-M comprises a higher-order func-
tional programming language and contains an extensive range of
datatypes: booleans, integers, tuples, associative tuples, sequences,
sets, and combinations thereof. Functions can be defined using
complex pattern matching, even allowing combinations of patterns
to be expressed using the @@ operator. One unique aspect of CSP-M
is the ability to use the concatenation operator ~ inside function pat-
terns. E.g., one can define a function that computes the last element
of alist by: last (s"<x>) = x.

To model the functional aspect of CSP-M, we have mainly used
the non-ground representation [34, 21], i.e., representing a variable
in the CSP-M specification by a Prolog variable. This enabled us
to use Prolog’s unification for pattern matching, as well as for
synchronisations on channels already discussed above. The result
is an efficient animator, which for some specifications is actually
faster than FDR. The drawback is that in some circumstances non-
declarative features had to be used (in particular to handle CSP-
M’s lambda expressions). Also, great care has to be taken not to
accidentally instantiate variables of the object CSP-M specification.
The use of the ground representation would have avoided these
drawbacks, but at the cost of a much bigger and much slower
interpreter.

22 B

About 10 years ago, the B-method was supported by industrial
strength proving tools, such as Atelier-B [48] and the B-toolkit
[5]. However, the only available animator (distributed with the B-
toolkit) was not very user-friendly and required the user to guess the
right values for operation arguments or non-deterministic choice
variables.

One motivation behind the development of the PROB toolset
[26, 27] was to overcome this restriction by implementing a fresh
animator using logic programming, making animation more user-
friendly but also enabling automated traversal of the state space of
a specification.’

As was the case for CSP, co-routines turned out to be very
useful .® Indeed, a core part of PROB is the kernel, which has
been developed using co-routines. The kernel provides support
for the B datastructures (sets, relations, functions, sequences, ...)
and operations (relational composition, inverse, ...) on them. In

5 Unknowingly to us, researchers from Besancon were pursuing a similar
avenue, which lead to the BZTT [8, 2] tool.

6 Unification also turned out to be useful, as it later enabled us to extend our
tool to support combined CSP and B specifications [10].

fact, the kernel can be viewed as providing a constraint solver
over B’s datastructures, having some some similarities with the
classical finite domain constraint solver CLP(FD) [11]. To make
animation decidable, PROB requires finite base types in order to be
able to enumerate, e.g., operation arguments and non-deterministic
choice variables. The co-routines provide efficiency, by allowing
one to replace a generate-and-test approach by test-and-generate
and trying to fail as early as possible.

2.2.1 Coding Style

PROB is definitely the largest system we have developed. In order
to be able to maintain it, it was essential to use an additional
infrastructure to detect unexpected behaviours.

e we have developed a runtime checker, which can be turned off
for performance, and which checks pre- and post-conditions of
annotated predicates. It also checks that certain predicates do
not fail or do not produce multiple solutions. The checker also
contains a runtime type checker.

This checker actually already started out in the code base for
the partial evaluator ECCE [30], and has proven to be invaluable
by catching and pinpointing unexpected behaviour.

we use a large number of tests, ranging from unit tests for
predicates to overall system regression tests.

The unit tester also catches unexpected non-determinism and
unexpected pending co-routines. The system regression tests
also contain a large collection of mathematical theorems about
set theory, relations, functions and sequences. They have actu-
ally uncovered a bug in SICStus Prolog (fixed in version 4.0.2),
where our tool unexpectedly found a counter example for one
such theorem.

The above go hand-in-hand with an error manager module,
which allows to easily report errors and unexpected behaviours.
It ensures that the errors are brought to the attention of the
user (depending on the mode in which the tool is run). This
module was developed after several error messages had escaped
attention (being simply printed on the terminal window).

The lesson is to spend some time on a proper checking and test-
ing infrastructure; it will be worth in the long run. Some features,
that would have helped us even further, is a proper integrated devel-
opment environment for Prolog, with support for navigation, source
code highlighting and refactoring (e.g., adding arguments to predi-
cates, moving predicates into other modules, detecting unreachable
code,...). Some progress is made into that direction [45]. We are
also trying to build ourselves an Eclipse environment for Prolog
development, based upon our editor BE4 [6].

2.3 More Related Work

Prolog has been a popular programming language to implement
other programming or specification languages. A well-known ex-
ample is Erlang, which was initially implemented in 1986 using a
Prolog interpreter [4]. A logic programming approach to encode
denotational semantics specifications was applied in [24] to verify
an Ada implementation of the “Bay Area Rapid Transit” controller.
On the side of specification languages, many formalisms have been
implemented using Prolog. To mention but a few, there is the Ver-
ilog animator [9] by Bowen, as well as animators for subsets of Z
such as [20], or [51]. However, none of these used any of the ad-
vanced features such as tabling, constraints, co-routining. Indeed,
these new and exciting features are not well known outside of the
core logic programming community. Even many within the com-
munity are not aware of all of the benefits that these improvements
provide.



3. Model Checkers

Model checking [13] is a well known technique for the validation
and verification of correctness properties of hardware, and more
recently software systems.

3.1 CTL

In [31] we did implement a CTL model checker using the XSB-
Prolog system [43, 42] with its support for tabling [12]. Tabling
allowed us to write a complete interpreter for CTL formulas, imple-
mented as a pure logic program. This enabled certain analysis and
transformation tools to be applied (which required pure logic pro-
grams), even achieving some infinite state model checking [29, 17].

The model checker was also very flexible, in that it could be
applied to other formalisms simply by writing Prolog predicates
for trans/3, prop/2, and start/1.

3.1.1 Speed of tabling

XSB is very convenient for model checking. Other work has al-
ready realised the usefulness of XSB for program analysis [14]. It
often enables the programmer to write an efficient, declarative ver-
sion of a program, which in a classical Prolog system would have
required a more imperative solution with loop checking and fix-
point detection.

On top of that, tabling is often surprisingly fast. On some exam-
ples, the XSB model checker was outperforming a similar model
checker encoded in SICStus Prolog (maintaining the table as an as-
serted dynamic fact database) by a factor of 400. As it turned out,
the big difference was not so much to the tabling but to the im-
proved (multi-argument) indexing that XSB uses for tables.

Let us first perform a simple experiment, comparing XSB tables
against SICStus Prolog dynamic facts. First, let us examine the
XSB-Prolog program:

b :- time(bench(1000000)), time(bench(1000000)).
bench(0) .
bench(X) :- X>0, p(X), X1 is X-1, bench(X1).

:- table p/1.
p(X).

The first call to bench adds a million new entries to the table
(after checking whether they are already in the table). This took
0.861 seconds CPU time with XSB 3.1 on a MacBook Pro with
a 2.33 GHz Core2 Duo processor. The second call to bench no
longer adds to the table, there are “only” a million lookups in the
table. This call was marginally faster at 0.837 seconds.

The above code can be translated into classical Prolog as fol-
lows (this only translates the aspect of memorising which calls to
p/1 were made; it does not address the more difficult issue of prop-
agating computed answers, which we ignore here):

b :- time(bench(1000000)), time(bench(1000000)).
bench(0) .
bench(X) :- X>0, p(X), X1 is X-1, bench(X1).

p(X) :- check_table(X).

:— dynamic table/1.
check_table(X) :-
table(X) -> true ; assert(table(X)).

The first call to bench took 2.43 seconds with SICStus 4.0.2,
the second call took only 0.21 seconds. Hence, XSB is faster
when adding to a table and SICStus is faster when checking for
existing entries. The differences are marked, but not as dramatic

so as to explain a factor 400 speed difference for model checking
applications.

If we replace p(X) by p(1,X) in the above examples, XSB still
takes almost the same time. SICStus Prolog now, however, takes
considerably longer: already checking and asserting 100,000 new
facts takes 403.65 seconds and then re-checking them takes 404.78
seconds.

In conclusion, looking up in a table in XSB is actually slower
than looking up in a dynamically asserted predicate in SICStus;
adding to a table in XSB is faster than asserting facts in SICStus; a
big speed difference appears when XSB can make use of its multi-
argument indexing for tables (implemented via tries)!

One lesson is that XSB is very fast and flexible. Another lesson
is that it can be possible to emulate tabling using asserted facts with
reasonable speed (at least without computed answer propagation),
but one has to be very careful to ensure that first-argument indexing
can be used to locate the table entries.

3.1.2 Infinite Answers and Negation

In general tabling improves termination. It is maybe surprising
that this is not always the case. Let us examine the following
example, which captures the essence of what happens when there
are infinitely many counter example traces in our model checker
(which is very common):

p(X) :- p2(X,_L).

:— table p2/2.
p2(a, D).
p2(X, [XIT]) :- p2(X,T).

Calling p (X) in a classical Prolog will give an answer (X = a),
but the same call will loop infinitely in XSB in the default local
scheduling mode. Fortunately, one can compile XSB to use so-
called batched mode rather than local scheduling. With this version
of XSB one does get the first answer X = a for p(X).’

Still, even in batched mode, there is a problem if one uses
negation on the above query: here classical Prolog would terminate,
but XSB does not:

;- table q/0.
:— table p/1.

q :- tnot(p(a)).

One solution is to compile XSB with certain flags set (demand
evaluation). However, this mode of XSB did not always work
in our experiments, and in the latest release (3.1) we were not
able to compile XSB with the required flags. The bottom-line
was that our CTL model checker was thus practically useless for
more complicated formulas involving negation (and many temporal
operators do require negation at some point).

We would like to see a version of XSB that can deal with
negated calls having an infinite number of answers. In addition,
it would be useful to have support for co-routining in XSB (even if
the system required that there should be no pending goals when a
tabled call is reached), so that one could apply the model checker
to our interpreters from Section 2.

3.1.3 Partial Evaluation

Due to the declarative nature of our CTL model checker, it was
very straightforward to apply partial evaluation tools to specialise

7 However, trying to find another answer will result in an infinite loop. With
classical Prolog one gets the answer X = a infinitely often.



the model checker for a particular formula and/or a particular inter-
preter and system. This worked extremely well for Petri nets [29]
and Object Petri nets [17]. We were even able to use the online par-
tial evaluator ECCE [30] to perform certain infinite model checking
tasks, and a similarity between online partial evaluation and algo-
rithms from Petri net theory were uncovered [29, 28].

Unfortunately, these results do not yet apply when using the
much more involved interpreters for CSP-M or B described ear-
lier in Section 2. One hurdle was the integration of the specialised
model checker into a running system. Another, was scalability of
the partial evaluator to larger Prolog programs, using, e.g., mod-
ules and co-routines. The lesson is that existing partial evaluation
tools are not yet ready to be applied to real-life applications. One
solution to our problems would be the development of a just-in-
time specialiser in the style of [40] for Python, which transparently
specialises the program during execution. We are also working to-
wards ensuring that existing classical specialisers scale to larger
programs and can be integrated with, e.g., PROB.

3.2 LTL and Symmetry Reduction

The lesson we learned from our experiences with the CTL model
checker was to manage our own tables, using asserted facts, taking
special care that we used good hashing functions to obtain good
first argument indexing. As far as hashing is concerned, we also
learned that the SICStus Prolog term_hash/2 predicate generates
more collisions than one may expect. Also, unfortunately, it only
works on ground terms. We thus developed our own hashing pred-
icate.

We also realised that CTL was a less useful temporal logic than
LTL (see [50]). Hence, we started coding an LTL model checker in
Prolog, using the tableaux algorithm from [13].

Unfortunately, the speed was somewhat disappointing and we
actually moved to coding the model checker in C, interfacing with
our various interpreters using the foreign language interface of
SICStus Prolog. This resulted in substantial speed improvements
(1-2 orders of magnitude depending on formula) and a practically
useful validation tool [32]

We have also successfully used the foreign language interface
to obtain efficient symmetry reduction via graph canonicalisation
using the tool NAUTY written in C [47]. This was again after a first
version of the same approach in Prolog, whose performance turned
out to be rather disappointing [49].

The lesson is that some algorithms, especially on graphs, can be
encoded much more efficiently in C, but that the foreign language
interfaces are stable and reliable enough to enable a good integra-
tion of C and Prolog code.

We have also used various other foreign language interfaces
(to Tcl/Tk and to Java) to good effect, for example to provide a
graphical user interface to our tools. This approach very naturally
imposes a clean separation between graphical user interface and the
application logic.

3.3 More Related Work

There are variety of relatively generic CTL model checkers, such as
[31, 36, 16]. Both [36] and [16] are based on constraint logic pro-
gramming. [36] requires constructive negation, and as such only a
prototype implementation seems to exist. [16] is tailored towards
verification of infinite state systems.® We also would like to men-
tion the work in [7], which mapped Petri nets to CLP programs for
verification. The CTL model checker in [31] is generic, and can be

8 Unfortunately, the corresponding DMC prototype available —at
http://www.disi.unige.it/person/DelzannoG/DMC/dmc.html no
longer runs on current SICStus Prolog versions and the code is no longer
maintained.

applied to any specification language that can be encoded in Pro-
log. Unfortunately, the model checker relies on tabling, and as such
it can only run on XSB Prolog [42], which does not support co-
routines and hence the system can not be applied to our interpreters
for CSP and B (and hence also Z). The same can be said for the
pure LTL model checker from [37] or the XMC system [15, 38] for
the modal mu-calculus and value-passing CCS.

4. Discussion and Conclusion

In summary, some of the lessons we learned were the following:

¢ Prolog’s co-routines can be very useful and are probably still
underrated. They can be very useful to translate operational
semantics rules in a natural way, and they can be used to write
one’s own constraint solver.

DCGs can be tricky to use. If you use them, be sure to use a
lexer and try to analyse the grammar to determine whether it is
suitable for predictive parsing.

Tabling can be very efficient and convenient, but is only avail-
able on a single Prolog system (XSB) which has limitations.
Especially in the presence of negation can be problematic, and
the absence of convenient co-routining is a major drawback.

Foreign language interfaces are very reliable and can be im-
mensely useful to encode graphical user interfaces (e.g., in
Tcl/Tk or Java) or certain critical algorithms which can be im-
plemented more efficiently in an imperative language (e.g., in
O).

Systematic testing and runtime checking can help build a large
but still maintainable system in Prolog.

Partial evaluation is not yet ready to be applied to larger appli-
cations, but progress is being made.

Sometimes it is good to view Prolog as a dynamic language, and
not feel guilty about using the non-ground representation or dy-
namically asserting or retracting facts. In many circumstances
taking these shortcuts will lead in much shorter and faster code,
and it is not clear whether the effort in attempting to write a
declarative version would be worthwhile.

In summary, we believe that for certain tasks declarative pro-
gramming is very well suited, and can produce more efficient im-
plementations more quickly than other formalisms. One such task
is validation of high-level specification languages. We believe that
developing an animator or model checker for full CSP-M or full B
in an imperative programming language would have required con-
siderably more resources. Also, the end result would probably have
been less efficient than our existing Prolog implementation.
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