
Developing Mode-Rich Satellite Software by Refinement
in Event-B

Alexei Iliasova, Elena Troubitsynab, Linas Laibinisb,∗, Alexander
Romanovskya, Kimmo Varpaaniemic, Dubravka Ilicc, Timo Latvalac

aNewcastle University, UK
bÅbo Akademi University, Finland

cSpace Systems Finland

Abstract

One of the guarantees that the designers of on-board satellite systems need
to provide, so as to ensure their dependability, is that the mode transition
scheme is implemented correctly, i.e. that the states of system components
are consistent with the global system mode.There is still, however, a lack of
scalable approaches to developing and verifying systems with complex mode
transitions. This paper presents an approach to formal development of mode-
rich systems by refinement in Event-B. We formalise the concepts of modes and
mode transitions as well as deriving specification and refinement patterns which
support correct-by-construction system development. The proposed approach
is validated by a formal development of the Attitude and Orbit Control System
(AOCS) undertaken within the ICT DEPLOY project. The experience gained
in the course of developing of as complex an industrial-size system as AOCS
shows that refinement in Event-B provides the engineers with a scalable formal
technique that enables both mode-rich systems development and proof-based
verification of their mode consistency.

Keywords: Mode consistency, Event-B, refinement, components, formal
verification, on-board software

1. Introduction

Operational modes, mutually exclusive sets of the system behaviour [1], are
a useful structuring concept that facilitates the design of complex systems in
different industrial sectors. There are several well-known problems associated

∗Corresponding author
Email addresses: alexei.iliasov@ncl.ac.uk (Alexei Iliasov),

elena.troubitsyna@abo.fi (Elena Troubitsyna), linas.laibinis@abo.fi (Linas Laibinis),
alexander.romanovsky@ncl.ac.uk (Alexander Romanovsky), Kimmo.Varpaaniemi@ssf.fi
(Kimmo Varpaaniemi), Dubravka.Ilic@ssf.fi (Dubravka Ilic), Timo.Latvala@ssf.fi (Timo
Latvala)

Preprint submitted to Elsevier December 8, 2011

with mode-rich systems, e.g., correctness of complex mode transitions, mode
consistency in distributed systems, mode confusion, etc. Developers of mode-
rich systems clearly need generic scalable approaches that would help them solve
these notoriously difficult problems.

This paper formalises reasoning about mode consistency and proposes a
rigorous approach to developing complex mode-rich systems by adopting the
top-down correct-by-construction development paradigm. The Event-B frame-
work [2, 3] (extended with modularisation capabilities [4]) is used as the mod-
elling language, while the Rodin platform [5] and its modularisation plug-in [6]
provide an automated modelling and verification environment.

The proposed formalisation of mode consistency properties makes it possi-
ble to derive a generic pattern for specifying components of mode-rich systems
in Event-B. This pattern defines a generic module interface, which can be in-
stantiated by component-specific data and behaviour during system refinement.
The proposed development process allows the designers to develop a system in
a layered fashion. Essentially, it formalises gradual unfolding of system archi-
tectural layers by refinement. We prove consistency between mode transitions
on adjacent architectural layers as part of refinement verification.

The development approach described in this paper generalises the results of
the development of satellite Attitude and Orbit Control Systems (AOCS) [7]
that has been undertaken by Space Systems Finland within the EU project
DEPLOY [8]. AOCS [9] is a generic component of satellite onboard software.
It is a typical example of a mode-rich system with a complex mode transition
scheme. There are two distinctive characteristics that make AOCS develop-
ment and verification challenging. The first characteristic is long running (i.e.,
non-instantaneous) mode transitions that are caused by slow dynamics of the
controlled electro-mechanical components. The second one is integration of error
recovery with the mode transition scheme, i.e., error recovery is implemented
as rollbacking to certain degraded modes. Together, these two features may
lead to cascading mode transitions, i.e., the situations when a system transition
to one mode is preempted by a transition to another (degraded) mode due to
failure occurrence(s). It has been noted that testing and model checking of the
systems with such cascading mode transitions is difficult and suffers from poor
scalability [10].

Our approach supports incremental verification of global mode consistency
properties by proof and demonstrates a good scalability. It allows us to cope
efficiently with complexity of AOCS. We argue that the AOCS development
presented in this paper is a successful experiment in formal refinement-based
development of a complex industrial size system. Hence we believe that the
proposed approach provides the designers with a scalable formal technique for
developing and verifying complex mode-rich systems.

The structure of the paper is as follows. Section 2 introduces our formal
development framework – Event-B. We continue by presenting our formalised
reasoning about modes and mode transitions in Section 3. A formal pattern
for developing layered mode-rich systems is proposed in Section 4. Section 5
presents the case study – development of an Attitude and Orbit Control System

2

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

−→

Context C
Carrier Sets d
Constants c
Axioms A

Figure 1: Event-B machine and context components

(AOCS). We summarise our lessons learnt in Section 6, while Section 7 overviews
the related work. Finally, some concluding remarks are given in Section 8.

2. Event-B

We start by briefly describing our development framework. The B Method [11]
is a state-based formal approach that promotes the correct-by-construction de-
velopment paradigm and formal verification by theorem proving. The Event-B
formalism [2, 3] is a specialisation of the B Method. It enables modelling of
event-based (reactive) systems by incorporating the ideas of the Action Sys-
tems formalism [12] into the B Method.

2.1. Modelling and Refinement in Event-B

In Event-B, a system specification (model) is defined using the notion of an
abstract state machine [3]. An abstract state machine encapsulates the model
state, represented as a collection of model variables, and defines operations on
this state. Therefore, it describes the dynamic part (behaviour) of the mod-
elled system. Usually a machine also has the accompanying component, called
context, which contains the static part of the model. In particular, a context
can include user-defined carrier sets, constants and their properties, which are
given as a list of model axioms. A general form of Event-B models is given in
Figure 1.

The machine is uniquely identified by its name M . The state variables,
v, are declared in the Variables clause and initialised in the Init event. The
variables are strongly typed by the constraining predicates I given in the Invari-
ants clause. The invariant clause might also contain other predicates defining
properties that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

ANY lv WHERE g THEN S END

where lv is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when lv is

3

Action BA(x, y, x′)
skip x′ = x ∧ y′ = y

x := E(x, y) x′ = E(x, y) ∧ y′ = y
x :∈ Set x′ ∈ Set ∧ y′ = y

x :| P (x, y, x′) P (x, y, x′) ∧ y′ = y

Figure 2: Before-after predicates

empty, the event syntax becomes WHEN g THEN S END. If g is always
true, the syntax can be further simplified to BEGIN S END.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any
of them can be chosen for execution nondeterministically. If none of the events
is enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A deter-
ministic assignment, x := E(x, y), has the standard syntax and meaning. A
nondeterministic assignment is denoted either as x :∈ Set, where Set is a set of
values, or x :| P (x, y, x′), where P is a predicate relating initial values of x and
y to some final value of x′. As a result of such a non-deterministic assignment,
x can get any value belonging to Set or according to P .

Semantics of an Abstract Model. The semantics of Event-B actions is de-
fined using before-after (BA) predicates [2, 3]. A before-after predicate de-
scribes a relationship between the system states before and after an execution
of an event action, as shown in Figure 2. Here x and y are disjoint lists (par-
titions) of state variables, and x′, y′ represent their values in the state after
the action execution – the after-state. The notion of BA predicate can be eas-
ily generalised to formally define model events. For an event e of the form
ANY lv WHERE g THEN S END, its BA predicate is as follows:

BAe(x, y, x
′) = ∃lv. g(lv, x, y) ∧ BAS(x, y, lv, x′)

The semantics of a whole Event-B model is formulated as a number of proof
obligations, expressed in the form of logical sequents. Below we present only the
most important proof obligations that should be verified (proved) for the initial
and refined models. The full list of proof obligations can be found in [2].

The initial Event-B model should satisfy the event feasibility and invariant
preservation properties. For each event of the model – evti – its feasibility
means that, whenever the event is enabled, its before-after predicate (BA) is
well-defined, i.e., exists some reachable after-state:

A(d, c), I(d, c, v), gi(d, c, v) ` ∃v′ ·BAi(d, c, v, v
′) (FIS)

4

where A are model axioms, I is the model invariant, gi is the event guard, d are
model sets, c are model constants, and v, v′ are the variable values before and
after event execution.

Each event evti of the initial Event-B model should also preserve the given
model invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v
′) ` I(d, c, v′) (INV)

Since the initialisation event has no initial state and guard, its proof obligation
is simpler:

A(d, c), BAInit(d, c, v
′) ` I(d, c, v′) (INIT)

Semantics of a Refined Model. Event-B employs a top-down refinement-
based approach to system development. Development starts from an abstract
system specification that models the most essential functional requirements.
While capturing more detailed requirements, each refinement step typically in-
troduces new events and variables into the abstract specification. These new
events correspond to stuttering steps that are not visible at the abstract level.

The variables of a more abstract model in the refinement chain are called the
abstract variables, whereas the variables of the next refined model are called the
concrete variables.1 Event-B formal development supports data refinement, al-
lowing us to replace some abstract variables with their concrete counterparts. In
that case, the invariant of the refined machine formally defines the relationship
between the abstract and the concrete variables.

To verify correctness of a refinement step, we need to prove a number of proof
obligations for the refined model. Intuitively, those proof obligations allow us
to demonstrate that the refined machine does not introduce new observable
behaviour, more specifically, that concrete states are linked to the abstract ones
via the given (gluing) invariant of the refined model. In general, these proofs
guarantee that the concrete model adheres to the abstract one, thus all proved
properties of the abstract model are automatically ”inherited” by the refined
one.

For brevity, below we will show only the most essential proof obligations.
These are those proof obligations that go beyond checking well-definedness of
basic model elements, which are usually automatically discharged by the tool
support of Event-B.

Let us first introduce a shorthand H(d, c, v, w) that collectively stands for
the hypotheses A(d, c), I(d, c, v), I ′(d, c, v, w), where I and v are the invariant
and variables of the abstract machine, while I ′ and w are correspondingly the
invariant and variables of the refined machine. Then the feasibility refinement
property for an event evti of a refined model can be expressed as follows:

H(d, c, v, w), g′i(d, c, w) ` ∃w′. BA′i(d, c, w,w
′) (REF FIS)

1Here the Event-B terminology differs from the that of Classical B. In Classical B, the
abstract variables are those that cannot be implemented, while the concrete variables are
correspondingly those that can be implemented.

5

where g′i is the refined guard and BA′i is a before-after predicate of the refined
event.

The event guards in a refined model can be only strengthened in a refinement
step:

H(d, c, v, w), g′i(d, c, w) ` gi(d, c, v) (REF GRD)

where gi, g
′
i are respectively the abstract and concrete guards of the event evti.

Finally, the simulation proof obligation requires to show that the ”execution”
of a refined event is not contradictory with its abstract version:

H(d, c, v, w), g′i(d, c, w), BA′i(d, c, w,w
′) ` ∃v′.BAi(d, c, v, v

′) ∧ I ′(d, c, v′, w′)
(REF SIM)

where BAi,BA′i are respectively the abstract and concrete before-after predi-
cates of the same event evti.

The Event-B refinement process allows us to gradually introduce implemen-
tation details, while preserving functional correctness during stepwise model
transformation. The model verification effort, in particular, automatic genera-
tion and proving of the required proof obligations, is significantly facilitated by
the provided tool support – the Rodin platform [5].

2.2. Modelling Modular Systems in Event-B

Recently the Event-B language and tool support have been extended with a
possibility to define modules [4, 6] – components containing groups of callable
operations. Modules can have their own (external and internal) state and the
invariant properties. The important characteristic of modules is that they can
be developed separately and then composed with the main system.

Module Structure. A module description consists of two parts – module in-
terface and module body. Let M be a module. The module interface is a separate
Event-B component. It allows the user of the module M to invoke its operations
and observe the external variables of M without having to inspect the module
implementation details. The module interface consists of the module interface
description MI and its context MI Context. The context defines the required
constants c and sets s. The interface description consists, respectively, of the
external module variables w, the external module invariant M Inv(c, s, w), and a
collection of module operations, characterised by their pre- and postconditions,
as shown in Figure 3. The primed variables in the operation postcondition stand
for the variable values after operation execution.

A module development always starts with the design of an interface. After
an interface is formulated, it cannot be altered in any manner. This ensures
correct relationships between a module interface and its body, i.e., that the
specification of an operation call is recomposable with an operation implemen-
tation. A module body is an Event-B machine. It implements each operation
described in the module interface by a separate group of events. Additional
proof obligations are generated to verify correctness of a module. They guaran-
tee that each event group faithfully satisfies the given pre- and postconditions
of the corresponding interface operation.

6

INTERFACE MI =
SEES MI Context
VARIABLES mv
INVARIANT M Inv(mv)
INITIALISATION mv :∈ M Init
OPERATIONS

res ← op1 =
ANY par
PRE M Guard1(par, mv)
POST M Post1(par, mv, mv’, res’)
END

. . .
END

Figure 3: Structure of interface component

Importing of a Module. When the module M is imported into another Event-
B machine, this is specified by a special clause USES in the importing machine,
N. As a result, the machine N can invoke the operations of M as well as read
the external variables of M listed in the interface MI.

To make a module interface generic, in MI Context we can define some ab-
stract constants and sets (types). Such data structures become module pa-
rameters that can be instantiated when a module is imported. The concrete
values or constraints needed for module instantiation are supplied within the
USES clause of the importing machine. Alternatively, the module interface
can be extended with new sets, constants, and the properties that define new
data structures and/or constrain the old ones. Such an extension produces a
new, more concrete module interface. Via different instantiation of generic pa-
rameters the designers can easily accommodate the required variations when
developing components with similar functionality. Hence module instantiation
provides us with a powerful mechanism for reuse.

We can create several instances of the given module and import them into
the same machine. Different instances of a module operate on disjoint state
spaces. Identifier prefixes can be supplied in the USES clause to distinguish
the variables and the operations of different module instances or those of the
importing machine and the imported module. The syntax of USES then becomes
as follows:

USES < module interface > with prefix < prefix >

Semantics of Module Interface. Similarly to a machine component, the
semantics of an interface component is defined by the following proof obligations.
The module initialisation must establish the module invariant M Inv:

M Init(mv) ` M Inv(mv) (MOD INIT)

Let us assume Oper i, i ∈ 1..N , is one of module operations. The module

7

invariant M Inv should be preserved by each operation execution:

M Inv(mv), Prei(pars,mv), Posti(pars,mv,mv′, res′) ` M Inv(mv′)
(MOD INV)

where Prei and Posti are respectfully the precondition and the postcondition of
Oper i.

Finally, there is a couple of feasibility proof obligations for each Oper i, i ∈
1..N . Firstly, the operation precondition should be true for at least some of
parameter values:

M Inv(mv) ` ∃pars. Prei(pars,mv) (MOD PARS)

Secondly, at least some operation post-state containing the required result must
be reachable:

M Inv(mv), P rei(pars,mv) ` ∃(mv′, res′). Posti(pars,mv,mv′, res′)
(MOD RES)

Semantics of an Operation Call. A machine importing a module instance
operates on the extended state consisting of its own variables v and module vari-
ables mv. The module state can be updated in event actions only via operations
calls. The semantics of an event containing an operation call is as follows.

Let us consider the model event E that contains a call to the module oper-
ation Op with the given arguments args, i.e., it is of the form

ANY lvars WHERE g THEN S[Op(args)] END.

The BA predicate of such an event can be defined as follows:

BAE(v,mv, v′,mv′) = ∃(lvars, res, new mv). g(lvars, v,mv) ∧
Post(args,mv, new mv, res) ∧
BAS∗ (lvars, v,mv, res, v′) ∧ (mv′ = new mv)

where S∗ is S with all the occurrences of Op(args) replaced by res. Once
this is done, we can rely on the existing proof semantics to verify the invariant
preservation, the event simulation and other required properties.

Moreover, we need an additional proof obligations to ensure call correctness
by checking that the operation precondition holds at the place of an operation
call:

g(lv, v,mv), Inv(v,mv), M Inv(mv) ` Pre(args,mv) (CALL CORR)

The modularisation extension of Event-B facilitates formal development of
complex industrial-size systems by allowing the designers to decompose large
specifications into separate components and verify system-level properties at
the architectural level.

In the next section we rely on the modularisation extension while proposing
our approach to reasoning about mode consistency. Then, in Section 4, we use
this approach to formalise development of mode-rich systems in Event-B.

8

3. Formal Reasoning about Modes and Mode Transitions

3.1. Mode Logic in Layered Architectures

Leveson et al. [1] define mode as a mutually exclusive set of system be-
haviours. Essentially, a mode can be understood as an abstraction of the sys-
tem state, i.e., it signifies the class of states associated with a certain system
functionality. Functionality of mode-rich systems can be represented as a cer-
tain scenario defined in terms of system modes. A set of all the modes and
mode transition rules defined by this scenario constitute the mode logic of the
system [1].

We formalise mode logic as a special kind of a state transition system, i.e.,
as a triple (Modes,Next, InitMode), where Modes is a set of all possible modes
of the system, Next is a relation on Modes, containing all the allowed mode
transitions, and InitMode is the initial system mode.

In this formalisation Next is a relation and hence it can contain several pre-
defined scenarios. Sometimes Next can be defined more precisely as an ordering
relation. For instance, the predefined scenario of the AOCS system presented
in Section 5 is a typical example of this. The scenario describes the sequence
of modes from powering-on the instruments to bringing them into the mode
that enables collection of valuable scientific data. For systems that implement
that kind of scenarios, we can define the mode logic as (Modes,≤, InitMode),
where ≤: Modes ↔ Modes is a partial ordering on Modes. Here the fact that
Mode1 ≤ Mode2 means that in Mode2 the system provides a richer set of func-
tions than in Mode1.2

The coarse-grained global modes allow us to represent the system-level mode
logic as a process of instantaneous change from one mode to another. In real-
ity, a mode transition may involve certain physical (e.g., electro-mechanical)
processes in the controlled components and hence have a duration. Indeed,
the system should perform several iterations of its control loop to bring all
the involved components into the consistent states for entering the next target
mode. To facilitate reasoning about consistency of component modes, in this
paper we adopt the layered approach to architecting complex mode-rich sys-
tems. It is recognised that a layered architecture is advantageous in designing
complex component-based systems [13] since it facilitates structuring the sys-
tem behaviour according to the identified abstraction levels. A generalised tree
representation of the architecture of a mode-rich system is given in Figure 4.

To correctly define the mode logic and guarantee that a layered system faith-
fully implements it, we need to ensure mode consistency of the components resid-
ing at different layers. For each architectural layer, we define the corresponding
mode (or sub-mode) logic. Moreover, we introduce a typical component, called
a Mode Managing Component (MMC), which is responsible for implementing a
specific mode logic. MMCs can be present on different architectural layers. For

2Defining Next as an ordering relation makes it a special case that does not affect the
general approach presented next.

9

Mode manager
(MM)

Submode
manager
(SMM_1)

Submode
manager
(SMM_2)

Submode
manager
(SMM_n)

Unit_1 Unit_2 Unit_k

...

...

...

First layer

Second layer

Lowest layer

...

Figure 4: Architecture of mode-rich layered systems

example, in Figure 4 all the components that are above of the lowest layer may
be mode managing components.

The mode logic on the system level is implemented by a MMC called Mode
Manager. At the lower layers MMCs (denoted as Submode Managers) imple-
ment specific sub-mode logics defined for the corresponding layers. At the layer
above the bottom one, there reside MMCs that directly communicate with the
lowest layer components (often called units). They implement the corresponding
control algorithms required to bring the units into the desirable states.

When a MMC chooses a new target mode, it initiates (sequentially or in
parallel) the corresponding mode transitions in lower layer components. As
a result, the affected Submode Managers at lower layers start to execute their
own predefined scenarios. At each architectural layer, the MMC follow the same
behavioural pattern: it monitors the states of lower layer components to detect
when the conditions for entering the desired mode are satisfied, i.e., the lower
layer components have successfully completed the required transitions to the
corresponding submodes. At the same time, the MMC monitors the health of
lower layer components. The errors detected by these components may prevent
a successful transition to the target mode and, as a consequence, require to
initiate the predefined recovery procedures.

To formalise those two aspects of the MMC behaviour, we introduce two
functions, Mode ent cond and Mode error handling. The function Mode ent cond
expresses the relationship between the target mode, the component state, and
the corresponding modes of the monitored components on the lower layer. The
second function, Mode error handling, describes the effect of all the errors de-
tected by the monitored components on the MMC mode. Please note here the
difference between the notions of the component state and a component mode.
A component mode is an abstraction of the component state aggregated with
the externally visible states of the monitored components, thus representing the
class of such states associated with this mode.

Let MState be the component state. We define Mode ent cond as a function
of the following type:

Mode ent cond : Modes→ P1(MState×LocalModes1×· · ·×LocalModesk) (1)

where LocalModes1, ..,LocalModesk are modes of the monitored components.

10

For each (global) mode, the function returns a non-empty set of the allowed
combinations of the component state and the monitored local modes. Here
we assume that the local modes belong to the externally visible state of those
components.3

The mode entry conditions can be recursively constructed throughout the en-
tire architecture for each pair of a MMC and a mode. We also use Mode ent cond
to determine which components are affected when a MMC initiates a new mode
transition, i.e., to which components it should send the corresponding (local
mode) transition requests.

As mentioned above, an execution of a mode transition usually takes several
control cycles. At each cycle MMCs monitor the progress of the requested mode
transitions. An occurrence of faults in the controlled low-level components might
result in a failure to complete some requested mode transition. As a result, the
corresponding MMC assesses the error and initiates error recovery either by
itself or by propagating the error to a MMC on the higher level. In mode-rich
systems, error recovery is often implemented as a rollback to some preceding
(and usually more degraded) mode in the predefined scenario.

We define the function Mode error handling to model the mode transitions
executed as error recovery

Mode error handling : MState× LocalErrors1 × ...× Local Errorsk → Modes

where MState is the component state and LocalErrors1...Local Errorsk are all
the errors detected by lower layer components. The function defines the mode
to which the system should rollback to execute error recovery. The pair of the
new target and current modes should belong to the transitive closure of Next.

While the system is recovering from one error, another error requiring a
different mode transition might occur. Due to a large number of components
and their failure modes, ensuring mode consistency becomes especially difficult.
Hence we need to precisely define the mode consistency criteria for the layered
control systems. Next we describe our approach to achieving this.

3.2. Properties of Mode-Rich Systems

To guarantee that the mode logic is unambiguous, we have to ensure that a
component can be only in one mode at a time, i.e., the mode entry conditions
for different modes cannot overlap:

∀i, j · mi ∈ Modes ∧ mj ∈ Modes ∧ i 6= j ⇒
Mode ent cond(mi) ∩Mode ent cond(mj) = ∅ (2)

Overall, the definition (1) and the property (2) postulate mode consistency
conditions that should be guaranteed for each MMC of a system.

3In general, the definition of Mode ent cond could have been further generalised by replac-
ing the local modes with the entire external states of the monitored components.

11

Let us now address another important issue in designing mode-rich systems
– ensuring mode invariants. These are the properties that should be preserved
while the system stays in some particular mode. However, in the systems where
mode transitions take time and can be interrupted by errors, this is not a
straightforward task. To tackle it, let us define the following attributes of a
MMC:

• last mode – signifies the last successfully reached MMC mode;

• next target – signifies the target mode that a MMC is currently in transi-
tion to;

• previous target – signifies the previous mode that a MMC was in transition
to (though it has not necessarily reached it).

where last mode, next target and previous target are component modes.
Collectively, these three attributes unambiguously describe the actual mode

of a MMC. Based on them, we define the notion of component status that might
be either Stable, Decreasing or Increasing as follows:

• Stable , last mode = previous target ∧ next target = previous target
a MMC is maintaining the last successfully reached mode (i.e., there are
no mode transition requests);

• Increasing , last mode = previous target ∧ previous target < next target
a MMC is in transition to a next, more advanced mode;

• Decreasing , next target < previous target
MMC stability or a mode transition to previous target was interrupted
(e.g., by error handling) by a new mode request to proceed to a more
degraded mode.

A graphical diagram showing mode status changes is given in Figure 5.

STABLE

INCR

DECR

Init

Completed

Request

Request

Request

Figure 5: Component mode status

Here Request represents a mode change change request issued by the upper
layers, while Completed represents the system state change when the target

12

mode is successfully reached, i.e., the corresponding mode entry condition is
satisfied.

We assume that, when a mode transition is completed, the component status
is changed to Stable. The Mode Manager (MMC at the top layer) will maintain
this status only if the final mode or modes of the scenario (defined by Next) are
reached. On the lower layers, Submode Managers will maintain their stability
until receiving a request for a new mode transition. In its stable state, Mode
Manager would change its status to Increasing to execute the next step of the
mode scenario, which in turn would trigger the corresponding mode transitions
in the lower layer MMCs. Irrespectively of the component status, an occurrence
of an error would result in changing it to Decreasing that designates a rollback
in the predefined scenario.

Now we can formally connect the mode status and a mode invariant. When
a mode manager is stable, the mode entry condition is a mode invariant, i.e.,

Stable ⇒ (s, l1, ..., lk) ∈ Mode ent cond(last mode)

where s ∈ MState is the current state, and l1, ..., lk are the local modes.
The other mode invariants are also preserved when a component is stable:

Stable ⇒ Mode Inv(last mode)

Hence, in general, mode invariant properties are not preserved while MMC is
engaged in a mode transition.

In a layered system, the stability property can actually be recursively
unfolded downwards:

Stable(m) ⇒ Stable(lm1) ∧ Stable(lm2) ∧ · · · ∧ Stable(lmk)

where m ∈ Modes and (lm1, ..., lmk) ∈ LocalModes1 × ...× LocalModesk are the
monitored local modes that the mode m depends on. This property can be
proved as an invariant property preserved by the each mode managing com-
ponents at certain points of its execution, specifically, after it had evaluated
situation (i.e., the mode changes and the detected errors of the monitored com-
ponents) and decided on its next course of action.

The discussion above sets the general guidelines for defining mode managers
in layered mode-rich systems. While specifying a particular mode manager,
we instantiate the abstract data structures Modes, Next, Mode ent cond, and
Mode error handling and ensure that

R1 In a stable state, a MMC makes its decision to initiate a new mode transition
to some more advanced mode according to the relation Next;

R2 In a transitional state, a MMC monitors the state of lower layer components.
When Mode ent cond(next target) becomes satisfied for the local state and
the submodes of the monitored components, the mode manager completes
the mode transition and becomes stable;

13

R3 In both stable and transitional states, a MMC monitors the lower layer
components for the detected errors. When such errors occur, a MMC
makes its decisions based on Mode error handling, which is applied to the
mode manager state and all the detected errors.

Next we will show how these guidelines can be implemented in the proposed
formal specification and development patterns.

4. Development Pattern

In this section we propose a formal pattern for developing layered mode-rich
systems in the Event-B framework. It consists of two main parts: a generic
interface of a MMC and a generic refinement step for unfolding architectural
layers.

4.1. Generic Interface

As discussed earlier, the structure and behaviour of mode managing compo-
nents at different layers are very similar. This suggests the idea of modelling a
MMC as a generic module that can be adapted to different contexts by instan-
tiating its generic parameters.

In Event-B, we can formalise this by first creating a generic module interface
that can be later implemented in different ways, thus creating implementations
of specific mode managers. The proposed interface (see Figure 6) contains four
operations that can be called by a MMC from a higher layer. It also defines the
external module variables that are visible from a calling component.

The external state of a component is formed by four variables – last, next,
prev and error. The first three variables define the component mode status,
i.e., they represent the respective MMC attributes last mode, next target and
previous target, formally introduced in Section 3. These variables describe the
actual mode of a component and also the mode transition dynamics. Based on
their values, it is possible to find out whether the component has settled in a
stable mode (last = prev ∧ next = prev), is working towards a more advanced
mode (last = prev ∧ prev 7→ next ∈ Next), or is degrading its mode due to error
recovery (prev 7→ next ∈ Next−1).

The variable error abstractly models the errors currently detected by a
MMC. The variable types MODE and ERROR are defined in the interface
context component MMC Context, described in detail below.

The operation ToMode can be called by an upper layer component to set a
new target mode. The operation ResetError is called to clear the raised error
flag after the detected errors are handled by an upper layer component (e.g.,
by initiating the appropriate error recovery). Since the behaviour of the overall
system is cyclic, we assume that within each single cycle the control is passed

14

interface MMC I
variables last, prev,next, error
sees MMC Context
invariant

inv1 : last ∈ MODE ∧ next ∈ MODE ∧ prev ∈ MODE ∧ error ∈ ERROR
inv2 : next = prev ⇒ next = last
inv3 : next 6= prev ⇒ next 7→ prev ∈ Next ∨ prev 7→ next ∈ Next
inv4 : {last 7→ prev, last 7→ next} ⊆ Next ∪Next−1

initialisation
last, prev, next := InitMode, InitMode, InitMode
error := NoError

operations
r← ToMode = any m pre

error = NoError ∧m ∈ MODE
m 6= next ∧m 7→ next ∈ Next ∪Next−1

post
r′ = last ∧ prev′ = next ∧ next′ = m

end
r← ResetError = pre

error 6= NoError
post

r′ = last ∧ error′ = NoError
end

r← Mode Advance = pre
next = prev ∧ error = NoError

post
r′ = last ∧ error′ ∈ ERROR ∧ prev 7→ next′ ∈ Next

end
r← Continuation = pre

next 6= prev ∧ error = NoError
post

r′ = last′ ∧ error′ ∈ ERROR ∧
last′ 7→ next ∈ Next ∪Next−1∧
((last′ 6= next ∧ prev′ = prev) ∨ (last′ = next ∧ prev′ = last′))

end
end

Figure 6: Interface of a generic mode manager

through the entire hierarchy of components4. The operations Mode Advance
and Continuation model the component behaviour when it receives the control
while being correspondingly in a stable or a transitional state.

In the operation Mode Advance, the component might start a new forward
mode transition by setting a new target mode. In practice, such situations are
often governed by the autonomous mode scenario provided for the component.
In the operation Continuation, the component is still in mode transition or just
finished its latest forward or backward mode transition. These two distinct cases
are covered by two different disjuncts in the operation postcondition.

The interface context MMC Context (see Figure 7) defines generic sets and
constants of the pattern, which contribute to abstract characterisation of the
mode logic. In addition to the deferred sets MODE and ERROR mentioned

4Our case study AOCS is a cyclic system. For general modelling and verification of mode-
rich systems this assumption is not essential.

15

context MMC Context
constants MODE, InitMode, Next,ERROR,NoError
axioms

axm1 : InitMode ∈ MODE
axm2 : Next ∈ MODE↔MODE
axm3 : dom(Next) ∪ ran(Next) = MODE
axm4 : id ⊆ Next
axm5 : Next ∩Next−1 ⊆ id
axm6 : Next;Next ⊆ Next
axm7 : NoError ∈ ERROR
axm8 : ERROR \NoError 6= �

end

Figure 7: Context of generic interface

above, MMC Context introduces the constant InitMode representing the prede-
fined initial mode, the relation Next containing all the allowed mode transitions,
and the constant NoError, a special value denoting the absence of errors. All
these structures should be instantiated with concrete data when a module in-
stance is created. If Next is a partial order, its required reflexivity, antisymmetry
and transitivity properties (i.e., the axioms axm4–axm6) are also checked during
instantiation. Otherwise, they can be omitted.

Let us note that the functions Mode ent cond and Mode error handling from
Section 3 are not introduced in the MMC generic interface. These important
functions are defined in terms of the component state and the modes of lower
layer components, i.e., in terms of two adjacent layers. Therefore, they can be
defined only during a refinement step that integrates the lower layer MMCs into
the refined specification of a MMC at a higher layer.

In a module body that implements the presented generic interface, each of
interface operations is represented (essentially refined) by a corresponding group
of Event-B events. The body might also contain additional module-specific data
structures, local variables and operations. However, any refinement of a module
body is proved to be a refinement of the initial specification defined in the
interface.

4.2. Refinement Strategy

In general, refinement process aims at introducing implementation details
into an abstract system specification. However, in this paper we demonstrate
that refinement can also be used to incrementally build a system architecture.
This is especially well-suited for layered control systems, where refinement can
be used to gradually unfold system layers by using the predefined specification
and refinement patterns [14]. Indeed, the generic interface MMC I that we de-
scribed above can be seen as an abstract representation of the top level interface
of a mode-rich system. Yet it can also be seen as an interface of any submode
manager at a lower layer. Therefore, by instantiating MMC I with the mode
logic specific for a particular MMC, we can obtain a MMC of any layer. Hence

16

Environment -
a control loop calling MM once per cycle

Mode Manager
(interface)Uses

Mode Manager
(body)

Implements

Mode Manager
(refinement)

Refines

Mode Manager
(refinement)

Refines

Submode
Manager_1
(interface)

Submode
Manager_2
(interface)

Uses

Submode
Manager_2

(body)Implements

Submode
Manager_1

(body) Implements

Refines

Mode Manager
(generic interface)Extends

Refines

Extends Extends

Submode
Manager_1
(refinement)

Submode
Manager_2
(refinement)

Extends

Figure 8: Development hierarchy

our development strategy can be seen as a process of introducing specific module
types into an Event-B development, as shown in Figure 8.

We assume that the system executes cyclically, with the environment peri-
odically invoking the top MMC. In its turn, it calls lower layer MMCs. This
behaviour is recursively repeated throughout the hierarchy.

The refinement process starts by instantiating the top level mode manager
interface with the global mode logic. The body of the obtained mode manager
can be further developed by refinement. This is similar to building a normal
refinement chain although the starting point is an interface rather than an ab-
stract machine. At some point of our development, a number of the lower layer
MMCs that the mode manager controls are introduced. This refinement step
essentially introduces calls to the corresponding interface operations of these
MMCs.

At the same time, the submodes and errors of the lower layer become visible
for the mode manager. To properly integrate new components into the devel-
opment hierarchy, we need to extend the context of the mode manager with the
data structures (such as Mode ent cond and Mode error handling) describing
the required consistency of mode transitions and error handling on two adja-
cent levels. This allows us to refine the mode manager operations as well as
define the mode consistency conditions as additional invariants of the form

Stable ⇒ Mode ent cond(last mode)

that are verified in this refinement step. In a similar way we handle errors of

17

new components.
On the architectural level, such a refinement step corresponds to unfolding

one more layer of the system hierarchy. From this point, we can focus on
refining bodies of the introduced MMCs. These bodies would implement their
own mode logics and also, if needed, call operations of the MMCs residing on the
layer below. Hence we follow the same refinement pattern as before, unfolding
the system architectural layers until the entire hierarchy is built.

The main strength of our development is that we ensure global mode con-
sistency by simply conjuncting the mode linking conditions introduced at each
level. Hence, despite a strict hierarchical structure, there is a simple procedure
for enforcing conformance of mode changes for any two or more components of
a system. We avoid reasoning about the entire global mode consistency and
instead enforce by refinement the mode consistency between any two adjacent
layers.

Our approach allows us to design a layered mode-rich system in a disciplined
structured way. It makes a smooth transition from architectural modelling to
component implementation, yet ensuring the overall mode consistency. This
approach generalises our experience in developing AOCS [9], presented next.

5. Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) is a generic component
of satellite onboard software. The main function of AOCS is to control the
attitude and the orbit of a satellite. Due to a tendency of a satellite to change
its orientation because of disturbances of the environment, the attitude needs to
be continuously monitored and adjusted. AOCS consists of seven physical units:
four sensors, two actuators and the payload instrument. An optimal attitude is
required to support the needs of payload instruments and to fulfil the mission
of the satellite.

5.1. Abstract Model

While positioning the satellite, AOCS goes through a succession of stages –
modes. When the satellite achieves the required attitude, i.e., enters so called
Science mode, the system activates payload instruments. Hence, we can identify
two main phases in the system behaviour:

• preparation phase – achieving the required satellite attitude,

• activation phase – activation and operation of scientific instruments.

In the abstract specification we represent each phase by the corresponding
events. The preparation phase is abstractly specified in the event preparation.
The system is in the preparation stage when the boolean flag prep is equal to
FALSE. It can take more than one atomic step to complete this phase, which is
expressed by a non-deterministic assignment prep :∈ BOOL. When the prepa-
ration is finished, the system can start the activation phase that is designated by

18

machine aocs
variables prep, act, aocs error
invariant

prep ∈ BOOL ∧ act ∈ BOOL ∧ aocs err ∈ BOOL
prep = FALSE ⇒ act = FALSE
aocs error = TRUE ⇒ prep = FALSE ∧ act = FALSE

initialisation
prep, act, aocs error := FALSE,FALSE,FALSE

events
preparation = when

aocs error = FALSE ∧ prep = FALSE
then

prep :∈ BOOL
end

activation = when
aocs error = FALSE ∧ prep = TRUE ∧ act = FALSE

then
act := TRUE

end
activity = when

act = TRUE
then

skip
end

recovery = when
aocs error = FALSE

then
prep, act := FALSE,FALSE

end
error = begin

aocs error, prep, act := TRUE,FALSE,FALSE
end

end

the guard prep = TRUE ∧ act = FALSE of the event activation. When the sci-
entific payload instruments become fully functional, the event activity becomes
enabled, i.e., the flag act becomes TRUE.

The overall behaviour of AOCS is cyclic. At each cycle it reads the sensor
data and controls the actuators to achieve the desired system behaviour. How-
ever, hardware faults as well as disturbances in the environment may alter the
attitude of the satellite. Hence, upon the occurrence of such undesirable events,
the activity phase should be interrupted and the preparation phase restarted
to adjust the attitude. This is modelled by the event recovery. It is implicitly
assumed that most errors are recoverable and the targeted attitude can be reac-
quired. However, some errors might be unrecoverable and require the reset of
the underlying hardware platform. The occurrence of a non-recoverable error
is modelled in the event error that becomes enabled when such an error is de-
tected, i.e., when aocs error becomes TRUE. This event puts the system in a
permanently deadlocked state.

The abstract system model is deliberately simple. It is merely a state transi-
tion system that depicts the high-level behaviour of AOCS in a clear and concise

19

way. Two distinct phases of the system behaviour – preparation and activation
– suggest the idea of carrying the further system development in two indepen-
dent strands. The first strand focuses on specifying mode transitions in the
preparation phase. This strand refines the functionality abstractly represented
by the events preparation, recovery and error. The second strand focuses on spec-
ifying the behaviour of scientific payload instruments in the activation phase,
i.e., refines the events activation and activity. In this paper we describe in detail
the first strand, i.e., the formal development of the preparation subsystem of
AOCS.

To obtain two independent developments, we decompose by refinement the
overall AOCS specification into the top-level component (a refinement of the
aocs machine) and the subsystem (module) Mode Manager that is in charge
of the preparation and recovery activities of the abstract AOCS model. Be-
fore presenting details of the decomposition refinement step, let us now briefly
explain how the model of Mode Manager is created.

5.2. Mode Manager

Mode Manager is a control system with its own set of modes and the
mode transition scenario. This scenario defines the steps needed to acquire
the optimal satellite attitude, i.e., to achieve the Science mode. The inter-
face of Mode Manager is a result of instantiating the generic module interface
MMC I (defined in Figures 6 and 7) with satellite-specific data. More specifi-
cally, the context of Mode Manager constrains the abstract data structures of
MMC Context with the values specific to the top-level of AOCS. This includes
concrete definitions of the set of modes MODE, the constant InitMode, and the
relation Next. The resulting interface ModeManager relying on the given context
component ModeManagerContext are presented below.

in ModeManagerContext, Scenario defines the sequence of modes required
to achieve the desired satellite attitude and bring the system into the Science
mode, i.e., the state where the scientific payload instrument can be activated.
This sequence consists of the following modes:

• OFF – the mode established right after system (re)booting;

• STANDBY – the mode is maintained until the separation from the launcher;

• SAFE – the mode designates that a stable attitude is acquired, which
allows the coarse pointing control;

• NOMINAL – the satellite is trying to reach the fine pointing control;

• PREPARATION – the payload instrument is getting ready;

• SCIENCE – the payload instrument is ready to perform its tasks.

Let us note that the role of Scenario is twofold. Firstly, here it is used as an
auxiliary construct to constrain the Next relation. Specifically, Next is defined as
reflexive transitive closure of Scenario (formally defined in the axioms iaxm3-6).

20

interface ModeManager extends MMC I
sees ModeManagerContext

context ModeManagerContext
. . .
axioms

iaxm1 : MODE = {OFF, STANDBY, SAFE,NOMINAL,PREPARATION, SCIENCE}
iaxm2 : Scenario = {OFF 7→ STANDBY,STANDBY 7→ SAFE,SAFE 7→ NOMINAL,

NOMINAL 7→ PREPARATION,PREPARATION 7→ SCIENCE}
iaxm3 : Scenario ⊆ Next
iaxm4 : id ⊆ Next
iaxm5 : Next; Scenario ⊆ Next
iaxm6 : ∀z · Scenario ⊆ z ∧ z; Scenario ⊆ z ⇒ Next ⊆ z
iaxm7 : OFF = InitMode
iaxm8 : partition(ERROR,RecovErrors,UnrecovErrors, {NoError}}
iaxm9 : RecovErrors 6= � ∧UnrecovErrors 6= �

Secondly, Scenario specifies the very next mode the system should transition
to, when it is in a stable state but the final mode (i.e., SCIENCE) is not yet
reached. In such a situation, the system should follow the predefined scenario
without skipping any required intermediate modes. On the other hand, if the
system tries to recover by rollbacking to one of the preceding modes, the next
system mode is chosen using the inverted Next relation, i.e., the mode belongs
to Next−1.

Finally, the abstract set ERROR is now partitioned into the disjoint sub-
sets RecovErrors and UnrecovErrors standing for the respective sets of recov-
erable and unrecoverable errors, as well as the predefined constant NoError.
The specific sets of errors can be defined (as additional axioms) during module
implementation.

5.3. AOCS Decomposition

For brevity, we omit the presentation of possible intermediate refinements
of the machine aocs and demonstrate the decomposition as if it would be the
first refinement of aocs. The REFINES and USES clauses show that aocs1 refines
aocs and imports the module ModeManager. The prefix mm is used to clearly
separate the module variables and the module operations from those of aocs1.

Since the machine aocs1 has the read access to the external (i.e., interface)
variables of the module instance ModeManager, we strengthen its invariant to
define the link between the variables of aocs1 and ModeManager. In the invariant
inv1, we expresses the connection between the system level errors and the errors
detected by Mode Manager. Essentially, inv1 postulates that all the recoverable
errors are handled locally by Mode Manager. In the invariant inv2, we require
that the preparation phase is completed only after Mode Manager stabilises in
the Science mode.

It is easy to observe that the link between the top-level component aocs1
and Mode Manager is quite strong – we replace the abstract variable prep by
the external variables of Mode Manager and link the errors detected by Mode
Manager with the system-level errors.

21

refinement aocs1
refines aocs
uses ModeManager with prefix mm
invariant

inv1 : mm error /∈ UnrecovErrors ⇒ aocs error = FALSE
inv2 : prep = TRUE ⇔ (mm next = mm last ∧mm last = SCIENCE)

. . .
end

To write-access the state of Mode Manager, we include calls of the Mode
Manager interface operations into the actions of the aocs1 events. In particular,
the abstract event preparation is refined into a pair of events mode advance and
intermediate (see below). When Mode Manager successfully completes the tran-
sition to a certain mode, it chooses the next target mode from the predefined
scenario. The guard of the event mode advance states that the event is enabled
only if the Science mode has not been reached, the system is stable, and no
errors have been detected. In the action of this event, the interface operation
Mode Advance is called. This results in initiating a new mode transition in
Mode Manager.

On the other hand, the event intermediate models the situation when Mode
Manager has not yet reached the target mode, yet still continues the transition
to it. In such a situation the module operation Continuation is called. In both
events we use the short hand notation Mode Advance and Continuation to denote
the operation calls that ignore the return values.

mode advance refines preparation = when
mm error = NoError ∧mm last 6= SCIENCE
mm last = mm prev

then
mm Mode Advance

end
intermediate refines preparation = when

mm error = NoError ∧mm last 6= SCIENCE
mm last 6= mm prev

then
mm Continuation

end

Now let us explain the role of Mode Manager in handling errors. As we men-
tioned before, AOCS integrates error recovery into its mode logic. This allows
the AOCS system to achieve error confinement. Indeed, each mode requires
active control over a certain subset of hardware units. When a unit fails, it is
deactivated. To achieve an error-free state, AOCS performs a rollback to a mode
in which the failed unit is inactive (i.e., not needed). Once the system stabilises
in such a mode, Mode Manager initiates the transition to a more advanced mode
and attempts to reactivate the failed unit (or, if possible, to activate its spare).

While refining the event recovery, we abstractly model this behaviour as
follows. If an error is recoverable, the top-component calls the ResetError and
ToMode operations. These operations correspondingly reset the error flag error

22

of Mode Manager and initiate the transition to the appropriate degraded mode.
Moreover, if an error occurs during the activation phase, the preparation phase
is resumed. If Mode Manager classifies the detected error as an unrecoverable
one then the system is deadlocked or shut down, as modelled in the refined event
error.

recovery = any m where
m 7→ mm next ∈ Next−1

mm error ∈ RecovErrors
then

mm ResetError
mm ToMode(m)
act := FALSE

end
error = when

mm error ∈ UnrecovErrors
then

aocs error, act := TRUE,FALSE
end

The model aocs1 can be further refined by integrating new concrete im-
plementation details of the modelled system. However, the interface of the
imported module remains fixed during this refinement process.

5.4. Implementation of Mode Manager

The achieved decomposition of the model aocs1 and, by transitivity, of the
abstract model aocs allows us to conduct further refinement of Mode Manager
independently from the overall system development. This development follows
the pattern for developing mode-rich systems described in Section 4. We start
by creating an Event-B machine MMBody that implements the ModeManager
interface. An excerpt from MMBody is shown below.

In MMBody, each interface operation is modelled by the corresponding group
of events. For the sake of brevity, we show here only the group of events im-
plementing the operation Continuation. Each group contains at least one event
denoted FINAL that returns the control to the calling component. Any non-final
event must pass control to another event in the same event group.

The interface operation Continuation operation is realised by a group con-
taining three events. Please recall that Continuation models the behaviour of a
MMC while it is trying to reach a certain target mode. The events adv skip,
adv partial and adv comp model correspondingly three possible outcomes of the
call of Continuation: (1) no new mode is reached, (2) an intermediate mode be-
tween the current and target modes is reached, and (3) Mode Manager stabilises
in the reached target mode. Within each event we also reserve the possibility
of error occurrence.

The next refinement steps further elaborate on the implementation of Mode
Manager. After several refinement steps we unfold the next architectural layer
of AOCS. Specifically, at the layer below Mode Manager, there resides a com-
ponent called Unit Manager. In the next section we are going to decompose the

23

machine MMBody
implements ModeManager
. . .
group Continuation begin

final adv skip = when next 6= prev then error :∈ ERROR end
final adv partial = any m where

next 6= prev
m ∈ MODE ∧m 6= next
m 7→ next ∈ Next ∪Next−1

then
last := m ‖ error :∈ ERROR

end
final adv comp = when

next 6= prev
then

error :∈ ERROR ‖ last := next ‖ prev := next
end

end
. . .

end

implementation of Mode Manager to separate Unit Manager according to the
same development pattern.

5.5. Unit Manager

Unit Manager is yet another example of a mode-managing component. The
purpose of Unit Manager is to abstract the specifics of a hardware configuration
and provide a simple common control interface to the hardware. The Unit Man-
ager interface is an instance of the generic MMC I interface shown in Figures
6 and 7. The interface specification of Unit Manager is obtained by constrain-
ing by concrete values the set of modes, the mode transition scenario, and the
initial mode of the generic interface MMC I. The resulting interface UnitMan-
ager relying on the given context component UnitManagerContext are presented
below.

interface UnitManager extends MMC I
sees UnitManagerContext

The Unit Manager modes define the positioning algorithms and are closely
related to the set of hardware units involved in computing the positioning com-
mands. The modes NAV EARTH and NAV SUN use crude algorithms based
on the input from the Earth and Sun sensors, while NAV ADV and NAV FINE
use the GPS unit to compute the satellite position with respect to the Earth
surface. The mode NAV INSTR is the final target mode of Unit Manager. It is
reached when the scientific instrument hardware becomes enabled.

5.6. Integration of Mode Manager and Unit Manager

We separate the development of Unit Manager from Mode Manager in a
similar way as we did separating the Mode Manager development from aocs.

24

context UnitManagerContext
. . .
axioms

uaxm1 : MODE = {OFF,NAV EARTH,NAV SUN,NAV ADV,
NAV FINE,NAV INSTR}

uaxm2 : Scenario = {OFF 7→ NAV EARTH,OFF 7→ NAV SUN,
NAV EARTH 7→ NAV ADV,NAV SUN 7→ NAV ADV,
NAV ADV 7→ NAV FINE,NAV FINE 7→ NAV INSTR},

uaxm3 : Next = closure(Scenario)
uaxm4 : OFF = InitMode
...

end

Namely, we decompose the refined model of Mode Manager (MMBody3) to
introduce the UnitManager module as shown in Figure 9.

machine MMBody3
. . .
uses UnitManager with prefix um

constants mode map, error map
axioms

axm 1u : mode map ∈ MODE ↔ um MODE
axm 2u : mode map = {OFF 7→ um InitMode,STANDBY 7→ um InitMode,

SAFE 7→ um NAV EARTH, SAFE 7→ um NAV SUN,
NOMINAL 7→ um NAV ADV,PREPARATION 7→ um NAV FINE,
SCIENCE 7→ um NAV INSTR}

axm 3u : error map ∈ um ERROR → ERROR
. . .

invariant
. . .
gi1 : next = prev ⇒ last 7→ um last ∈ mode map
gi2 : next = prev ⇒ next 7→ um next ∈ mode map
gi3 : next = prev ⇒ prev 7→ um prev ∈ mode map
gi4 : in sync = TRUE ∧ um error 6= um NoError ⇒

error 6= NoError ∧ error = error map(um error)

. . .
end

Figure 9: Unit manager integration

Mode Manager does not have a direct access to the controlled hardware units
and relies on the operations of Unit Manager to control hardware. The required
mode and error handling consistency properties between these components are
defined via the additional data structures mode map and error map, which are
concrete implementations of the respective abstract functions Mode ent cond
and Mode error handling introduced in Section 3.

Specifically, the relation mode map constrains the allowed mode combina-
tions of Mode Manager and Unit Manager, while the function error map trans-
lates the detected errors of Unit Manager into the corresponding errors of Mode
Manager. The definitions of mode map and error map are given in special fields

25

of the USES clause. Essentially, these definitions become a part of the Mode
Manager context. To avoid name clashes, the Unit Manager module is instanti-
ated with the prefix um. Consequently, all the names of external variables and
interface operations of the Unit Manager module appear with the prefix um.

The new invariants of Mode Manager, gi1, ..., g4, require that the given
mode and error mapping between Unit Manager and Mode Manager should
be preserved. This implies that, in particular, an update of the Unit Manager
mode often necessitates an update of the Mode Manager mode.

In particular, the invariants gi1, gi2 and gi3 express the mode consistency
properties between the current and the lower layer that are preserved by the
system. Likewise, the invariant gi4 states the expected relationship between the
detected errors on two adjacent layers. In gi1, gi2 and gi3, the given premise
next = prev stipulates that Mode Manager should be in a stable state to guar-
antee the required mode consistency. For the invariant gi4, the formulated
condition is that error consistency can be enforced only after Mode Manager
synchronises with Unit Manager. The latter stipulation is related to the fact
that in this paper we consider a sequential implementation of AOCS. During one
cycle the components get control in a specific fixed order. Since Mode Manager
gets control before Unit Manager, it cannot react on errors detected by Unit
Manager until the next cycle starts.

All the events of Mode Manager must maintain the correspondence between
the Mode Manager and Unit Manager modes and errors given in gi1, ..., gi4.
As a result, an update of the Unit Manager mode often necessitates an update
of the Mode Manager mode and vice versa. For example, the event set mode
presented below synchronously updates the Mode Manager and Unit Manager
modes. This event belongs to the event group implementing the operation
ToMode of Mode Manager.

set mode = any m, p where
m ∈ MODE ∧ error = NoError
m 6= next ∧m 7→ next ∈ Next ∪Next−1

p ∈ um MODE ∧m 7→ p ∈ mode map
um error = um NoError ∧ p 6= um next

then
prev := next ‖ next := m
um ToMode(p)

end

For the sake of brevity, we omit detailed presentation of the remaining de-
velopment. It follows the refinement strategy described above. After several
refinements of body of the Unit Manager, we split the development into the
main control part and a number of subsystems modelling individual hardware
units. Each such subsystem follows the same modelling pattern and starts with
instantiating the generic MMC I interface. Collectively, the units define the
environment of the system and thus are only characterised by their interfaces.

In the specific hardware configuration that we are modelling, there are six
hardware units. To construct a faithful model close to the executable program,

26

aocs

ModeManager
(interface)Uses

MMBody

Implements

Refines

MMBody3
(refinement)

Refines

UnitManager
(interface)

UMBody

Implements

Refines

aocs1
(refinement)

Monitors/Calls

UMBody2
(refinement)

Unit_1
(interface)

Unit_n
(interface)

Uses

MMC_I
(generic interface)

Extends

Extends

Implements Implements

Refines

...

Figure 10: AOCS development hierarchy

we explicitly introduce each unit subsystem by importing the (correspondingly
instantiated) generic module interface. The further development allows us to
arrive at a well structured specification of AOCS. The overall hierarchical struc-
ture of the presented development process is given in Figure 10.

5.7. Proof Obligations

As mentioned already, design correctness is ensured via a number of verifica-
tions conditions, called proof obligations, automatically derived from the given
machines and interfaces. There are three major kinds of verification conditions.
The first one shows that a model is defined consistently, that is, the behaviour
described in events is in agreement with the safety invariants. These conditions
address the verification of mode invariants and mode stability properties. The
second kind are the refinement obligations ensuring that a more concrete de-
sign is observably equivalent to the abstract design. In our approach, for the
Mode Manager and Unit Manager components, these verification conditions
also ensure that a refined machine meets all the obligations of an interface it is
implementing. The last kind of verification conditions is specific to the modu-
larisation extension of Event-B. Whenever a model is decomposed into a parent
machine and a subordinated module, one has to show that a combination of two
is observably equivalent to some abstract design. These define a special case of

27

refinement relation between models but the verification conditions are different.
As an example, let us consider the proof of correctness of the operation

ToMode of the generic Mode Manager interface. One interesting verification is
related to the invariant inv4. A verification condition due to the obligation of
inv4 satisfaction by the operation gives rise to the following theorem.

axioms Next ∩Next−1 ⊆ id ∧Next; Next ⊆ Next
invariant {last 7→ prev, last 7→ next} ⊆ Next ∪Next−1

operation guard m ∈ MODE ∧m 6= next ∧m 7→ next ∈ Next ∪Next−1

`
goal {last 7→ next, last 7→ m} ⊆ Next ∪Next−1

It trivially holds that last 7→ next ∈ Next ∪ Next−1 and hence the goal may be
simplified to last 7→ m ⊆ Next ∪ Next−1. The proof strategy is to show that
last 7→ m may be represented as a composition of two relations last 7→ next
and next 7→ m. From m 7→ next ∈ Next ∪ Next−1, we are able to prove that
next 7→ m ∈ Next∪Next−1 holds. The proof is done by considering two different
cases m 7→ next ∈ Next and m 7→ next ∈ Next−1. We now have to prove the
following theorem.

axioms Next ∩Next−1 ⊆ id ∧Next; Next ⊆ Next
hyp1 last 7→ next ∈ Next ∪Next−1

hyp2 next 7→ m ∈ Next ∪Next−1

`
goal last 7→ m ⊆ Next ∪Next−1

To satisfy the goal, we introduce a supporting lemma stating that Next∪Next−1

is closed under relational composition.

axioms Next ∩Next−1 ⊆ id ∧Next; Next ⊆ Next
`

goal (Next ∪Next−1); (Next ∪Next−1) ⊆ Next ∪Next−1

Distributing relational composition over set union we obtain the following,
equivalent goal.

(Next; (Next ∪Next−1)) ∪ (Next−1; Next) ∪ (Next−1; Next−1) ⊆ Next ∪Next−1

We proceed by considering independently three simpler sub-goals:

(Next; (Next ∪Next−1)) ⊆ Next ∪Next−1,

Next−1; Next ⊆ Next ∪Next−1,

and
Next−1; Next−1 ⊆ Next ∪Next−1.

The first two sub-goals are discharged by showing that Next; Next−1 ⊆ id and
Next−1; Next ⊆ id. With the proof of the supporting lemma complete, the
overall condition is now also proven.

28

The table illustrating the overall proof effort in terms of generated and au-
tomatically or manually proved proof obligations is given in the following table.

Step Total Auto Manual Manual %
aocs 11 11 0 0%

aocs1 39 27 12 31%
ModeManager 23 19 4 17%

MBody 9 8 1 11%
MBody3 37 34 3 8%

UnitManager 19 16 3 16%
UMBody 9 8 1 11%
UMBody2 25 19 6 24%

Unit I 19 16 3 16%
Overall 191 156 33 17%

5.8. AOCS Development Summary

AOCS is a complex industrial-scale system and hence it would be impos-
sible to describe its formal development in full detail. Nevertheless, in this
section we presented the most interesting points of the development. Firstly,
we have shown how different architectural layers can be unfolded by refinement.
Secondly, we have demonstrated the mechanism of instantiating the generic pat-
tern for specifying particular mode managing components (Mode Manager, Unit
Manager and individual units) at different architectural layers. Finally, we have
shown how to formally define the correspondence between modes at different
architectural layers by strengthening invariants and instantiating the context
parts of module components. As a result, we have verified the required mode
consistency as an intrinsic part of the refinement process.

6. Lessons Learnt

The AOCS system described here is a generalised version of one of the im-
plemented instances of AOCS. The real system was developed by Space Systems
Finland some time ago using traditional development approaches. The company
has observed that verification of the AOCS mode transitions via testing was
quite difficult and time consuming. This has prompted the idea of experiment-
ing whether a formal AOCS development would assist in ensuring correctness
of mode transitions.

The initial attempt [15] to formally develop the system was undertaken by
a verification engineer with a significant background in formal verification. The
development was preceded by discussions with domain experts. However, the
initial modelling was rather unsuccessful due to two major reasons. Firstly,
modelling was significantly influenced by the code created for the real AOCS.
As a result, to mimic the program counter, the major modelling efforts had to
be spent on maintaining the heavy infrastructure enforcing the execution order
of events. Secondly, at the time of this development, Event-B was still lacking

29

the modularisation support. As a result, fairly soon the developed monolithic
model became unreadable for the developers and unmanageable for the Rodin
platform. Hence it was concluded that further development would be quite
problematic.

Apart from some technical issues that had to be resolved in the Rodin plat-
form, we have learnt the following main lessons:

• Extensive support for modularisation is absolutely necessary to enable
scalable formal development of complex industrial systems in Event-B;

• The development should support architectural-level modelling and allow
us to express logical interdependencies between components at different
levels;

• It is important to maintain readability of models.

The second development attempt [16] was preceded by a preparatory work that
aimed at alleviating discovered problems. We have developed a modularisation
plug-in [6] implementing the modularisation extension for Event-B that we have
proposed previously [4]. Moreover, while formalising reasoning about mode-rich
systems [17], we developed a pattern for specifying mode-managing components.
However, probably most importantly, before starting the development as such,
we drafted a refinement strategy. Our strategy was to build the system model
in a hierarchical layered fashion via instantiation of generic modules. This
approach has indeed demonstrated its viability.

The second development attempt – the one which is described in this paper –
has achieved the desired goal. It was performed in a tight collaboration between
the company and academia. We succeeded in building a detailed AOCS model
and verified (by proofs) that it correctly implements the desired mode transition
scheme. Experiments with generating code will be conducted after code genera-
tion capabilities of Rodin platform will be implemented. The development was
performed in a structured way, where the levels of abstraction corresponded
to the architectural layers. While performing a refinement step, we unfolded
the architectural layers and ensured the consistency of mode transitions be-
tween adjacent layers as a part of refinement verification. The specifications of
components were obtained by instantiating the generic module interface that is
common for mode managing components on different layers of abstraction.

Refinement by instantiating the generic components has significantly sim-
plified the development and proof activity. The overall system model is rather
compact and can be easily maintained because it includes only references to
the components visible state and interface. By developing each component as
a separate module we obtained compact and easy to comprehend models. As a
result, we have alleviated the problem of manipulating large monolithic models.

In our development we have made a smooth transition from the architec-
tural modelling to modelling of the detailed behaviour of each particular com-
ponent. The properties of generic module parameters determine the constraints
on concrete data structures that should be proved during module instantiation.

30

Our mechanism of module instantiation and then subsequent development (re-
finement) of a module ensures that these constraints are satisfied by module
implementation.

The layered development has also facilitated modelling and verification of
the system fault tolerance mechanisms. The hierarchical architecture allowed us
to distribute the responsibilities of error handling across different layers, which
resulted in a well-structured implementation of the fault tolerance mechanisms.

The main lessons that we have learnt from this development are the following

• It is important to have a strategy of the development - a certain refinement
plan that is drafted before the real development commences;

• It is beneficial to refrain from modelling major design decisions in the
initial specification since it can significantly complicate the later develop-
ment;

• Modularisation support is paramount in modelling large scale systems;

• Without a mature tool support a formal development of industrial systems
is infeasible.

At various stages of the project, engineers with different background in for-
mal methods have experimented with modelling in Event-B. In general, they
liked the idea of top-down formal development and found the modularisation
extension useful and intuitive to use. The detailed report on the use of Event-B
in industrial practice can be found elsewhere [18].

7. Related Work

This paper builds on our previous research [17, 19] on modelling mode-rich
systems. In this paper we have presented a solid theoretical justification of
the modularisation extension of Event-B together with the accompanying proof
obligations and defined the notion of a generic parameterised component. Such
an extension greatly facilitates reuse, since it allows the designers to quickly cre-
ate formally verified components by instantiation. In particular, it has allowed
us to represent the formal development of a layered mode-rich system as a iter-
ative process of instantiation of a generic mode-managing component. Another
important theoretical contribution of this paper is a formalisation of the mode
stability property. This property is especially important for systems with non-
instantaneous mode transitions. Essentially, it allows the designers to unam-
biguously describe the status of components while modelling mode-consistency
conditions. As such, it circumvents the problem of defining numerous auxiliary
modes even while describing fine-grained mode consistency conditions.

Besides enriching the theoretical basis, in this paper we also have given a
deep insight on practical aspects of engineering of mode-rich systems. We have
presented a detailed description of a realistic development, discussed pitfalls and
achievements as well as given an estimate of the verification efforts required to
formally develop an industrial-scale mode-rich system.

31

The research on various aspects of mode-rich systems lasts over several
decades. Among the most prominent works on modelling mode-rich systems
is the modechart framework [20]. It uses the concept of modes from the pio-
neering works of Parnas, who proposed to consider modes as partitions of the
system state space and facilitators of system modularisation. The goal of the
modechart approach is similar to ours – to formally verify safety properties
of complex mode-rich systems. Modecharts assign real-time logic formulae to
various types of mode transitions and facilitate building a hierarchy of real-
time logic assertions. The main difference between the modecharts approach
and the approach presented in this paper is in treating mode transitions. In
modecharts, transitions between modes are instantaneous. Such a treatment
of mode transitions has allowed several researchers to build various automata-
based formalisations of mode logic, e.g., [21]. In our work, mode transitions are
non-instantaneous. They might be also interrupted, e.g., to perform error re-
covery. Since we precisely define which properties can be guaranteed depending
on whether the system is stable or in transition, we avoid introducing a fine slic-
ing of the mode logic to reflect each possible combination of the mode-submode
relation. We believe that our approach better caters to abstract modelling and
improves readability of formal models. Moreover, our approach offers not only
a verification support but also a development method.

Modelling modes has been extensively studied within the software architec-
tures field (e.g., [22, 23]). This research strand is mainly focuses on studying
architectural language constructs to represent modes. In contrast, our approach
puts strong emphasis on the development and verification methodology. How-
ever, as a future research direction it would be interesting to express the pro-
posed method in an architecture description language, e.g., such as AADL.

Formal validation of the mode logic and, in particular, the fault tolerance
mechanisms of satellite software has been undertaken by Rugina et al [10]. They
have investigated different combinations of simulation and model checking. In
general, simulation does not allow the designers to check all execution paths,
while model checking often runs into the state explosion problem. To cope with
these problems, the authors had to experiment with combination of these tech-
niques as well as heavily rely on abstractions. Our approach is free from these
problems. First, it allows the developers to systematically design the system
and formally check mode consistency within the same framework. Second, it
enables exhaustive check of the system behaviour, yet avoiding the state explo-
sion problem. Hence our approach can potentially give the developers better
confidence in the correctness of the obtained design.

The mode-rich systems have been studied to investigate the problem of
mode confusion and automation surprises. These studies conducted retrospec-
tive analysis of mode-rich systems to spot the discrepancies between the actual
system mode logic and the user mental picture of the mode logic. Most of the
approaches relied on model-checking [24, 25, 26], while [27] relied on theorem
proving in PVS. Our approach focuses on designing fully automatic systems and
ensuring their mode consistency. Unlike [25], in our approach we also emphasize
the complex relationships between system fault tolerance and the mode logic.

32

In our previous work [28], we have studied a problem of specifying mode-
rich systems from the contract-based rely-guarantee perspective. These ideas
have been further applied for fault tolerance modes [29]. The resulting approach
provides fault tolerance modelling facilities explicitly supporting the traceability
of the fault tolerance and dependability requirements. Moreover, it extends
[28] with additional fault tolerance semantics, structural checks, and helps the
modeller by offering reusable refinement templates.

However, a mode-centric specification of the system, proposed in [28, 29],
neither defines how the system operates in some specific mode nor how mode
transitions occur. It rather imposes restrictions on concrete implementations.
Such an approach complements traditional modelling but does not replace it.
In this paper we have demonstrated how to combine the reasoning about the
system mode logic and its functioning.

The AOCS framework has been developed by European Space Agency to
facilitate reuse in the space domain. The Giotto framework [30] has aimed at
providing a methodology for implementing embedded control with predictable
timing properties. Among others, the framework addresses the issue of mode
switching. However, in Giotto, the mode concept is centered around time as-
pect, while mode switching corresponds to changing the task schedule. In our
approach we take a more state-centric approach and analyse mode consistency
as a relation over component states.

8. Conclusions

In this paper we have proposed a formal approach to development of mode-
rich layered systems. The paper extends our previous work presented in [17, 19].
The proposed approach is based on instantiation and refinement of a generic
specification pattern for a mode manager. The pattern defined as a generic
module interface captures the essential structure and behaviour of a component
and can be instantiated by component specific data to model a mode manager at
any layer of the system hierarchy. The overall process can be seen as a stepwise
unfolding of architectural layers. Each such unfolding is accompanied by prov-
ing its correctness, while also verifying mode consistency between two adjacent
layers. Such an incremental verification allows us to guarantee the global mode
consistency, yet avoid checking the property for the whole architecture at once.

The generic specification pattern relies on our formalisation of reasoning
about systems with non-instantaneous mode transitions, the mode logic of which
is also integrated with error recovery. The formalisation of what constitutes
mode consistency and mode invariance properties together with establishing
precise relationships between error recovery and the mode logic allowed us to
derive design guidelines and logical constraints for components of mode-rich
systems.

In this paper we described formal development of the AOCS system by
refinement in Event-B. The attempted case study has shown that the Event-B
framework and the supporting RODIN platform have promising scalability. Our
approach facilitated creating a clean system architecture and also allowed us to

33

make a smooth transition from the architectural-level system modelling to spec-
ification and refinement of each particular component. Moreover, the proposed
refinement-based development techniques have coped well with modelling the
complex mode transition scheme and verification of its correctness.

Verification of all possible mode transitions (including complex cascading
effects) is done by proofs and does not require any simplifications. Currently
that level of assurance cannot be delivered either by model-checking, simulation
or testing alone, or by combination of these techniques. The proposed modu-
larisation and stepwise development style allow us to keep manual proof efforts
at a reasonable level (about 17

The aim of this research is not merely experimenting with modelling a par-
ticular industrial-size system in Event-B, but rather creating a generic solution
that would help develop AOCS-like systems. It is important that our approach
to modelling mode-rich components using generic instantiation supports both
reuse and composition. Such reuse is safe, since in the course of developing a
component by refinement it is formally ensured that it conforms to the instan-
tiated specification of its interface. Moreover, it becomes manageable to verify
the composition of components whose state and behaviour are succinctly and
formally modelled.

Our work can be seen as a step towards creating a formal approach to model-
driven development and a detailed definition of the reference architecture for the
space sector – the two recent initiatives of European Space Agency [31]. In the
future it would be interesting to link our approach to languages specifically
dedicated to architectural modelling. Moreover, it would be useful to continue
experimenting with formal modelling of various types of mode-rich systems ar-
chitectures as well as addressing the problem of ensuring mode consistency in
the presence of dynamic reconfiguration.

Acknowledgments

This work is supported by the FP7 ICT DEPLOY Project and the EP-
SRC/UK TrAmS-2 platform grant.

References

[1] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, J. D. Reese, Analyz-
ing Software Specifications for Mode Confusion Potential, In Proceedings
of Workshop on Human Error and System Development, C.W. Johnson,
Editor, pg. 132-146, Glasgow, Scotland, March 1997.

[2] J.-R. Abrial, Modelling in Event-B, Cambridge University Press, 2010.

[3] Rigorous Open Development Environment for Complex Systems (RODIN),
deliverable D7, Event B Language, online at http://rodin.cs.ncl.ac.uk/.

34

[4] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
D. Ilic, T. Latvala, Supporting Reuse in Event B Development: Modulari-
sation Approach, In Proceedings of Abstract State Machines, Alloy, B, and
Z (ABZ 2010), Lecture Notes in Computer Science, Vol.5977, pp. 174-188,
Springer, 2010.

[5] The RODIN platform, online at http://rodin-b-sharp.sourceforge.net/.

[6] RODIN modularisation plug-in, documentation at http://wiki.event-
b.org/index.php/Modularisation Plug-in.

[7] OBSW formal development in Event B, online at http://deploy-
eprints.ecs.soton.ac.uk/view/type/rodin=5Farchive.html.

[8] Industrial deployment of system engineering methods providing high de-
pendability and productivity (DEPLOY), iST FP7 project, online at
http://www.deploy-project.eu/.

[9] DEPLOY Deliverable D20 – Report on Pilot Deployment in the
Space Sector. FP7 ICT DEPLOY Project. January 2010, online at
http://www.deploy-project.eu/.

[10] A. E. Rugina, J. P. Blanquart, R. Soumagne, Validating failure detection
isolation and recovery strategies using timed automata, in: Proc. of 12th
European Workshop on Dependable Computing, EWDC 2009, Toulouse,
2009.

[11] J.-R. Abrial, The B-Book, Cambridge University Press, 1996.

[12] R. Back, K. Sere, Superposition refinement of reactive systems, Formal
Aspects of Computing, 8(3), pp.1-23, 1996.

[13] B. Rubel, Patterns for Generating a Layered Architecture, In J.O. Coplien,
D.C. Schmidt (Eds.), Pattern Languages of Program Design, Addison-
Wesley, 1995.

[14] L. Laibinis, E. Troubitsyna, Fault tolerance in a layered architecture: a
general specification pattern in B, In Proceedings of the Second Interna-
tional Conference on Software Engineering and Formal Methods (SEFM
2004), Beijing, China, pp. 346-355, IEEE Press, 2004.

[15] K. Varpaaniemi, Event-B Project DepSatSpec015Model000, Jan-
uary 2010, DEPLOY publication repository: http://deploy-
eprints.ecs.soton.ac.uk/168.

[16] A. Iliasov, L. Laibinis, E. Troubitsyna, An Event-B model of the Atti-
tude and Orbit Control System, 2010, dEPLOY publication repository:
http://deploy-eprints.ecs.soton.ac.uk/.

35

[17] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
P. Väisänen, D. Ilic, T. Latvala, Verifying Mode Consistency for On-Board
Satellite Software, In SAFECOMP 2010, The 29th International Confer-
ence on Computer Safety, Reliability and Security, September 2010, Vi-
enna, Austria, Lecture Notes for Computer Science, Springer, 2010.

[18] DEPLOY Deliverable D29 – Initial Assessment Results. FP7 ICT DEPLOY
Project. September 2010, online at http://www.deploy-project.eu/.

[19] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi,
P. Väisänen, D. Ilic, T. Latvala, Developing Mode-Rich Satellite Software
by Refinement in Event B, In FMICS 2010, The 15th International Work-
shop on Formal Methods for Industrial Critical Systems, Lecture Notes for
Computer Science, Springer, 2010.

[20] F.Jahanian, A.Mok, Modechart: A Specification Language for Real-Time
Systems, IEEE Transactions on Sofware Engineering, 20, pp. 933-947,
1994.

[21] F. Maraninchi, Y. Rémond, Mode-automata: About modes and states for
reactive systems, in: European Symposium On Programming, Springer
verlag, 1998.

[22] J. M. D. Hirsch, J. Kramer, S. Uchitel, Modes for software architectures,
in: LNCS 4344, Springer, 2006, pp. 113–126.

[23] F. P. J.Kofron, O. Sery, Modes in component behavior specification via
ebp and their application in product lines, in: Information and Software
Technology 51/1, Elsevier, 2009, pp. 31–41.

[24] B. Buth, Analysing mode confusion: An approach using fdr2, in: Proceed-
ings of SAFECOMP, Springer, Lecture Notes in Computer Science, Vol.
3219, 2004, pp. 101–114.

[25] M. Heimdahl, N. Leveson, Completeness and Consistency in Hierarchical
State-Based Requirements, IEEE Transactions on Software Engineering,
Vol.22, No.6, pp. 363-377, June 1996.

[26] J. Rushby, Using model checking to help discover mode confusion and other
automation suprises, in: Reliability Engineering and System Safety, Vol.75,
2002, pp. 167–177.

[27] R. W. Butler, An introduction to requirements capture using PVS: Spec-
ification of a simple autopilot, Technical report, NASA TM-110255, May
1996.

[28] F. Dotti, A. Iliasov, L. Ribeiro, A. Romanovsky, Modal Systems: Spec-
ification, Refinement and Realisation, Conference on Formal Engineering
Methods - ICFEM 09, Rio de Janeiro, Brazil, Lecture Notes in Computer
Science, Vol. 5885, Springer, December 2009.

36

[29] I. Lopatkin, A. Iliasov, A. Romanovsky, On fault tolerance reuse during re-
finement, in: Proc. of 2nd International Workshop on Software Engineering
for Resilient Systems, 2010.

[30] T. Brown, A. Pasetti, W. Pree, T. Henzinger, C. Kirsch, A Reusable
and Platform-Independent Framework for Distributed Control Systems,
in: Proceedings of the 20th Digital Avionics Systems Conference, Vol.2,
pp. 6A1/1 - 6A1/11, IEEE, 2001.

[31] European Cooperation for Space Standardization, Software general require-
ments ECSS-E-ST-40C, 2009.

37

