
Learn and Test for Event-B – a Rodin Plugin

Ionut Dinca, Florentin Ipate, Laurentiu Mierla, and Alin Stefanescu

University of Pitesti, Department of Computer Science
Str. Targu din Vale 1, 110040 Pitesti, Romania

name.surname@upit.ro

Abstract. The Event-B method is a formal approach for reliable sys-
tems specification and verification, being supported by the Rodin plat-
form, which includes mature plugins for theorem-proving, model-checking,
or model (de)composition features. In order to complement these tech-
niques with test generation and state model inference from Event-B mod-
els, we developed a new feature as a Rodin plugin. Our plugin implements
a model-learning approach to iteratively construct an approximate au-
tomaton model together with an associated test suite. Test suite opti-
mization is further applied according to different optimization criteria.

1 Introduction

This short tool paper presents the implementation in the Rodin platform of the
general method ”learn-and-test” described in our previous paper [2]. For a given
Event-B model [1], the method constructs, in parallel, an approximate automa-
ton model and a test suite for the system. The approximate model construction
relies on a variant of Angluin’s automata learning algorithm [3, 4], adapted to fi-
nite cover automata [5]. A finite cover automaton represents an approximation of
the system which only considers sequences of length up to an established upper
bound `. Crucially, the size of the cover automaton, which normally depends on
`, can be significantly lower than the size of the exact automaton model. In this
way, by appropriately setting the value of the upper bound `, the state explosion
problem normally associated with constructing and checking state based models
can be addressed. The proposed approach also allows for a gradual construc-
tion of the model and of the associated test suite (reusing information between
iterations), which fits well with the central notion of refinement in Event-B [1].

2 Tool Overview

A bird’s eye view of the tool is depicted in Fig. 1. The tool takes as input an
Event-B model M and a finite bound ` and outputs a finite cover automaton
approximating the set of feasible sequences of events of M of length up to ` and
a test suite, i.e. a set of sequences including test data that make the sequences
executable. The core procedure of ”Model Learning” generates a cover automa-
ton using a variant of automata learning from queries [3]. Simply put, a cover



2 I. Dinca, F. Ipate, L. Mierla, A. Stefanescu

Fig. 1. Overview of the tool features.

automaton for a finite set of words of length up to `, is an automaton accepting
all these words but also sequences that may be longer than `. The cover automa-
ton can be incrementally improved by providing more information according to
the three loops in the figure. Thus, one can: (a) use the ”next refinement” of
the Event-B model that contains more information; or (b) ”provide a counterex-
ample” by manually or automatically providing sequences that are feasible in
the Event-B model, but are not in the cover automaton or vice-versa (the coun-
terexamples are used in the learning procedure); or (c) increase the bound `
and implicitly feed the learning engine with longer sequences which again will
increase the precision of the finite state approximation. At any point in time, one
can use the constructed cover automaton to generate tests that exercise differ-
ent sequences through the Event-B model. There are many existing methods for
test generation from finite state models. In our case, we use internal information
from the learning procedure, which maintains a so-called ”observation table”
that keeps track of the learned feasible sequences. Sets of feasible sequences in
this table will provide the desired test suite. Note that during the feasibility
check of the sequences in Event-B, test data are also generated. The implemen-
tation of feasibility check uses a constraint-solver for Event-B available in ProB
[6]. The obtained test suite satisfies strong criteria for conformance testing (usu-
ally required in the embedded system domain) and may be large. If weaker test
coverage like state-, transition- or event-coverage are desired, optimization algo-
rithms can be applied on the test suite according to the rightmost loop in Fig.
1. We implemented different optimizations as proposed by one of the co-authors
in [7] using the jMetal framework which is based on genetic algorithms.

Our tool is a Rodin plugin implemented in Java (with 5,500 LOC) and
can be called on any Event-B model with several levels of refinements. Instal-
lation instructions and screenshots can be found at: http://wiki.event-b.

org/index.php/MBT_plugin. Ongoing extensions of the tool tackle not only
refinement, but also different types of Event-B decompositions. Experiments
with different Event-B models (publicly available on the DEPLOY repository
- http://deploy-eprints.ecs.soton.ac.uk) produced good results even for
large models like BepiColombo [8] (whose third refinement exhibits 17 events



Learn and Test for Event-B 3

event ReceiveTC

any tc

where 

grd1: tc ϵ TC \ RecTC

then 

act1: RecTC := RecTC ᴜ {tc}

end

event TC_Valida#on_Ok

any tc

where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)

then 

act1: TC_Val_Ok := TC_Val_Ok ᴜ {tc}

end

event TCValid_GenerateData

any tc

where 

grd1: tc ϵ TC_Val_Ok \ TCVal_GenData

grd2: TC_Type(tc) ϵ {HK_on_TC, SCI_on_TC}

then 

act1: TCVal_GenData := TCVal_GenData ᴜ {tc}

end

event TCValid_ReplyDataTM

any tc

where 

grd1: tc ϵ TCVal_GenData \ TCVal_ReplyDataTM

then 

act1: TCVal_ReplyDataTM := TCVal_ReplyDataTM ᴜ {tc}

end

event TC_Valida#on_Fail

any tc

where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)

then 

act1: TC_Val_Fail := TC_Val_Fail ᴜ {tc}

end

event INITIALISATION

act1: RecTC := Ø

act2: TC_Val_Ok := Ø

act3: TCVal_GenData := Ø

act4: TCVal_ReplyDataTM := Ø

act5: TC_Val_Fail := Ø

end

Fig. 2. The events of the abstract machine M0 in BepiColombo Event-B model [8]

Fig. 3. The generated cover automaton for M0 and ` = 4

and 18 variables that could induce a large explicit state space for the model).
This example is discussed below.

3 The Tool Applied to an Example

An Event-B model has a context providing the data types and an abstract state
machine providing the dynamic behavior. The machine has a set of events, which
are the first class citizens of Event-B, that operate on a set of global variables.
The modeling complexity is addressed using refinement as a mechanism to con-
struct a series of more abstract models before reaching a very specific one. For
instance, in a refinement step, new variables and new events can be introduced
and the existing events can be made more specific.

The BepiColombo aerospace mission is one of the case study used in the
DEPLOY project (http://deploy-project.eu). In [8], a part of BepiColombo
is modeled in Event-B using several levels of refinements (combined with atomic
and model decompositions which we do not address here). The main goal of
the system is specified at a very abstract level, with a machine M0. The system
specification is concretized through three further refinement levels, M1, M2 and
M3. Fig. 2 presents the five events of M0, plus a special event called ’Initiali-
sation’. Each event has local parameters preceded by the keyword any, a guard
preceded by the keyword where, and an action code preceded by the keyword



4 I. Dinca, F. Ipate, L. Mierla, A. Stefanescu

then. There exist also global variables (like RecTC of type Set), that are initial-
ized in the event ’Initialisation’. Once the ’Initialisation’ event is executed, the
modeled system moves from one state to another by choosing one event with its
guard true and executing its action code.

Given the BepiColombo Event-B model and an upper bound `, we incremen-
tally construct finite cover automata that will eventually cover all executable
event sequences of length less than or equal to `. Fig. 3 (plotted by our tool)
illustrates the cover automaton for the first machine M0 and ` = 4, minimal by
construction, having the initial state marked with q0, transitions labeled with
event names and final states marked with a double circle. Starting from the
state q0, the event sequences can be identified by following the transitions with
the purpose of reaching the automaton final states, representing a subset of the
communication scenarios the spacecraft system may encounter.

A conformance test suite heavily exercising the system would consist of 17
test cases. Conformance testing is a very powerful test type since it covers all
states and all transitions of the automaton and also checks each state and the
initial and destination states of each transition. However, for a lighter test cov-
erage like event coverage, a test suite consists of only 2 test cases (of length up
to 4): (a) ReceiveTC(tc1), TC Validation Ok(tc1), TCValid GenerateData(tc1),

TCValid ReplyDataTM(tc1) and (b) ReceiveTC(tc2), TC Validation Fail(tc2).

Acknowledgments. This work was supported by project DEPLOY, FP7 EC
grant no. 214158, and Romanian National Authority for Scientific Research
(CNCS-UEFISCDI) grant no. PN-II-ID-PCE-2011-3-0688 (project MuVet) and
grant no. 7/05.08.2010.

References

1. Jean-Raymond Abrial. Modeling in Event-B – System and Software Engineering.
Cambridge University Press, 2010.

2. Florentin Ipate, Ionut Dinca, and Alin Stefanescu. Model learning and test gener-
ation using cover automata. Submitted to IEEE Trans. on Software Engineering.,
2012.

3. Florentin Ipate. Learning finite cover automata from queries. Journal of Computer
and System Sciences, 78:221–244, 2012. In press.

4. Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Com-
put., 75(2):87–106, 1987.

5. Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Minimal cover-automata for
finite languages. Theoret. Comput. Sci., 267(1–2):3–16, 2001.

6. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for
the B method. Int. J. Softw. Tools Technol. Transf., 10(2):185–203, 2008. Tool
webpage: http://www.stups.uni-duesseldorf.de/ProB.

7. Ionut Dinca. Multi-objective test suite optimization for Event-B models. In Proc.
of ICIEIS’11, volume 251 of CCIS, pages 551–565. Springer, 2011.

8. Asieh Salehi Fathabadi, Abdolbaghi Rezazadeh, and Michael Butler. Applying
atomicity and model decomposition to a space craft system in Event-B. In Proc. of
NFM’11, volume 6617 of LNCS, pages 328–342. Springer, 2011.


