
Formal development of cooperative exception handling
for mobile agent systems

Linas Laibinis
Åbo Akademi University

Finland
llaibini@abo.fi

Elena Troubitsyna
Åbo Akademi University

Finland
etroubit@abo.fi

Alexei Iliasov
Newcastle University

England
alexei.iliasov@ncl.ac.uk

Alexander Romanovsky
Newcastle University

England
alexander.romanovsky@ncl.ac.uk

ABSTRACT
Mobile agent systems often require sophisticated coopera-
tion and coordination during error detection and recovery.
In this paper we propose novel fault tolerance mechanisms
that support co-operative exception handling in such sys-
tems. The paper demonstrates how mechanisms like these
can be formally developed and analysed. We start with iden-
tifying the typical modes of failures in agents and analysing
possible failure and recovery scenarios in mobile systems.
Stepwise refinement is used as our formal framework for
top-down development and verification. Using the frame-
work we formally verify the essential model properties, such
as interoperability, local and global state consistency and
termination of error recovery. Our approach provides devel-
opers with formal generic patterns for incorporating fault-
tolerance mechanisms into mobile agent systems. We also
demonstrate how the results of our formal development can
be instantiated and reused in developing real-world agent
software.

1. INTRODUCTION
High complexity of software is one of the major obsta-

cles to developing dependable systems. The agent paradigm
aims to address complexity by explicitly separating inter-
agent communication from internal computations conducted
by agents. It has also been very successfully applied in the
area of mobile computing. The concept of an autonomous,
self-contained software unit, which can dynamically estab-
lish collaboration with other similar units, fits the idea of
mobile computing perfectly. The agent paradigm has evolved
further to address the issues specific to mobile computing,
such as mobility, openness and anonymity [22]. Support-
ing these three characteristics is the key to building large
multi-agent applications. A mobile agent is a software com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SERENE 2008, November 17-19, 2008, Newcastle, UK.
Copyright 2008 ACM 978-1-60558-275-7/08/11...$5.00

ponents that is able to change its physical or logical location
in a search for resources or other agents. Openness allows
a number of agents from different administration domains
to form multi-agent applications. Anonymity is collateral to
openness and equally essential for decoupling, security and
scalability. Agents are autonomous because they participate
in a multi-agent application to achieve their own goals, so
they do not have to follow protocols enforced by the third
parties.

Exception handling has proven to be the most effective
and general mechanism for system recovery as it supports
application-specific recovery ensuring that the system is moved
to a correct state (as opposed to backward error recovery
moving the system state back or masking recovery requiring
substantial redundancy and diversity) [6, 3]. Agent com-
munication and collaboration forms the core functionality
of any agent system. Dealing with complex erroneous con-
ditions in such systems typically requires recovery involv-
ing several agents to ensure both system and agent con-
sistency, and efficient recovery healing the whole erroneous
state, usually spreading over several interacting agents. Un-
fortunately, only few multi-agent systems provides general
support for cooperative recovery based on exception han-
dling. Typically in case of an error, an agent is left to
conduct its local recovery using its own resources. Thus
any error from which an agent is unable to recover leads to
agent termination. There have been several solutions for in-
troducing recovery based on exception handlers attached to
applications, agents or services [21, 17, 15]. Such handlers
monitor system states and, in case of an error, execute some
recovery actions. It is hard to implement really complex re-
covery actions with such an approach, since the handlers,
being external entities, cannot manipulate the agent state
or behaviour, and since agents themselves are not designed
for (cooperative) recovery.

Moreover, there have been few general mechanisms for ex-
ception propagation in multi-agent systems. Paper [20] has
an excellent discussion of the motivations and the design of
a mechanism for inter-agent exception propagation. Paper
[10] discusses an exception propagation mechanism designed
specifically for mobile, asynchronous and anonymous agents.
However this approach does not address many problems of
cooperative recovery.

The common problem of the existing exception handling

mechanisms for agents is that they do not exhibit all impor-
tant characteristics of mobile agent systems. Only some of
the presented mechanisms successfully address the issues of
agent asynchrony, anonymity and mobility. However none
of them preserve agent autonomy.

In this paper we try to go beyond the conventional ap-
proach to cooperative recovery and introduce a mechanism
that addresses the needs of agents and, at the same time,
we attempt to preserve all the mentioned features of multi-
agent systems. We start by analysing the needs of individual
agents and proceed with deriving a mechanism for coopera-
tive recovery.

The rest of the paper is organised as follows. Section 2 in-
troduces the agent-centric approach to cooperative recovery.
Section 3 presents the middleware and the architecture on
top of which the discussed mechanism is developed. Section
4 demonstrates the difference between the requirements to
cooperative recovery in multi-agent and distributed systems.
Section 5 presents our proposition: the cooperative recovery
mechanism for multi-agent systems. Finally, Section 6 dis-
cusses our experience of formal modelling and verification of
the proposed mechanism. The results of formal modelling
in the form of the developed B specifications are available
from [13].

2. AGENT-CENTRIC RECOVERY
Our approach is based on agent-centric recovery. Instead

of reasoning about a global system recovery we focus on
recovery of an individual agent participating in a multi-agent
application. We assume that

• agents act egoistically and participate in recovery only
for their own benefits;

• time is one of the most valuable resources and an agent
should be unwilling to spare it without a good reason.

We believe that these properties form an important part of
agent autonomy. A truly autonomous agent cannot be forced
to do anything, for example, take part in a cooperative re-
covery. When an agent does participate in recovery its first
priority is to recover itself, the secondary priority is to re-
cover the environment, and the least priority is recovery of
other agents. These principles are the basis of our mecha-
nism.

To provide a rationale for our approach, next we discuss
a number of typical situations.

Sometimes an agent might be willing to avoid any recovery
if participation in the recovery is against its needs. Just to
give a simple example, let us consider a buyer agent that
comes to a shop scope/location and sees another buyer agent
and a seller agent recovering from an error. It might be more
efficient for it to look for another shop than spend time in
the recovery process.

Another example is a malicious or malfunctioning buyer
agent. It is in the interest of a seller agent to ignore or block
out the annoying buyer rather than trying to investigate
problems of the broken agent, thus suspending the normal
shop activity.

When an agent detects an error, it should be aware that
some of its peers might want to avoid cooperative recovery.
Thus an agent must be conservative about initiating coop-
erative recovery, although in many situations cooperative
recovery is beneficial for all involved agents. Going back to

the shop example, a seller might be interested in helping a
buyer to recover if they are already in the middle of a deal.

The conventional way of doing coordinated recovery is not
only inefficient but can be also counterproductive. Forcing
agents to always participate in coordinated recovery may
distract them from their primary activity and reduce free-
dom of action. Sometimes the best recovery is not to do any
recovery and retry elsewhere with other agents. In the agent
systems, unlike parallel and distributed systems, there is no
notion of the global system state, and no single agent should
be critical to the survival of the whole agent infrastructure.
If an agent fails, it can be a problem for its immediate peers
and a concern for its owner. But for all other agents the fail-
ure might (and often should) go unnoticed. Needless to say,
the size and complexity of agent systems make it impossible
to involve all agents in recovery.

3. CAMA
The Cama (Context-Aware Mobile Agents) system ([11,

9]) provides the middleware to support mobile agent inter-
actions. Any Cama application consists of a set of locations.
A location is a container for scopes. A scope provides a co-
ordination space for interaction of compatible agents. An
agent is a piece of software that conforms to some formal
specification.

To deal with various functionalities provided by an in-
dividual agent, Cama introduces the concept of agent role
as a finer unit of code structuring. A role is an important
part of the scoping mechanism because it supports dynamic
composition of multi-agent applications by allowing agents
playing several scope roles to come together to cooperate.
Moreover, the roles and the scopes are used to ensure agent
interoperability and isolation. More details on Cama can be
found in [14].

Agent communication in Cama is based on the Linda [7]
paradigm. Linda coordination primitives allow processes to
put tuples in and get them out of a tuple space shared by
these processes. A tuple is a vector of typed data values.
Linda is sufficiently expressive, e.g., simulation of semaphores
or mutexes is straightforward using the Linda primitives.

Context-awareness is one of the key features of mobile
systems. Agent context represents all information from an
agent environment which is relevant to its activity [19]. The
context of an agent in Cama includes:

• locations in which an agent is engaged,

• the names, types and states of all the visible scopes in
all the engaged locations,

• the state of scopes in which the agent is currently par-
ticipating.

Typically an agent plays different roles in different scopes.
A set of agents with different roles constitutes a multi-agent
application. A simple example is a client-server system,
where a distributed application is constructed when agents
playing two roles meet and collaborate. A server agent can
provide the same service in many similar scopes. In addition
it can also implement a client functionality and, hence, act
as a client in some other scope.

We use the reactive model [18, 5] for building agent roles.
A reaction is an action associated with an event. The reac-
tion mechanism allows an agent to coordinate in a pro-active

manner. In Cama, a reaction is triggered by a matching tu-
ple (message) in a tuple space. An agent role is constructed
from a set of reactions (see Figure 1).

role 1 role 2 role 3

r1

r3

r2

r1’

r2’

r3’

r1’’

r2’’

r3’’

Figure 1: Agent structure

An agent role consists of a number of reactions. Reac-
tions can be executed concurrently, and can disable and en-
able other reactions. They can also produce new messages
(tuples) which will trigger reactions in other agents.

Agents may create and join a scope in the hosting loca-
tion. A scope is a dynamic data container, which provides
an isolated coordination space for compatible agents by re-
stricting visibility of tuples contained in the scope only to
the agents involved in it. In the following we assume that
each agent plays only one role in a scope. A set of agents is
compatible in a scope if the scope supports their roles.

A scope has a number of attributes divided into scope
requirements and scope state. The scope requirements es-
sentially define the type of a scope, or, in other words, the
kind of activities supported by it. The scope requirements
are derived from a formal model of a the scope activities. Re-
strictions on roles dictate how many agent roles there can be
for any given role of a scope. The scope requirements also
define a scope liveness condition - a condition describing an
operational scope.

Openness plays an essential role in the Cama abstrac-
tions and the middleware. In our understanding, openness
is the ability to create distributed applications composed of
agents developed independently at different locations. For
this, we provide powerful abstractions that help to dynam-
ically compose applications from individual agents, agent
isolation mechanism (which also contributes to security and
error confinement), and service discovery based on the scop-
ing mechanism. A scope structures the activity of several
agents in a specific location by dynamically encapsulating
roles of these agents. A scope also provides an isolation of
several communicating agents, thus structuring the commu-
nication space.

During our work on Cama and on various agent applica-
tions we have formulated a set of requirements for the excep-
tion handling support which suits best the development of
complex mobile coordination-based agent systems. In this
paper we describe this exception handling mechanism and
show its formal development.

4. TRADITIONAL EXCEPTION HANDLING
IN DISTRIBUTED SYSTEMS

Exception handling has been widely used as the major
mechanism for structuring complex software systems and
for implementing their fault tolerance [6]. The fundamen-
tal work in [4] introduces the main principles of recursive
structuring and exception handling for the distributed ap-
plications consisting of a number of cooperating processes.
This structuring is based on the concept of an atomic action,
i.e. an activity in which several processes participate to co-
operate. Because there is no information crossing the action

boundaries, these actions serve as the units of error confine-
ment and error recovery. The processes cooperate within an
action during its normal and abnormal execution (i.e. recov-
ery). The recovery is implemented as cooperative exception
handling which involves all action participants. The main
reasons for this are that the action is the damage area con-
taining error and that to ensure consistency of recovery we,
generally speaking, need to involve the whole set of coop-
erating processes. The action can complete either success-
fully (with or without internal recovery) or unsuccessfully,
in which case an exception is propagated to a containing ac-
tion which takes all responsibility for the following recovery.
When an exception is raised by an action participant, it gets
propagated to all participants which independently initiate
handling. In the situations when several processes concur-
rently raise exceptions, a resolution tree is used to resolve
them and to find an exception handler which will ensure
recovery from all those exceptions. A resolution tree is a
structure developed during action design, which imposes a
partial order on the action exceptions in such a way that a
handler for a higher-level exception can handle any of the
exceptions below in the tree.

In the following work [23] a deeper analysis of the reso-
lution mechanism was presented and a distributed protocol
implementing this scheme in a message-passing distributed
systems was introduced. In particular, the paper gave a
number of evidence supporting the need for exception reso-
lution in distributed systems.

Multi-agent systems clearly need cooperative exception
handling as they are built out of a number of cooperat-
ing agents. This is one of the main intentions behind in-
troducing agent system structuring using scopes in Cama.
(Note that in the following we refer to agent structuring us-
ing scopes to contrast it with process structuring using ac-
tions). Moreover, it is clear that in the agent systems several
exceptions can happen at the same time, so the exception
resolution should be supported. Unfortunately, the existing
solutions ([4], [23]) are not directly applicable for the mobile
agent systems as they do not address openness, dynamic-
ity, anonymity and asynchronous coordination. The main
reasons for this are that these structuring, exception han-
dling and exception resolution mechanisms are developed
for closed, self-contained systems, operating under rather
strong assumptions. In particular,

- in the traditional approaches, processes always stop after
an exception is raised, and they continue after that with a
cooperative handling of one exception, so that the processes
cannot receive any new exceptions during exception resolu-
tion. However, mobile agents may be unwilling or unable
to stop and wait to be synchronised for cooperative recov-
ery inside a scope. Thus we have to consider a situation
when a new exception is raised while an agent is involved in
exception resolution.

- these mechanisms typically use global ordering for the
messages sent within a scope (e.g., an action). It is forbid-
dingly expensive to provide a global message ordering mech-
anism in the mobile agent systems. Thus agents should be
able to see exceptions coming in a different order.

- these mechanisms enforce process synchronisation on ac-
tion entry and exit. In particular, they force all cooperating
processes to agree on the action outcome. We believe that
agents cannot be constrained in such ways.

- as opposed to process recovery, agent recovery needs to

be context specific. In particular, this means that resolution
should be context specific, and the idea of using statically
defined resolution trees is rather restrictive for the agent
systems.

- agents can become disconnected or can disappear during
cooperative exception handling and, in particular, exception
resolution - in the traditional schemes developed for dis-
tributed systems, the processes do not usually fail by crash-
ing, they always raise exceptions.

- the termination model of exception handling [8] is not
applicable for the scopes used in multi-agent applications
as activities in scopes can last for a very long time. The
computational model used in the multi-agent systems is dif-
ferent from the ones used in the traditional sequential or dis-
tributed programming. For these systems we need reaction-
based or event-based exception handling models in which
the recovery structuring units (e.g., scopes) can run for very
long time and are able to recover several times from the same
or different exceptions.

- the traditional process systems are over restrictive in
enforcing the action abort if there are exceptions raised dur-
ing handling, these exceptions are typically propagated to a
higher level action. Agent scopes should be longlived and
allowed to continue with handling such exceptions.

5. EXCEPTION HANDLING MECHANISM
Our mechanism is based on cooperative recovery. When

an agent is unable to recover from an error itself, it raises
an external exception. Such an exception attempts to ter-
minate activity of all agents in a scope and forces them to
recover from the exception. All the agents initiate coopera-
tive recovery independently. We use the resumption excep-
tion model [8]: if all agents succeed in recovery, then the
scope proceeds with a normal activity. If one of the agents
fails to recover, a new exception is raised in the scope. Ap-
plying this scheme to multi-agent systems gives a rise to a
number of issues which need to be resolved:

• an agent cannot be forced to stay in a scope or partici-
pate in error recovery. It is the very nature of agents to
migrate whenever they want. In addition, multi-agent
systems are inherently decentralised and hence there
is no notion of a global manager or controller.

• once an agent has left a scope, it cannot be involved
in any activity of the scope, including error recovery.

• agents come from different authority domains and can
be malicious or malfunctioning. Although it is not our
intention to address security features, it is important
to keep in mind that an exception can be purposely
generated by malicious agents to break collaboration
or get some private information.

• it is widely agreed that the asynchronous communica-
tion style is essential for mobile agents systems. All co-
operative recovery schemes require some kind of global
synchronisation, which is unacceptable in agent sys-
tems.

Despite the problems highlighted above, we believe that
complex, large-scale mobile agent applications are unfeasible
without a proper support for coordinated error recovery.

As we explained before, it is impossible to guarantee sev-
eral essential properties of coordinated recovery, such as in-
volvement of all agents and eventual handling of all excep-
tions, without violating the fundamental properties of agent
systems. Our mechanism does not attempt to ensure such
properties, at least in a general sense. Instead the mecha-
nism is based on an entirely different ideology where partic-
ipation in coordinated recovery is voluntary and the whole
process of recovery is asynchronous. However, with proper
application support, the mechanism can become similar to
its analogue in (much simpler) distributed and parallel sys-
tems. In our approach, we offer application developers an
opportunity to apply complex recovery schemes where they
are needed without setting any limitations on the agent ar-
chitecture in general.

5.1 Adding recovery actions
The structuring of agent activity in roles has an important

impact on design of exception handling mechanisms. Each
role encapsulates functionality of an agent in a particular
type of a scope. This is the level at which the coordinated
recovery is introduced. Separation of recovery actions from
normal agent behaviour is achieved thanks to the structur-
ing provided by the reactive model. Error recovery actions
are introduced by extending a role with new reactions imple-
menting coordinated recovery actions for possible external
exceptions (see Figure 2). Each external exception is asso-
ciated with a block of reactions.

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

role 1 role 2 role 3

Figure 2: Structure of agent with recovery reactions

5.2 Raising exceptions
From an agent viewpoint, there are two exception types:

local exceptions, thrown and handled inside an agent, and
external exceptions, coming from outside. We assume that
agents have some local exception handling capability and
focus on the external exceptions. We will use the term ex-
ception to refer to an external exception.

An exception can be raised by an agent or by the mid-
dleware. In both cases an exception is sent to all the scope
participants. Violation of the scope liveness conditions is
the only case when the middleware raises an exception. An
agent sends an exception to the scope participants when it
fails to recover locally from an error. An error can be caused
by a local agent failure or by a failed recovery initiated by
an external exception. In general, coordinated recovery is an
iterative process in which agents exchange exceptions until
they find the one from which each of them can recover.

Agents do not directly deal with external exceptions. An
external exception must be converted to a form specific for
the language in which the agent is implemented. When an
agent sends an external exception it first creates a native

exception which is then transformed into an external one.
In other words, external exceptions exist at a different ab-
straction layer and at each abstraction layer there is only
one exception handling mechanism.

Exception
Internal

Exception
External

Message

Exception
Internal

Exception
External

Message

Network layer

Figure 3: Exceptions transformation

A number of restrictions are imposed on how exceptions
are raised by an agent. Firstly, it cannot be an arbitrary
exception. All the collaborating agents must share the same
set of exceptions. An agent must be designed in such a way
that it can deal with these exceptions. This is an essential
prerequisite for ensuring that all the agents interpret all the
possible exceptions in the same manner. Secondly, an agent
is limited in selecting exceptions by the resolution function.
The function has two purposes - it guarantees termination
of coordinated recovery and resolves a set of concurrent ex-
ceptions into a single one.

5.3 Handling exceptions
Before an agent can start recovering, an external excep-

tion must be transformed into a local one. An exception
raised by an agent does not immediately trigger recovery
actions in all other agents in the scope. For each agent the
exception must be delivered to it and then the agent must
stop all other activity and switch to the recovery mode. The
exception delivery service in Cama is provided by the mid-
dleware. In most aspects exceptions are similar to messages.
The same transportation mechanism is used for messages
and exceptions and all the problems and shortcomings of
the message delivery also affect exception delivery. Excep-
tions can be lost and delayed. However, once an excep-
tions is delivered to an agent, it has a priority over normal
messages. Execution of all the coordination primitives and
most other operations on scopes can be interrupted by ex-
ception(s) pending for an agent. Non-blocking operations,
like out(), check for an exception prior the their execution.
Behaviour of blocking operations, such as input operation
in(), is changed so they return either with a matched tuple
or an exception, whichever appears first. If an operation
detects an exception, it immediately returns and throws the
exception in the point of its call. In our Java implemen-
tation of the mechanism, a new Java exception is created
as an envelope for an external exception and is thrown us-
ing the standard statement throw. An additional benefit of
the mechanism is a clear separation of normal and abnormal
behaviour at the level of agent code ([11]).

Once an external exception is transformed into a native
one, the agent switches to the recovery mode. If an agent
succeeds in recovery, it switches back to the normal activity
(see Figure 4, (a)). Otherwise it throws a greater exception,
as defined by the resolution function, to all the scope partic-

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

r1

r3

e1

e2

e3

r2

b)a)

Figure 4: Evolution of agent in cooperative recovery

ipants and starts recovering from this new exception itself.
Recovery can lead to a degraded operation mode where not
all the previous agent activities are possible (see Figure 4,
(b)). One example of such a situation is a failure of an agent
in the scope, which leads to the loss of the service associated
with the failed agent.

5.4 Operations
We introduce a number of new operations for working with

the external exceptions.

raise syncwait syncleave

Operation raise(el) converts a local exception el into an
external exception and raises it in a scope. The middleware
propagates the exception to all agents of a scope. The oper-
ation fails if the scope liveness conditions are not satisfied.

Operations syncwait and syncleave are optional. They
restrict an agent behaviour to make cooperative recovery
more robust, at the same time making it more synchronous.
Operation syncwait waits until a scope changes its state
from blocked to operational mode, as determined by the
scope liveness condition. The usual cause for a blocked scope
is a failure, disconnection or migration of an agent. If agents
in a scope have some additional information they can de-
cide to wait until a disconnected agent reconnects, a new
agent appears and so on. Operation syncleave acknowl-
edges completion of agent activity in the scope and waits
until all other scope participants acknowledge a completion.
Instead of an acknowledgement, the operation can receive
an exception. This would activate a normal procedure for
cooperative recovery, after which the operation should be
restarted.

5.5 Termination of coordinated recovery
Termination is a central problem for many distributed al-

gorithms and we consider it to be important for our recovery
mechanism. The termination is guaranteed by introducing
a partial order on the set of external exceptions. We also
require that the closure of the relation yields some common
exception which terminates the whole scope activity. For
example, a set of external exception can be defined as fol-
lows: e2 < e3; e4 < e3; e5 < e4. If an agent fails to recover
from e1 it can only raise exception e2, e4 or e3. If recovery
fails for the exception e4, an agent must raise exception e3.
Exception e3 is unrecoverable and forces all agents to abort
the scope. The partial ordering of exceptions is encapsulated
into the resolution function (similar to [12]).

5.6 Resolution of concurrent exceptions
It takes some time for an exception to reach an agent.

And it also takes time for an agent to note presence of an

exception. Thus, when an agent finally starts recovery, it
could happen that there are several exceptions waiting. We
use a resolution function to map a set of these exceptions
into a single one. That single exception is associated with
a handler which provides recovery for all the original excep-
tions.

In our mechanism the resolution function is based on the
lattice structure (this idea was first mentioned in [4] but
it was not used in the scheme proposed in the paper). It
is more general than a common tree-based approach and al-
lows the coordinated recovery mechanism to benefit from the
context-awareness of agents. In the systems which do not
support context-awareness, a new exception is chosen only
on the basis of the set of received exceptions. In context-
aware system, the context must affect the procedure of find-
ing the resolved exception. The agent context and its state
can provide a number of hints for choosing a recovery path.
In the mathematical terms, a resolved exception is chosen
from a set composed of the common parent of the pending
exceptions in the exception lattice and all its parents. In
the example of the resolution function given in Figure 5, the
pair of exceptions e1 and e2 can be resolved into exceptions
e5, e7, e8 and e9.

e3 e e e

e1e

e e

2

4 5 6

e7 8 9

Figure 5: Lattice-based exception resolution

5.7 Further Discussion of the mechanism
In this section we show the applicability and the shortcom-

ings of the mechanism proposed by analysing several typical
scenarios. Diagrams are used to graphically represent a sys-
tem configuration. Each line shows evolution of an agent
over time. Actions executed inside of a scope are put into a
bounding box. Each diagram contains only one scope; in the
diagrams in Figure 7, a scope contains no agents at all for
some time - this is demonstrated by several disjoint boxes.
Non-blocking operations, such as out(), occupy a single time
line point. Blocking operations, such as in(), can execute for
some time and are shown as a time line interval. Their start
and end points are designated separately. A blocking opera-
tion can finish successfully (shaded circle for the end point)
or be terminated by an exception (cross-hatched circle). The
case when an operation cannot start because of a pending
exception e is shown as = e in the operation name. Message
travelling paths are shown by dotted arrows.

5.7.1 Successful cooperative recovery
This scenario demonstrates a successful coordinated re-

covery involving three agents. agent 1 produces a mes-
sage for agent 2 (Figure 6). This messages causes an er-
ror in agent 2, which raises exception e1. The exception
terminates blocking in() operations in agent 1 and agent

3. agent 3 successfully recovers from the exception while
agent 1 raises a new exception e2, which is greater (more
general) than e1. Exception e2 interrupts blocking oper-

ations in agent 2 and agent 3. This time all the agents
successfully recover and switch to the normal activity and
leave the scope asynchronously.

Asynchronous exit from a scope can lead to the situation
when an exception is raised after some agents have already
left the scope. This problem is discussed in the next sce-
nario.

�
�
�
�

in(t) raise(e1) in(t) in(t) out(t’) leaveagent 2

�
�
�
�

�
�
�
�

in(t’) e1 in(t’) in(t’) out(t’’) leaveagent 3

�
�
�
�

out(t) in(t’’) e1 raise(e2) out(t) in(t’’) leaveagent 1

e2

e2

Figure 6: Agents recover together and continue their
activity

5.7.2 Asynchronous and synchronous exit
In this scenario, agent 1 from the previous configuration

decides to leave the scope after it has produced the first mes-
sage (see Figure 8, (a)). This message is consumed by the
second agent which then writes another message for agent

3. However, agent 3 finds a problem with the message and
tries to involve all the scope participants into a coordinated
recovery. It fails as agent 1 and agent 2 have already left
the scope. The raise operation fails with an exception indi-
cating this situation and agent 3 can try to recover itself or
abort the scope.

However, for some critical applications, it might be desir-
able to restrict agent behaviour in order to have a guarantee
of a correct coordinated recovery. This is achieved with the
operations syncleave which replaces asynchronous scope
exit with a barrier-style synchronisation (see Figure 8, (b)).
When all the agents finish their activity in the scope they
synchronously leave the scope. This allows a failed agent to
initiate a coordinated recovery at any stage of execution.

5.7.3 Decoupled communication
Time decoupled communication is an essential feature of

mobile agents. In this scenario, agents communicate in a
message board style. The scope is designed so that it per-
mits only one agent at a time. It remains in a ”frozen” state
when there are no agents in it (hence its liveness condition
is always true). An agent enters the scope, reads a message
and posts a new one (Figure 7). If a read message causes a
failure in an agent, the agent raises an exception. This ex-
ception is stored in the scope until another agent attempts
to read (or post) a message. In this scenario, handling of
an exception is done without involving the agent which has
produced the offending message. We believe this is a nor-
mal practice for such mobile agent systems. Though it is
impossible to propagate the exception to the source of fail-
ure, the primary objective - recovery of the scope - still can
be achieved.

5.7.4 Agent disconnection
During a coordinated recovery, an agent may crash or de-

cide to leave a scope. This may, or may not, depending on
the scope configuration and the state of other agents, pre-
vent recovery of the scope. If disappearance of an agent

out(t) leave

in(t’)

in(t) out(t’) leaveagent 2

agent 1

agent 3 raise(e1)=e

�
�
�
�

�
�
�
�

out(t)

in(t’) raise(e1)

in(t) out(t’)agent 2

agent 1

agent 3

s−leave

s−leave

b)a)

Figure 7: (a) Asynchronous exit can leave one of agents in trouble. (b) Operation s-leave provides syn-
chronous exit.

breaks the scope liveness conditions, the remaining agents
cannot communicate.

agent 1 out(t) leaverd(t)

agent 2 leaverd(t) raise(e)

agent 3 leaveout(t)rd(t)=e

Figure 8: Coordinated recovery in a message board-
style coordination

They can abort the scope or stop and wait for a new agent
to enter the scope. Then, together with the new agent, they
can proceed with the recovery. There are several other pos-
sibilities, such as when an agent disappears but the scope is
still in operating mode. If the failed agent was not involved
in any activity, its disappearance might go unnoticed. More-
over, with a proper design of the multi-agent application, it
should be possible to continue scope activity since the failed
agent cannot be a unique or critical one (because scope live-
ness conditions are not broken).

�
�
�
�

in(t) raise(e1) in(t)agent 2

�
�
�
�

�
�
�
�

�
�
�
�

agent 4 in(t’)

out(t) in(t’’) e1agent 1 raise(e2)

in(t’)agent 3

�
�
�
�

out(t) in(t’’) e1agent 1 raise(e2) out(t)=Es wait out(t)

�
�
�
�

�
�
�
�

in(t) raise(e1) in(t)agent 2 in(t) wait in(t) out(t’)

�
�
�
�

in(t’)agent 3

�
�
�
�

agent 4 in(t’) in(t’)

Figure 9: top: agent fails or disconnects during re-
covery; bottom: new agent appears in a recovering
scope

The Figure 9,(top) shows a case when an agent crashes
during a coordinated recovery (e.g. because of an external
exception). However the failed agent is not a critical one
and the scope activity may continue. One of the agents
succeeds in recovery and attempts to restart the normal ac-
tivity. However, the other one raises a new exception. A
new agent appears in the scope and gets involved into the
recovery as its attempt to read a message is interrupted by
an exception. All the three agents continue with coordinated
recovery.

In the second scenario, shown in Figure 9,(bottom), crash
of the agent breaks the scope liveness conditions and the two
remaining agents cannot recover themselves as the scope gets
blocked. However, blocking of the scope does not happen im-
mediately. Before the message about the invalid scope state
is propagated, the remaining agents start recovering from
another exception raised by one of the agents. After some
time their activity is terminated with the exception indicat-
ing an invalid scope state. They both decide to wait until a
new agent appears and the scope becomes operational. This
is done by waiting with the operation syncwait. When a
new agent enters the scope and attempts to issue an opera-
tion, it immediately gets an exception raised previously by
one of the agents. At the same time, two other agents un-
block and continue with normal activity while the new agent
first has to recovers from the exception.

6. DESIGN WITH THE B METHOD
The mechanism we have presented in the previous section

might look simple but the complexity of agent behaviour and
coordination makes it difficult to analyse it for the potential
pitfalls. Thus we decided to formally build the mechanism
from scratch using the refinement technique supported by
the B method [2]. The whole mechanism is too large and
complex for a formal analysis. This is mainly due to the
ability of agents to dramatically change the style of cooper-
ative recovery by deciding whether to use the syncleave and
syncwait operations. We decided to restrict our formalisa-
tion to the case when agents synchronously leave a scope and
do not attempt to recover when scope liveness conditions are
not satisfied. However we succeeded to model and verify all
the main features of the mechanism: asynchrony in recovery,
termination of coordinated recovery, lattice-based resolution
function, concurrent exceptions and non-deterministic fail-
ures in agents.

In the rest of this section we discuss the main princi-
ples and highlight the interesting points of our experience
the verification of the proposed cooperative recovery mech-
anism.

6.1 General principles
We start formal design of the mechanism with an abstract

model of the Cama infrastructure and then formally develop
it by gradual incorporation of implementation details. In the
development process we focus on integrating cooperative ex-
ception handling into the formal specification of Cama by
specifying and refining error detection and error recovery.
Application of formal methods allows us to develop systems
that are correct by construction and prove the essential prop-
erties of such systems (e.g., termination of error recovery).

Our chosen formal framework is the B Method - a formal
approach to the industrial development of highly depend-
able software. The development methodology adopted by
B is based on stepwise refinement of an abstract system
model into an implementable program. Since the method
uses theorem proving for verifying correctness of refinement
transformations, it is free of the state explosion problem and
fits well for designing large complex systems, such as Cama:
While refining a system we preserve globally observable be-
haviour but change the local data structure and control flow
to implement the desired behaviour.

In this paper we use the Event-B [1, 16] version of the B
Method to reflect the reactive nature of the Cama systems.
In Event-B the system behaviour is specified in terms of
events (system reactions). While refining event-based sys-
tems, we elaborate on existing events as well as introduce
new events specifying behaviour on the newly introduced
local variables.

In our formal development we focus on specifying cooper-
ative exception handling in a single scope. We assume that
a number of agents has joined a scope and perform some
activities in it. However, any agent can fail spontaneously
or decide to leave the scope at any moment. The remaining
agents try to recover from these errors but might fail them-
selves while doing it. Therefore, error recovery is iterative.
The recovery should eventually result in either restoring a
normal system state or closing the scope due to unrecover-
able error.

6.2 Initial specification and first refinement
In the abstract model we specify a global, high-level view

on the system behaviour. Namely, the system might be in
one of two states: normal and stopping. The state machine
representing the system behaviour is given below.

OK

StoppingNormal

Recovery

Normal
unrecoverable

Stopping
failure

fa
ilu

re

re
co

ve
ra

bl
e

failure
unrecoverable

OK

OK

OK

Figure 10: State chart of the initial model (top) and
states of the refined model (bottom)

The system can remain in the normal state, performing
some activity. However, upon occurrence of a critical (i.e.,
unrecoverable) error, the system is transferred to the stop-
ping (i.e., closing) state. Such a simple system model can be
trivially specified in Event-B with the corresponding event.
Note that in our initial model we abstract away from agent
representation, yet we introduce them in the later refine-
ments.

In our initial model we abstract away from specifying var-
ious failure modes, so that any error leads to scope closing.
In our first refinement we introduce a representation of var-
ious failure modes, i.e., distinguish between recoverable and
unrecoverable errors. Upon detecting a recoverable error,
the system interrupts normal activities and enters a recov-
ery state. At this state it attempts to execute various recov-
ery actions to restore the normal system state. As a result
of our first refinement step we extend the abstract model
with the explicit representation of the system recovery state
and the corresponding state transitions. The extended state
machine is depicted by the bottom diagram in Figure 10.

In the corresponding B model, the additional recovery
state and state transitions are defined in the new event op-
eration Recovery. Error recovery can be iterative, which
means that the execution of this operation can loop. One of
the essential properties we should guarantee by our formal
development is that error recovery will eventually terminate.
This is achieved by proving that the model is a valid B re-
finement.

To prove refinement in B, we have to show that new events
do not take control forever. This is done by supplying a
variant - a natural number expression which is decreased
after each execution of a new operation. Since our system
model is still very abstract, we solve the termination problem
by introducing an abstract variable n rec, which is forcibly
decreased by the operation. Once we introduce sufficient
implementation details into our model, we will replace this
abstract variable with an a more detailed expression of the
refined system. In the refined specification the current value
of the system state (Normal, Recovery, or Stopping) is stored
in the variable sys state of the B model.

6.3 Second refinement
In this refinement step we distribute the system behaviour

among a group of active agents participating in a scope. We
assume that each active agent is in either normal or recov-
ering state. The current values of agent states are stored
in the array variable ag state. In addition, we introduce
the abstract predicate min cond, which determines whether
the system (scope) can continue its activity with the cur-
rent group of active agents, i.e., liveness condition. This
abstract predicate can be instantiated with the actual live-
ness conditions for concrete scopes. To establish validity of
this refinement step, we should establish a connection be-
tween the abstract system state used in the previous model
and the concrete (distributed among the active agents) state
defined in the refinement. In B, we do this by defining the
relationship - data invariant - between the abstract variable
sys state and the concrete variables ag state and min cond.
For example, the following part of the data invariant

RecoveryState ∈ ran(ag state)∧
min cond(active agents) = true

⇒ sys state = Recovery

defines the relationships between the state of active agents
in the refined specification and the system state in the more
abstract specification. Namely, it stipulates that while at
least one active agent is in the recovery state (i.e., RecoveryState

belongs to the range of the function ag state) and the live-
ness condition is still satisfied, then in the more abstract
specification the system is in the recovery state. The re-
maining parts of the data invariant formulate similar rela-
tionships associating the normal and stopping states of the
abstract model with the corresponding states of the refined
system.

Since system recovery is now distributed among the ac-
tive agents, we also have to redefine our variant expres-
sion n rec needed to prove termination of recovery. We as-
sume that each agent decreases its own variant expression
ag nrec(agent). Then we can define the abstract variable
n rec via concrete variables ag nrec(agent) in the following
way:

n rec =
P

agent∈inactive agents
ag nrec(agent)

6.4 The consequent refinement steps
We aim at specifying cooperative error recovery in the

distributed Cama system. Hence in general all agents in
the scope should participate in recovery from another agent
failure. To achieve this the exception generated as a result
of an agent failure is broadcasted to all active agents in the
scope, thus involving them in the cooperative recovery. In
this refinement step we extend our model by introducing an
abstract data structure for modelling exceptions, as well as
the special event operation broadcast to model broadcasting
of the current exception to the active agents.

The operation broadcast is an operation of middleware.
Hence it is centralised, i.e., not distributed among the ac-
tive agents. It is responsible for ”spotting” the exception to
be propagated (either because of a spontaneous failure of
an agent or the inability of an agent to recover) and then
delivering it to the remaining active agents.

In the previous refinement step we introduced a set of
exceptions that are broadcast to the agents during error re-
covery. However, we abstracted away from specifying which
particular exception has to be propagated in each situation.
Also, to show termination of error recovery, we used the
variant expressions ag nrec(agent) defined for each active
agent. However, these expressions still remain underspec-
ified. In order to finalise proving termination of recovery
in our model, we have to instantiate these expressions with
concrete data of the system.

During this refinement step we tackle these two problems
by introducing the (partial) order between exceptions. The
order is based on criticality of exceptions. All agents use
the same mathematical structure (a lattice) defining the or-
der on the exceptions. The introduced order allows us to
guarantee that, when an agent fails to handle a particu-
lar exception, it generates a more critical (i.e., more gen-
eral) exception. The error recovery continues by handling
this exception. We assume that there is the most critical
exception TotalFailure which leads to closing the system.
By associating the agent variants ag nrec(agent) with the
(inverse) criticality of the last generated exception for each
agent, we can prove that this expression is decreased every
time an agent remains in the recovery state. Therefore, it

also proves that the recovery process of all agents eventually
has to terminate. Due to the space limit we have omitted
representation of the formal specifications. The complete B
specification can be found in [13]. In the consequent refine-
ment steps we can further elaborate on the created model
of fault tolerance mechanism in the Cama system by mod-
elling, e.g., internal recovery, subscopes etc.

7. SUMMARY
In this paper we propose a mechanism for cooperative

recovery in multi-agent systems. Our mechanism is agent-
centric - we put first the needs of an individual agent. It
is based on the extended interpretation of agent autonomy:
each agent has freedom to decide what role it should play
in cooperative recovery. Arguably, such freedom is crucial
for open multi-agent systems. We address the core points
of cooperative recovery such as termination and resolution
of concurrent exceptions. We believe that this scheme is
realistic and lightweight. The experience from the proto-
type version of the mechanism for the Cama system shows
that the mechanism smoothly integrates with coordination
paradigm and performs well in real applications.

The proposed mechanism has been formally analysed to
identify possible problems. In particular, we have demon-
strated how to formally guarantee termination of the it-
erative error recovery. Our approach is based on gradual
top-down development by stepwise refinement and relies on
theorem proving for verification of system properties. The
formal modelling has helped us in making several decisions
improving the final version of the mechanism.

8. ACKNOWLEDGEMENTS
This work is partially supported by the EPSRC/UK TrAmS

platform grant and the FP7 ICT DEPLOY integrated project.
We are grateful to the anonymous referees for their com-
ments.

9. REFERENCES
[1] J. R. Abrial. Extending B without changing it (for

developing distributed systems). In H. Habrias, editor,
1st Conference on the B method, pages 169–190. IRIN
Institut de recherche en informatique de Nantes, 1996.

[2] J. R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 2005.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33,
2004.

[4] R. H. Campbell and B. Randell. Error recovery in
asynchronous systems. IEEE Transactions on
Software Engineering, 12(8):811–826, 1986.

[5] B. Carbunar, M. T. de Oliveira Valente, and J. Vitek.
Coordination and Mobility in CoreLime. Mathematical
Structures in Computer Science, 14(3):397–419, 2004.

[6] F. Cristian. Exception Handling and Fault Tolerance
of Software Faults. In M. Lyu, editor, Software Fault
Tolerance, pages 81–107. Wiley, NY, 1995.

[7] D. Gelernter. Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[8] J. B. Goodenough. Exception handling: issues and a
proposed notation. Commun. ACM, 18(12):683–696,
1975.

[9] A. Iliasov. Implementation of Cama Middleware.
Available online at
http://sourceforge.net/projects/cama.

[10] A. Iliasov and A. Romanovsky. Exception Handling in
Coordination-based Mobile Environments. In
Proceedings of the 29th Annual International
Computer Software and Applications Conference
(COMPSAC 2005), pages 341–350. IEEE Computer
Society Press, 2005.

[11] A. Iliasov and A. Romanovsky. Structured
coordination spaces for fault tolerant mobile agents. In
C. Dony, J. L. Knudsen, A. B. Romanovsky, and
A. Tripathi, editors, Advanced Topics in Exception
Handling Techniques, volume 4119 of Lecture Notes in
Computer Science, pages 181–199. Springer, 2006.

[12] V. Issarny. An Exception Handling Mechanism for
Parallel Object-Oriented Programming: Towards the
design of Reusable, and Robust Distributed Software.
Journal of Object-Oriented Programming 6(6), pages
29–39, October 1993.

[13] L. Laibinis. B specification of the Cama exception
handling mechanism. Available online at
http://cama.sourceforge.net/downloads.html.

[14] L. Laibinis, E. Troubitsyna, A. Iliasov, and
A. Romanovsky. Rigorous development of
fault-tolerant agent systems. In M. J. Butler, C. B.
Jones, A. Romanovsky, and E. Troubitsyna, editors,
RODIN Book, volume 4157 of Lecture Notes in
Computer Science, pages 241–260. Springer, 2006.

[15] G. D. Marzo and A. Romanovsky. Using exception
handling for fault tolerance in mobile
coordination-based environments. In ECOOP 2003,
workshop on Exception Handling in Object Oriented
Systems: Towards Emerging Application Areas and
New Programming Paradigms, Darmstadt, Germany.,
2003.

[16] C. Metayer, J. Abrial, and L. Voisin, editors. Rodin
Deliverable D7: Event B language. Project
IST-511599, School of Computing Science, Newcastle
University, 2005.

[17] S. Pears, J. Xu, and C. Boldyreff. A dynamic shadow
approach for mobile agents to survive crash failures. In
ISORC, pages 113–120. IEEE Computer Society, 2003.

[18] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime:
Linda Meets Mobility. In Proceedings of 21st Int.
Conference on Software Engineering (ICSE’99), pages
368–377, 1999.

[19] G.-C. Roman, C. Julien, and J. Payton. A Formal
Treatment of Context-Awareness. In M. Wermelinger
and T. Margaria, editors, Fundamental Approaches to
Software Engineering, 7th International Conference,
FASE 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2004, LNCS 2984, pages 12–36. Springer,
2004.

[20] F. Souchon, C. Dony, C. Urtado, and S. Vauttier.
Improving exception handling in multi-agent systems.
In C. J. P. de Lucena, A. F. Garcia, A. B.
Romanovsky, J. Castro, and P. S. C. Alencar, editors,

SELMAS, volume 2940 of Lecture Notes in Computer
Science, pages 167–188. Springer, 2003.

[21] A. R. Tripathi and R. Miller. Exception handling in
agent-oriented systems. In A. B. Romanovsky,
C. Dony, J. L. Knudsen, and A. Tripathi, editors,
Advances in Exception Handling Techniques, volume
2022 of Lecture Notes in Computer Science, pages
128–146. Springer, 2000.

[22] M. Wooldridge and P. Ciancarini. Agent-Oriented
Software Engineering: The State of the Art. In
P. Ciancarini and M. Wooldridge, editors, First Int.
Workshop on Agent-Oriented Software Engineering,
volume 1957, pages 1–28. Springer-Verlag, Berlin,
2000.

[23] J. Xu, A. Romanovsky, and B. Randell. Concurrent
exception handling and resolution in distributed
object systems. IEEE Transactions on Parallel
Distributed Systems, 11(10):1019–1032, 2000.

