
Experimenting with Exception Propagation Mechanisms
in Service-Oriented Architecture

Anatoliy Gorbenko1
Alexander Romanovsky2

1Department of Computer Systems and Networks,
National Aerospace University, Kharkiv, Ukraine

A.Gorbenko@csac.khai.edu
Alexander.Romanovsky@newcastle.ac.uk

Vyacheslav Kharchenko1
Alexey Mikhaylichenko1

2School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK

V.Kharchenko@khai.edu,
A.Mikhaylichenko@csac.khai.edu

ABSTRACT
Exception handling is one of the popular means used for
improving dependability and supporting recovery in the Service-
Oriented Architecture (SOA). This practical experience paper
presents the results of error and fault injection into Web Services.
We summarize our experiments with the SOA-specific exception
handling features provided by the two development kits: the Sun
Microsystems JAX-RPC and the IBM WebSphere Software
Developer Kit for Web Services. The main focus of the paper is
on analyzing exception propagation and performance as the major
factors affecting fault tolerance (in, particular, error handling, and
fault diagnosis) in Web Services.

Categories and Subject Descriptors
C2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Measurement, Performance, Design, Reliability, Experimentation,
Languages

Keywords
Service-Oriented Architecture, dependability benchmarking,
robustness, exception handling, exception propagation
mechanisms, fault tolerance.

1. INTRODUCTION

The concept of service-oriented architecture (SOA) was
introduced in order to solve the problems of ensuring effective,
reliable and secure interaction of complex distributed systems.
SOA assumes that such systems are constructed from loosely-
coupled application modules (services) that have interfaces

defined by common rules (the WSDL1 description) and a
dedicated invocation mechanism (SOAP2 messages). The
descriptions of these modules can be found by other software
systems in a dedicated registry and the modules can then be
invoked by means of XML-based messages transferred using
Internet protocols.

Achieving high dependability of service-oriented architecture is
crucial for a number of emerging and existing critical domains,
such as telecommunication, grid, e-science, e-business, etc.
Knowing the exact causes and sources of exceptions raising
during operation of Web Service allows developers to apply the
more suitable fault-tolerant [1] and error recovery techniques [2].
For example, paper [3] discusses two fault tolerance means,
applicable in SOA: backward (based on rolling system
components back to a previous correct state) and forward error
recovery (which involves transforming system components into
any correct state). The latter is usually application-specific and
employs exception handling mechanisms. As backward error
recovery is not always applicable for Web Services due to the
simple fact that they cannot always be rolled back, exception
handling is becoming a popular technique for ensuring fault-
tolerance and error recovery of Web Services. In the practical
experience report we present an experimental analysis of the
SOA-specific exception propagation mechanisms and provide
some insights into differences in error handling and propagation
delays between two implementations of web services in IBM
WebSphere SDK3 and Sun Java application server SDK4. To
provide such an analysis we have used fault injection technique.
Fault injection is a well-proven method for assessing the
dependability and fault-tolerance of a computing system.
Although much work has been done in the area of fault injection
and distributed systems in general, for example [4, 5], there
appears to have been little research carried out on applying this to
the SOA. Papers [6, 7] present a practical approach for the
dependability benchmarking and evaluation of the robustness of
Web Services. In particular, the authors of paper [7] describe a set

1 W3C, Web Services Description Language.

http://www.w3.org/2002/ws/desc
2 W3C, Simple Object Access Protocol.

http://www.w3.org/TR/soap12-part1
3 http://www-128.ibm.com/developerworks/webservices/wsdk/
4 http://www.sun.com/software/products/appsrvr_pe/index.xml

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WEH’08, November 14, 2008, Atlanta, GA, USA.
Copyright 2008 ACM 978-1-60558-229-0…$5.00.

of robustness tests (i.e., failures injection into web-services call
parameters) which were applied during web-services execution in
order to reveal possible robustness problems.

Papers [8, 9] introduce specialised ontologies used for systematic
generation of fault, attack and latency injection test cases, and
failure detection techniques for testing network packet loss and
message corruption in the SOA. To summarise, we have found
that the existing works above neither consider the propagation
behaviour of the exceptions raised because of the injected faults
nor study the performance with respect to the exception
propagation caused by the use of different Web Services
platforms.

The objective of the paper is to analyze the exception propagation
mechanisms of the two Web Services development toolkits and
understand their implications for performance of the SOA
applications using them. Our experimental investigation was
organised as shown on Fig.1.

Sun Java System
Application Server

IBM WebSphere
Application Server

Web Service

“WSCalc”

In
je

ct
io

n

Exception

Exception

R
ai

si
n

g
R

ai
si

ng

Java Class “WSCalc”

+getMul(in a:int, b:int):String

Web Service
Implementation by use of:

Sun Toolkit IBM WSDK

Eclipse IDE/IBM

WebSphere Software

Developer Kit for

Web Services

NetBeans IDE/

Sun Java System

Application

Server bundle

WSDL

Description

WSDL

Description

1

2

4

Performance analysis of
exceptions propagation

mechanism
6

Comparative
analysis

A
na

ly
si

s
o

f
S

O
A

-s
pe

ci
fi

c
E

rr
o

rs
 a

n
d

F
ai

lu
re

s

Web Service

“WSCalc”

5

3

Figure 1. Research engineering process.

To conduct our experiments we first implemented as a Java class,
WSCalc, which performs a simple arithmetic operation upon two
integers, converting the result into a string (1). Then (2) we
implemented two diverse Web Services using two different
development toolkits described in section 2.

A brief description of the testbed WS is presented in section 3. In
section 4, we analyse SOA-specific errors and failures (4) and
inject them using our Web Service architecture (5). Section 5
reports the results of analysing and comparing the exception
propagation mechanisms and performance implications (6).

2. DEVELOPMENT TOOLKITS
In our work we experimented with two widely used technologies:
the Java cross-platform technology, developed by Sun and the
IBM Web Service development environments and runtime
application servers.

The reasons for this choice are that Sun develops most of the
standards and reference implementations of Java Enterprise
software whereas IBM is the largest enterprise software company.

2.1 NetBeans IDE/SJS Application Server
NetBeans IDE 5.05 is a powerful integrated environment for
developing applications on the Java platform, supporting Web
Services technologies through the Java Platform Enterprise
Edition (J2EE). Sun Java System (SJS) Application Server is the
Java EE implementation at Sun Microsystems.

NetBeans IDE with SJS Application Server support JSR-109,
which is a development paradigm that is suited for J2EE
development, based on JAX-RPC (JSR-101). Web Service
functionality in NetBeans IDE is part of an end-to-end set of J2EE
features. Also, NetBeans IDE provides wizards to create Web
Services and Web Service’s clients.

2.2 IBM WSDK for Web Service
IBM WebSphere Software Developer Kit Version 5.1 (WSDK) is
an integrated kit for creating, discovering, invoking, and testing
Web Services. WSDK V5.1 is based on WebSphere Application
Server V5.0.2 and provides support for the following open
industry standards: SOAP 1.1, WSDL 1.1, UDDI 2.0, JAX-RPC
1.0, EJB 2.0, Enterprise Web services 1.0, WSDL4J, UDDI4J,
and WS-Security.

WSDK can be used with the Eclipse IDE. Eclipse provides a
graphical interactive development environment for building and
testing Java applications. WSDK adds to the standard Eclipse
package the tools relating to Web Services, making it suitable for
building Web Services. The required level of Eclipse is V2.1.1.
The Eclipse package can be freely downloaded from the Eclipse
Web site6. Supporting the latest specifications for Web Services
WSDK enables to build, test, and deploy Web Services on
industry-leading IBM WebSphere Application Server.
Functionality of the WSDK V5.1 has been incorporated into the
IBM WebSphere Studio family of products.

3. WEB SERVICE TESTBED
The starting point for developing a JAX-RPC Web Service is the
coding of a service endpoint interface and an implementation class
with public methods that must throw the java.rmi.RemoteException.
To analyze features of the exception propagation mechanisms in the
service-oriented architecture we have developed a testbed Web
Service executing simple arithmetic operations. The implementation
bean class of the Web Service providing arithmetic operations is
shown in Fig. 2.

package ai.xai12.loony.wscalc;
public class WSCalc implements WSCalcSEI {
 public String getMul (int a, int b) {
 return new Integer(a * b).toString();
 } ... }
Figure 2. The implementation bean class of the Web Service

providing arithmetic operations.
NetBeans IDE/SJS AppServer and Eclipse IDE/IBM WSDK
support wizards that automatically generate service endpoint
interface (SEI) and service description (WSDL-file) and deploy
Web Service. However, in spite of the fact that both toolkits are
based on the open specifications and interfaces we discovered a

5 http://www.netbeans.org
6 http://www.eclipse.org

sufficient number of differences in generated Web Service
descriptions. They both require description of input and output
parameters, definition of used namespaces (the default and target
namespaces). At the same time, some prefixes and namespaces
are defined but not used. There are some differences in the
description of input and output parameters. As it will be shown
below, these differences have some effect on exception
propagation.

The testbed service was implemented by using two different
development kits provided by Sun and IBM. Two diverse services
obtained in such a way were deployed on the two hosts using
different application servers: i) IBM WebSphere and ii) SJS
AppServer. These hosts operated under Windows XP Profession
Edition were located in the university’s LAN. Thus, transfer
delays and other network problems were insignificant and affected
both testbed services in the same way.

4. INJECTION TECHNIQUE.
SOA-SPECIFIC ERRORS AND FAILURES
In terms of the fundamental concepts of dependability, threats to
computer systems include errors, faults and failures [10]. An error
is that part of the system state that may cause a subsequent failure:
a failure occurs when an error reaches the service interface and
alters the service. A fault is the hypothesized cause of an error.
Faults are usually classified into three major fault classes [10]:
design faults, physical faults and interaction faults.

The main stages of the Web Services interactions are [11]:
(i) service binding, (ii) service invocation, (iii) SOAP messaging,
and (iv) requests processing by WS (Fig. 3). In our work we have
experimented with 18 types of the SOA-specific errors and
failures occurring during these stages (see Table 1) and dividing
into three main categories: (i) network and remote system failures,
(ii) internal WS errors and failures and (iii) client-side binding
errors. They are general (not application specific) and can appear
in any Web Service application during operation.

Figure 3. Errors and failures affecting on SOA.

We omitted in our measurement the stages of service discovering
and integration (e.g. using the UDDI7) because their effect can be
ignored as they are carried out only once before the sequences of
other interactions.

7 W3C, Universal Discovery, Description and Integration.
http://www.uddi.org/

Network failures are unavoidable in the service-oriented architecture
due to global distribution of its components. We analysed network
connection break-off at the client-side and remote host unavailability
when it is off-line or unreachable due to network failures.

Exceptions are manifestations of a symptom, i.e. an error or a
failure occurred [15]. In our work we investigated a reaction of
two WS platforms (middleware) provided by Sun Microsystems
and IBM on the injected errors and faults in order to answer the
questions like “Is the WS middleware robust to errors in
invocation parameters?”, “Do the exception stack traces provide
exact information about the root causes of exceptions?”, “Whether
the exceptions propagation chain and propagation velocity
(performance) depend on WS middleware used?”.

Table 1. SOA-specific errors and failures

№ Type of error/failure Error/failure
domain

1. Network connection break-off
2. Domain Name System is down
3. Loss of request/response packet
4. Remote host unavailable
5. Application Server is down

Network
and system

failures

6. Suspension of WS during transaction
7. System run-time error
8. Application run-time error
9. Error causing user-defined exception

Service
errors and

failures

10. Error in Target Name Space
11. Error in Web Service name
12. Error in service port name
13. Error in service operation’s name
14. Output parameter type mismatch
15. Input parameter type mismatch
16. Error in name of input parameter
17. Mismatching of number of input params
18. WS style mismatching (“Rpc” or “Doc”)

Client-side
binding
errors

Common-case network failures are down state of DNS or packets lost
due to the network congestion. Besides, the operation of Web Service
depends on the operation of the system software like web-server,
application server and database management system. In our work we
analysed failures occurring when the application servers (WebSphere
or SJS AppServer) were shut down. Client errors in early binding or
dynamic interface invocation (DII) (like “Error in Target Name
Space”, “Error in Web Service name”, etc.) occur because of the
changes in the invocation parameters, and/or inconsistencies
between the WSDL-description and the service interface. Finally,
the service failures are connected with program faults and run-
time errors causing system- or user-defined exceptions. System
run-time errors like “Stack overflow” or “Lack of memory” result
in the exceptions at the system level as a whole. Operation
“Division by zero” is also caught and generates an exception at
the system level but it is easier to simulate such system error than
other ones.

The typical examples of the application run-time errors are
“Operand type mismatch”, “Product overflow” and “Index out of
bounds”. In our experiments we injected the “Operand type
mismatch” error, hangs of the WS due to its program getting into
a loop and error causing user-defined exception (exception
defined by a programmer during WS development).

Service failures (6, 7, 8) were simulated by fault injection at the
service side. Client-side binding errors (10-18) which are, in fact,
a set of robustness tests (i.e., invalid web-services call parameters)
were applied during web-services invocation in order to reveal
possible robustness problems in the web-services middleware. We
used a compile-time injection technique [13] where a source code
is modified to inject simulated errors and faults into the system.
Network and system failures were simulated by shutting down
manually of DNS server, application server and network
connections at the client and service sides.

5. ANALYSIS OF EXCEPTION
PROPAGATION MECHANISMS AND
PERFORMANCE IMPLICATIONS
To analyze features of exception propagation mechanisms and
performance implications in SOA depending on the Web Services
development toolkit used, we inject errors in the testbed services
and client applications, and also simulated network failures.

5.1 Exceptions Correspondence Analysis
The experiments were carried away with simple Web Services
executing arithmetic operations which were deployed on two
application services: SJS AppServer and IBM WebSphere. Some
results of our experiments with the Web Services exceptions are
shown in Table 2 which describes a relationship between
errors/failures and the exceptions raised at the top level on
different application platforms. The full stack traces and technical
details can be found in [12]. As it was discovered, some injected
errors and failures cause the same exception so we were not
always able to define the precise exception cause. There are
several groups of such errors and failures: 1 and 2 (Sun); 3 and 6
(Sun); 4 and 5 (Sun); 1, 2 and 5 (IBM); 3 and 6 (IBM).

Some client-side binding errors (11 – “Error in Web Service
name”, 12 – “Error in service port name”) neither raise exceptions
nor affect the service output. This happens because the WS is
actually invoked by the address location, whereas the service and
port names are only used as supplementary information.
Moreover, the WS developed by using IBM WSDK and deployed
on the IBM WebSphere application server, tolerates such binding
errors internally: 10 - “Error in Target Name Space”, 14 - “Output
parameter type mismatch”, and 16 - “Error in name of input
parameter”. These features are supported by the WSDL
description and a built-in function of automatic type conversion.

Errors in the name of the input parameter were tolerated because
checking the order of parameters has a priority over the
coincidence of parameter names in the IBM implementation of
Web Service. On the other hand it seems like Websphere is unable
to detect a potentially dangerous situation resulted from the
parameters mishmash.

5.2 Exception Propagation and Performance
Analysis
Table 2 shows the exceptions raised at the top level on client’s side.
However, a particular exception can be wrapped dozens of times
before it finally propagates to the top. This process takes time and
significantly reduces performance of exception handling in service-
oriented architecture. Fig. 4 shows a fragment of Java code that

follows a critical
section of program,
catches any
exceptions and prints
an exception stack
trace in case of error
occurrence.

An example of the stack trace corresponding to “Operand Type
Mismatch” run-time error caught by Web-Service is given in the
Fig. 5. The exception propagation chain has four nested calls
(started with “at” preposition) in case of using WS development
kit from Sun Micro-systems. For comparison, the stack trace of
IBM-based implementation has 63 nested calls for the same error.

java.rmi.ServerException: JAXRPC.TIE.04:
Internal Server Error (JAXRPCTIE01:
java.lang. NumberFormatException: For input
string: "578ER")

at com.sun.xml.rpc.client.dii.BasicCall.
invoke(BasicCall.java:497)

at ai.c1.xai12.wstest.InvoceWS.invoce
(InvoceWS.java:125)

at ai.c1.xai12.wstest.InvoceWS.
invoceByVector(InvoceWS.java:75)

at wstest.Main.main(Main.java:42)

Figure 5. Stack trace of failure No 8, raised in the client
application developed in NetBeans IDE by using JAX-RPC

implementation of Sun Microsystems.
The results of exception propagation and performance analysis are
represented in Table 3. This table includes a number of exceptions
stack trace (length of exceptions propagation chain, i.e. the count
of different stack traces for this particular failure) and propagation
delay (min, max and average values) which is a time between the
invocation of a service and capture of the exception by a 'catch'
block. As can be seen from Table 3, the IBM implementation of the
Web Service has almost twice as good a performance as that of the
service implemented in the Sun technology.

The performance of exception propagation mechanisms has been
monitored at the university LAN on heterogeneous server platforms.
The first row of the table corresponds to the correct service output
without any exceptions. The rows, marked in bold, correspond to
the cases of correct service outputs without exceptions in spite of
injected errors. It is evident from the table, that exceptions
propagation delay is several times greater than working time.
However, the exception propagation delay of the Web Service,
developed with NetBeans IDE using JAX-RPC implementation of
Sun Microsystems, was two times shorter than the delay we had
when we used IBM WSDK. It explains the fact that the exception
propagation chain in the IBM implementation of the Web Service
is, usually, much longer.

The factors affecting the performance and differences between the
two web-service development environments most likely depend
on the internal structure of toolkits and the application servers
used. We believe that the most likely reason for this behaviour is
that JAX-RPC implementation by Sun Microsystems has larger
number of nested call in contrast to IBM WSDK.

...
catch (Exception e) {
 e.printStackTrace();
}

Figure 4. Example of client Java-code
that prints the stack trace.

Table 2. Example of top-level exceptions raised by different types of errors and failures

Type of error/failure Exception message at using Sun Microsystems
WS Toolkit

Exception message at using IBM WS Toolkit
(WSDK)

Network connection
break-off; DNS is down

“HTTP transport error: java.net.
UnknownHostException: c1.xai12.ai”

“{http://websphere.ibm.com/webservices/}
Server.generalException”

Remote host
unavailable (off-line)

“HTTP Status-Code 404: Not Found - /WS/
WSCalc”

“{http://websphere.ibm. com/webservices/} HTTP
faultString: (404)Not Found”

Suspension of Web
Service during
transaction

Waiting for response during too much time (more
than 2 hours) without exception

“{http://websphere.ibm.com/webservices/}
Server.generalException faultString: java.io.
Interrupted IOException:Read timed out”

System run-time error
(“Division by Zero”)

“java.rmi.ServerException: JAXRPC.TIE.04:
nternal Server Error (JAXRPCTIE01: caught
exception while handling request: java.lang.
ArithmeticException: / by zero)”

“{http://websphere.ibm.com/webservices/}
Server.generalException faultString:
java.lang.ArithmeticException: / by zero”

Application error
causing user-defined
exception

“java.rmi.RemoteException: ai.c1.loony.exception.
UserException”

“{http://websphere.ibm.com/webservices/}Server.
generalException faultString:(13)UserException”

Error in name of input
parameter

“java.rmi.RemoteException: JAXRPCTIE01:
unexpe-cted element name:expected=Integer_2,
actual=Integer_1”

OK - Correct output without exception

Table 3. Performance analysis of exceptions propagation mechanism

 WS Development Toolkit NetBeans IDE (Sun) IBM WSDK
exception’s

propagation delay, ms
exception’s propagation

delay, ms № Type of error/failure
no of
stack
traces min max av.

no of
stack
traces min max av.

 Without Error/Failure 0 40 210 95 0 15 120 45
1. Network connection break-off 38 10 30 23 16 10 40 28
2. Domain Name System is down 28 16 32 27 16 15 47 34
3. Loss of packet with client request or service response - >7200000 15 300503 300661 300622
4. Remote host unavailable (off-line) 9 110 750 387 11 120 580 350
5. Application Server is down 9 70 456 259 16 100 550 287
6. Suspension of Web Service during transaction

(getting into a loop) - >7200000 15 300533 300771 300642

7. System run-time error (“Division by Zero”) 7 90 621 250 62 120 551 401
8. Calculation run-time error (“Operand Type Mismatch”) 4 90 170 145 63 130 581 324
9. Application error causing user-defined exception 4 100 215 175 61 150 701 366
10. Error in Target Name Space 4 100 281 180 0 10 105 38
11. Error in Web Service name 0 40 120 80 0 10 125 41
12. Error in service port name 0 30 185 85 0 15 137 53
13. Error in service operation name 4 90 270 150 58 190 511 380
14. Output parameter type mismatch 14 80 198 160 0 15 134 48
15. Input parameter type mismatch 4 80 190 150 76 90 761 305
16. Error in name of input parameter 4 70 201 141 0 10 150 47
17. Mismatching of number of input service parameters 4 80 270 160 61 130 681 350
18. Web Service style mismatching 4 70 350 187 58 90 541 298

The fact that that the service client, developed using the Sun WS
toolkit, does not raise any exception even after more than 2 hours
of waiting in cases of service suspension or packets loss results in
retarded recovery action and complicates the developers’ job.
Analysis of the exception stack trace and propagation delay can
help in identifying the source of the exception.

For example, failures 1 - “Network connection break-off” and 2 -
“Domain Name System (DNS) is down” raise the same top-level
exception “HTTP transport error: java.net.UnknownHostExcep-
tion: loony.xai12.ai”. However, if we use the Sun WS toolkit we
can distinguish these failures by comparing numbers of the stack
traces (38 vs. 28). If we use IBM WSDK we are able to

distinguish between failure 5 – “Application Server is down” and
failures 1 and 2 on the basis of analysis of the exception
propagation delay (it is one order greater).

Fig. 6 below shows the classification of errors and failures taking
into consideration their sources, consequences, correspondence
analysis of exceptions raised by them (see section 5) and also
possible means for recovering and fault-tolerance discussed in
detail in [14]. For example, simple invocation retry can be
efficiently used as recovering action after errors caused by
transient network failures (errors 1, 3, 4).

Fig. 6 also provides some information about possibility of
differentiating between various errors/failures on the base of

information available from the exceptions description. For
example, as it is shown in Fig. 6, we can always differentiate
between errors 7 – 18; errors 3 and 6 can not be distinguished
from each other independently from development kit used as well
as errors 1 and 2 in case of using IBM WSDK.

Finally, other errors can be conditionally distinguished (i.e.
distinguished only if a full exception stack trace is available). The
numbers in circles in Fig.6 are corresponding to the numbers of
SOA-specific errors and failures from Table 1.

6. CONCLUSIONS
Exception handling is widely used as the basis of forward error
recovery in service-oriented architecture. Effectiveness of
exception handling depends on the features of exceptions raising
and on the propagation mechanisms. In our work we have
experimented with Web Services, implemented using two
development kits: 1) JAX-RPC implementation at Sun
Microsystems and 2) IBM WebSphere Software Developer Kit for
Web Services. We have performed compatibility analysis of the
exception propagation mechanisms and performance implications.
This work allows us to draw the following conclusions.

1. Web Services developed by using different toolkits react
differently to some DII client errors (“Output parameter type

mismatch”, “Error in name of input
parameter”). Sometimes this diversity
can allow us to mask client errors
whereas in other cases it will lead to the
erroneous outcome.

2. Web Service clients, developed by
using different toolkits can have
different response time-outs. In our
experimentation with simple Web
Services we have also observed the
starvation of client software developed
using the Sun Microsystems toolkit in
case of WS hang or packet loss.

3. Not always the exception messages
and stack traces gathering in our
experimentation were enough to identify
the exact cause and, hence, applying an
adequate recovery technique. For
example, it is not possible to recognize
if a remote host is down or it is
unreachable because of transient
network failures.

4. Web Services developed using
different toolkits have different
exception propagation time. This affects
failure detection and failure notification
delay. It is clear for us that the
developers of WSDK should make some
effort to reduce this time.

5. Analysis of the exception stack trace
and propagation delay can help in
identifying of exact sources of the
exceptions even if we have caught the
sane top-level exception messages. It
makes better fault diagnosis, which

identifies and records the cause of exception in terms of both
location and type, and fault isolation and removal.

6. Knowing the exact cause and sources of exceptions is useful for
applying appropriate failure recovery or fault-tolerant means
during exception handling (see Fig. 6). Several types of failures
resulting in exceptions can be effectively handled on the client
side, whereas others should be handled on the service side.
Exceptions handling of the client side errors in early binding
procedures may include retry with the help of dynamic invocation.
Transient network failures can be tolerated by simple retry. In
other cases redundancy and majority voting should be used.

7. Exception statistics gathering and analysis allow improvement
of fault handling which prevents located faults from being
activated again on the base of system reconfiguration or
reinitialization. It is especially related to a composite system with
several alternative WS.

8. Analysis of the exception stack trace helps in identifying of the
application server, WSDK, libraries and packages used for WS
development. This information is useful for choice of the diverse
variants among the set of alternative Web Services deployed by
third parties and building effective fault-tolerant systems using
WS redundancy and diversity.

 System

User’s,
defined by
developerType of raised

exception

Possibility of
exception source

differentiating
Distinguished

Possible
tolerance and

recovery means

Simple
retry Redundancy

Attributes Type of error/failures

Source of
exception raising

Conditionally
distinguishedUndistinguished

IBM IBM/Sun Sun IBM Sun

Retry with
using DII

1 3 2 5 6 7 8 9 10 13 14 15 16 17 18

Application-
specific exception

handling

Raising an exception
Without

pernicious
effect

Suspension of
client software

1 2

3

4 5

6

7 8 9 10 11 1213 1415 16 17 18

IBMSun

Influence on
Service’s client

Source

of error/failure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Network
and service

platform
Client softwareWeb service

software

Client-side
exception

Service-side
exception

4

Figure 6. Classification of the SOA-specific errors and failures.

Below we are summarizing our suggestions on how exception
handling should be implemented in the SOA systems to help
develop systems that handle exceptions optimally. First of all, a
Web Service should return exceptions as soon as possible. Long
notification delay can significantly affect the SOA performance
especially in complex workflow systems. To decrease the
exception propagation delay the developers should avoid
unnecessary nesting of exceptions and reduce the overall number
of exception stack traces. Besides, exceptions should contain more
detailed information about cause of error and also provide
additional classification attributes to help in error diagnosis and
fault tolerance. For example, if an exception reports whether an
error seems to be transient or permanent, user’s application will
be able to automatically choose and perform the most suitable
error recovery action (simple retry in case of transient errors or
more complicated fault-tolerant techniques otherwise).

In the presented work we have experimented with only two Web
Service implementations provided by Sun and IBM. In our future
study we are planning to deal with other existing SOA platforms
belonging to .NET, AXIS and other categories to have a much
wider picture of the exception handling capabilities in SOA.

7. ACKNOWLEDGMENTS
Alexander Romanovsky is supported by the EC ICT DEPLOY
project and by the EPSRC/UK TrAmS platform grant.

8. REFERENCES
[1] Chan, Pat. P.W., Lyu, M.R., Malek, M. 2006. Making

Services Fault Tolerant. In D. Penkler, M. Reitenspiess, and
F. Tam (Eds.): Service Availability, International Service
Availability Symposium, LNCS 4328, Berlin, Heidelberg:
Springer-Verlag, 43–61.

[2] Managing Exceptions in Web Services Environments. 2003.
An AmberPoint Whitepaper (http://www.amberpoint.com).

[3] Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N. 2003.
Coordinated Forward Error Recovery for Composite Web
Services. In Proceedings of the 22nd Symposium on Reliable
Distributed Systems (SRDS), Florence, Italy, 167-176.

[4] Marsden, E., Fabre, J.-C., Arlat, J. 2002. Dependability of
CORBA Systems: Service Characterization by Fault
Injection. In Proceedings of the Symposium on Reliable
Distributed Systems, Osaka, Japan.

[5] Brambilla, M., Tziviskou, C. 2005. Fundamentals of
Exception Handling Within Workflow-Based Web
Applications. Journal of Web Engineering (JWE), Vol. 4,
Issue 1, 38-56.

[6] Vieira, M., Laranjeiro, N., Madeira, H. 2007. Assessing
Robustness of Web-services Infrastructures. In Proceedings
of the 2007 Int. Conf. On Dependable Systems and Networks
(DSN'2007), 131–136.

[7] Duraes, J., Vieira, M., Madeira, H. 2004. Dependability
Benchmarking of Web-Servers. In M. Heisel et al. (Eds.):
SAFECOMP 2004, LNCS 3219, 297–310.

[8] Looker, N., Gwynne, B., Xu, J., Munro, M. 2005. An
Ontology-Based Approach for Determining the
Dependability of Service-Oriented Architectures.
In Proceedings of the 10th IEEE International Workshop on
Object-oriented Real-time Dependable Systems, USA.

[9] Looker, N., Munro, M., Xu, J. 2005. Simulating Errors in
Web Services. International Journal of Simulation Systems,
Science & Technology, vol. 5.

[10] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. 2004.
Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Secure
Computing, Vol. 1, No. 1, 11–33.

[11] W3C, Web Services Architecture. 2004.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[12] Gorbenko, A., Mikhaylichenko, A., Kharchenko, V.,
Romanovsky, A. 2007. Experimenting With Exception
Handling Mechanisms Of Web Services Implemented Using
Different Development Kits. Technical report CS-TR 1010:
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/1010.pdf,
Newcastle University

[13] Looker, N., Munro, M., Xu, J. 2004. Testing Web Services.
In Proceedings of the 16th IFIP International Conference on
Testing of Communicating Systems, Oxford.

[14] Gorbenko, A., Kharchenko, V., Furmanov, A., Tarasyuk, O.
2006. F(I)MEA-Technique of Web Services Analysis and
Dependability Ensuring. In M. Butler et al. (Eds.): Rigorous
Development of Complex Fault-Tolerant Systems (LNCS
4157), Berlin, Heidelberg: Springer-Verlag, 153–167.

[15] Cristian, F. 1995. Exception Handling and Tolerance of
Software Faults. In Software Fault Tolerance, M. Lyu, ed.,
81-107

