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Abstract. Event-B is a formal modeling language having set theory as
its mathematical foundation and abstract state machines as its behav-
ioral specifications. The language has very good tool support based on
theorem proving and model checking technologies, but very little support
for test generation. Motivated by industrial interest in the latter domain,
this paper presents an approach based on genetic algorithms that gen-
erates test data for Event-B test paths. For that, new fitness functions
adapted to the set-theoretic nature of Event-B are devised. The approach
was implemented and its efficiency was proven on a carefully designed
benchmark using statistically sound evaluations.

1 Introduction

Event-B [1] is a modeling language used for formal system specification and anal-
ysis. Event-B was introduced about ten years ago and it quickly attracted the at-
tention of both academic and industrial researchers. The theoretical foundations
and associated tooling were developed in several research projects, among which
the most notable are two large European research projects: RODIN1, which pro-
duced a first platform for Event-B called Rodin, and DEPLOY2, which is cur-
rently enhancing this platform based on industrial feedback. Theorem-proving
is the core technology within Rodin, but model-checking tools have also been
developed (ProB [9]). Recently, there has been an increasing interest from the
industrial partners like SAP (who belongs to DEPLOY consortium) for test gen-
eration based on Event-B models [19]. This provided the main motivation for
our investigations into model-based testing using Event-B models, especially test
data generation.

Model-based testing (MBT) is an approach that uses formal models as basis
for automatic generation of test cases [18]. For MBT using state-based mod-
els, test generation algorithms usually traverse the state space from the initial
state, guided by a certain coverage criterion (e.g. state coverage), collecting the
execution paths in a test suite. Event-B models do not have an explicit state

1 http://rodin.cs.ncl.ac.uk - Project running between 2004-2007
2 http://deploy-project.eu - Project running between 2008-2012
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space; instead, their state spaces are given by the value of the variables. The
ProB tool [9], which is available in the Rodin platform, has a good control of the
state space, being able to explore it, visualize it and verify various properties
using model-checking algorithms. Such algorithms can be used to explore the
state space of Event-B models using certain coverage criteria (e.g. event cover-
age) and thus generating test cases along the traversal. Moreover, the input data
that trigger the events provides the test data associated with the test cases. Such
an approach using explicit model-checking has been applied to models from the
business application area by SAP [19]. The algorithms perform well for models
with data with a small finite range. However, in case of variables with a large
range (e.g. integers), the known state space explosion problem creates difficul-
ties, since the model checker explores the state space by enumerating the many
possible values of the variables.

This paper addresses a slightly different, but related, problem. Given a (po-
tentially feasible) path in the Event-B model, we use meta-heuristic search algo-
rithms (more precisely, genetic algorithms) to generate input data that trigger
the execution of the path. This is a very important issue of MBT since, for
models with large state spaces, paths with restrictive triggering conditions (e.g.
composed conditions involving one or more = operators) are difficult to attain
using the model checking approach described above. A similar problem has been
addressed by recent work on search-based testing for Extended Finite State
Machines (EFSMs) [8, 5, 20]. However, there are a number of issues that differ-
entiate search-based testing on Event-B models from these EFSM approaches as
described our position paper [16] like implicit state space, non-numerical types,
non-determinism and hierarchical models. In this paper, we start addressing
some of these issues, especially the non-numerical types.

The main contributions of the paper are enumerated below:

– Since the data structures used by Event-B models are predominantly set-
based rather than numerical, Tracey-like [17] fitness functions for such data
types are newly defined. These fitness functions are used to guide the search
for the solutions in large state spaces.

– Furthermore, the encoding of non-numerical types into a chromosome is
investigated. As Event-B models may use a mixture of numerical and non-
numerical types, the encoding has to accommodate also such a possibility.

– The proposed search-based testing approach for Event-B is applied on a
number of industry-inspired case studies. The experiments show that the
approach performs better in general compared to random testing approaches.

The paper is structured as follows. We start by describing the Event-B frame-
work in Section 2 together with a couple of representative Event-B examples in
Section 3. Then we present the proposed test generation framework based on
search-based techniques using genetic algorithms in Section 4. The experiments
are explained in Section 5 and the conclusions are drawn in Section 6.
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2 Formal modeling with Event-B

Event-B [1] is a formal language based on the notion of abstract machines having
set theory as its mathematical foundation. The two basic constructs in Event-B
are contexts and machines. The contexts specify the static part of a model and
contain the following elements: carrier sets (i.e. domains), constants and axioms.
The axioms can define relations between the constants or define their domains.
Machines represent the dynamic part of a model and can contain variables,
invariants and events.

An event is composed of two main elements: guards which are predicates that
describe the conditions that must hold for the occurrence of an event and actions
which determine how specific variables change as a result of the event execution.
An event has the following general form:

Event =̂ any t where G(t, x) then S(x, t) end.

Above, t is a set of local parameters, x is a set of global variables appearing in
the event, G is a predicate over t and x, called the guard and S(x, t) represents
a substitution. If the guard of an event is false, the event cannot occur and is
called disabled. The substitution S modifies the values of the global variables in
the set x. It can use the old values from x and the parameters from t.

For example, an event that takes a natural number parameter value smaller
than 50 and adds it to the natural (global) variable balance only if balance is
larger than 1500, can be modeled as:

Event1 =̂ any value where value ∈ N ∧ value < 50 ∧ balance > 1500 then
balance := balance+ value end.

Note that if the model has 10 integer variables with their range in [1..10,000],
then the explicit state space would have 1040 states, which is usually too much
for a brute-force traversal algorithm of an explicit model checker. In this paper,
we use meta-heuristic search techniques to deal with such large state spaces.

Let us consider another example, involving a set defined as ITEMS={it1, it2,
... , it20} and an event that modifies a set variable items, where items ⊆ ITEMS
(alternatively, we can write that items is an element of the powerset of ITEMS,
i.e. items ∈ P(ITEMS)). We can model a situation in which the value of one
global variable oneItem is randomly picked from the set items (using the Event-
B operator :∈) and the set items is updated with elements from a parameter
buffer of cardinality smaller than 5 (the cardinality is denoted by card()):

Event2 =̂ any buffer where buffer ∈ P(ITEMS) ∧ card(buffer) < 5 then
oneItem :∈ items ∧ items := items ∪ buffer end.

Thus, an Event-B model is given by the defined domains, constants, vari-
ables, events that change the global variables when executed, and a set of global
invariants specifying the properties required by the specification. The execution
of a model starts with a special event that initializes the system, followed by the
application of enabled events. At each execution step, all the guards of the events
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are evaluated and the set of enabled events is computed. Then, one enabled event
is non-deterministically chosen and its action is executed. The Rodin platform
(http://www.event-b.org/platform.html), built on top of Eclipse, provides differ-
ent plugins that manage and perform different tasks on the Event-B models.

3 Case studies

In Section 5 we run the experiments on a benchmark of 5 Event-B models.
The models are not industrial ones, but are inspired by industrial examples. We
have been in contact with partners in the DEPLOY project that are interested
in test generation from Event-B models, especially SAP, which is an industrial
partner from the business software area. We have discussed a couple of MBT
requirements together with a couple of sample models. For the benchmark, we
made model variations such that we cover different guard and variable types.

We describe 2 out of the 5 Event-B models that we used for the benchmarks.
The events of the first one contain numerical parameters, while the events of the
second model focus on set parameters. The presentation of each model starts
with a short description, followed by the types of the global variables (defined
in the context of the Event-B model). Then, the events of the Event-B machines
are listed together with their parameters. The guards and actions associated to
each event are presented in a separate table.

Numerical-based model: Bank Account. The first example models a sim-
ple bank account system. The system allows the user to deposit money in the
account or to withdraw money from it. The bank pays interest and charges
fees. Depending on the current balance, a deposit can be in four states: over-
draft, empty, silver and gold. Thus, the Event-B variables are: balance ∈ Z,
transaction ∈ BOOL and state ∈ STATES={overdraft,empty,silver,gold}. The
machine events, whose guards and actions are given in Table 1, are the following:

E1. Initialization, that initializes the bank account
E2. Deposit, having the numerical parameters amount1 and amount2
E3. Withdraw, having the numerical parameters amount1 and amount2
E4. ValidateOverdraft
E5. ValidateEmpty
E6. ValidateSilver
E7. ValidateGold
E8. PayInterest, having the numerical parameter value
E9. ChargeFee, having the numerical parameter fee.

Set-based model: Basket of Items. Here we model a basket of items. The
system allows the user to add items, to remove items and to pick items from
the basket. The system checks if the basket is empty or full or can make a
special check. The global variables are: items ∈ P(ITEMS), buffer ∈ P(ITEMS),
isEmpty ∈ BOOL, isFull ∈ BOOL, CAPACITY ∈ N, and count ∈ N with the
invariants count ≥ 0 ∧ count ≤ CAPACITY and count = card(items), where



Test Data Generation for Event-B Models using Genetic Algorithms 5

Table 1. Guards and actions of Bank Account events

Ev Guards Actions

E1: TRUE balance := 0, state := empty
transaction := FALSE

E2: amount1 + amount2 > 200 ∧ balance := balance + amount1 + amount2
amount1 ∈ N ∧ amount2 ∈ N transaction := TRUE

E3: balance > 0 ∧ amount1+amount2<1000 ∧ balance := balance− amount1− amount2
balance− amount1− amount2 >−100 ∧ transaction := TRUE
amount1 ∈ N ∧ amount2 ∈ N

E4: balance < 0 ∧ balance > −100 state := overdraft

E5: balance = 0 state := empty

E6: balance > 0 ∧ balance < 1000 state := silver

E7: balance ≥ 1000 state := gold

E8: balance > 1500 ∧ balance := balance + value
value ≤ 50 ∧ value > 0 ∧ value ∈ N

E9: fee > 0 ∧ fee < 50 ∧ fee ∈ N ∧ balance := balance− fee
transaction = TRUE transaction := FALSE

ITEMS = {it1, it2, . . . , it20}. The Event-B events, whose guards and actions are
given in Table 2, are the following:

E1. Initialization, that initializes the basket of items
E2. PickItems, with the set parameter its
E3. AddItems
E4. RemoveItems
E5. ValidateEmpty
E6. CheckSpecial
E7. ValidateFull.

4 Test data generation for Event-B models using genetic
algorithms

Before describing our test generation approach, let us establish the problem to
be solved. First, let us note that Event-B specifications are event-based rather
than state-based models. Formally, these are abstract state machines [4] in which
the (implicit) states are given by the (global) values of the variables on which the
events operate. Each event is given by a triplet consisting of (1) the parameters
(local variables) used by the event, (2) the guards which constrain the event
application (the guards may involve both local and global variables) and (3)
the actions of event, which may change the values of the global variables. The
events produce the transitions between states: the guards establish the valid
source state(s) of the transition while the actions produce the target state(s). In
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Table 2. Guards and actions of Basket of Items events

Ev Guards Actions

E1: TRUE items := ∅, buffer := ∅, count := 0
CAPACITY := card(ITEMS)
isEmpty := TRUE, isFull := FALSE

E2: its ⊆ ITEMS buffer := its

E3: buffer ⊆ ITEMS ∧ card(buffer) > 5 ∧ items := items ∪ buffer
card(buffer) + count ≤ CAPACITY count := card(items ∪ buffer)

isEmpty := FALSE

E4: buffer ⊆ items ∧ card(buffer) > 3 ∧ items := items \ buffer
count− card(buffer) ≥ 0 count := card(items \ buffer)

E5: items = ∅ ∧ count = 0 isEmpty := TRUE

E6: {it1, it20} ⊆ items ∧ card(items) < 6 buffer:=items

E7: count = CAPACITY isFull := TRUE
items := ∅, count := 0

general, the application of an event depends on the values of the parameters it
receives. If we want to execute a path (sequence of events) through the model,
we will need to find appropriate parameter values for each event in the sequence
(i.e. which satisfy the corresponding guards). This is the problem we will solve
using a genetic algorithm. Naturally, the prerequisite is that a set of paths, which
satisfies the given test requirement has already been found.

In general, this requirement is expressed as a level of coverage of the model.
Various levels of coverage for finite state machines exist in the literature [3, 18]
and some can be adapted to Event-B models without the need to transform
the model into an explicit state machine (for large systems this transformation
may be impractical). For example, transition coverage for a finite state machine
requires every transition to be triggered at least once. Similarly, for Event-B
models, event coverage will involve the execution of every event at least once.
This type of coverage can be generalized by requiring that each feasible sequences
of events of a given length k is executed at least once. Obviously, in order to
decide if a path is feasible or not it may be necessary to effectively find test
data (parameter values) which triggers it. Consequently, the potentially feasible
paths can be selected first by deleting paths which contain obvious contradictory
constraints (e.g. both C and ¬C) and then the test data generation algorithm is
applied to each such path. Other types of coverage may also be defined but this
beyond the scope of this paper.

In this paper, we assume that we have a set of paths (that cover, for instance,
all events of the model). For each path of the given set, we seek appropriate test
data, i.e. event parameters which enable the events in the path. It may be possible
that the test data for the selected path has not been found, either because of
the complexity of the guard constraints or simply because the path is infeasible;
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if this is the case, a new path is selected. Note that the paper does not address
the issue of path selection, but only the test generation for the chosen path(s).

Below we present the theoretical instruments based on genetic algorithms
for the above problem. First, Subsection 4.1 provides the background on genetic
algorithms. Then, the Subsections 4.2 and 4.3 describe the main ingredients of
the approach, i.e. the encoding of the sought solutions into chromosomes and
the fitness function that guides the search into the solution space, respectively.

Note that among the different meta-heuristic algorithms, for convenience, in
this paper we have chosen to use the class of genetic algorithms [13], because
they are widely used in search-based testing approaches and have good tool-
ing support. However, we plan in the future to experiment with other types of
algorithms like simulated annealing or particle swarm optimization.

4.1 Genetic algorithms

Genetic algorithms (GAs) [13] are a particular class of evolutionary algorithms,
that use techniques inspired from biology, such as selection, recombination (cross-
over) and mutation. GAs are used for problems which cannot be solved using
traditional techniques and for which an exhaustive search of the solution space
is impractical. In particular, the application of GAs to the difficult problem of
test data generation recently received an increased attention from the testing
research community [11, 10].

GAs basic approach is to encode a population of potential solutions on some
data structures, called chromosomes (or individuals) and applying recombina-
tion and mutation operators to these structures. A high-level description of a
genetic algorithm [10, 13] is given in Fig. 1. The fitness (or objective) function
assigns a score (called fitness) to each chromosome in the current population.
The fitness of a chromosome depends on how close that chromosome is to the
solution of the problem. Throughout this paper, the fitness is considered to be
positive and finding a solution corresponds to minimizing the fitness function, i.e.
a solution will be a chromosome with fitness 0. The algorithm terminates when
some stopping criterion has been met, for example when a solution is found, or
when the number of generations has reached the maximum allowed limit.

Various mechanisms for selecting the individuals to be used to create off-
spring, based on their fitness, have been devised [6]. GA researchers have exper-
imented with mechanisms such as sigma scaling, elitism, Boltzmann selection,
tournament, rank and steady-state selection [13].

After the selection step, recombination takes place to form the next genera-
tion from parents and offspring. The mutation operator is then applied. These
two operations, crossover and mutation, depend on the type of encoding used
and so they are discussed in more detail in the next subsection.

4.2 Chromosome encodings

Consider a path event1 . . . eventn in the Event-B model. A chromosome (possible
solution) is a list of values, x = (x1, . . . , xm) for the event parameters of the
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Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select P ′ from P according to selection mechanism
Recombine parents from P ′ to form new offspring
Construct P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Fig. 1. Genetic Algorithm

path events (in the order they appear). More formally, if pi1, . . . , piki
are the

parameters of eventi,1 ≤ i ≤ n, then x represents a list of values for parameters
p11 . . . pnkn

. Naturally, m = k1+. . .+kn can differ from the number n of events in
the sequence. If the values x satisfy all guards and, consequently, trigger the path,
then x is a solution for the given path. For numerical data, the chromosomes are
integer-encoded, each gene representing one parameter.

Consider, for example, the path E2 E8 E9 E3 E7 from the Bank Account
example presented earlier (technically, any path of a model starts with the special
event Initialization (E1), but for simplicity when we mention the events of a path
we skip E1). There are five events in the path: E2 (Deposit), which receives
amount1 and amount2 as parameters, E8 (PayInterest), with parameter value,
E9 (ChargeFee), with parameter fee, E3 (Withdraw), with parameters amount1
and amount2 and E7 (ValidateGold), with no parameters. Since all 6 parameters
have numerical types, a chromosome for the above path will be a list of 6 integers.

An additional problem occurs when non-numerical types are involved since
such values will have to be encoded into the chromosome. The applications we
have considered use enumeration types as well as types derived from these using
traditional set operators (∪, \,×). For a k-valued type T = {v1, . . . , vk}, a set
parameter S which is a subset of T , i.e. S ⊆ T , is represented by a bitmap of
length k, which has 1 on the ith position in the bitmap if vi ∈ S, and 0 other-
wise. Then, a chromosome corresponding to parameters p1 . . . pm will be a list of
values x1 . . . xm, in which each value is encoded as appropriate. The applications
we have considered use both numerical and non-numerical types and so some
values in the chromosome are represented by simple integers whereas other val-
ues are encoded as bitmaps. Once we generated a population of chromosomes,
the operations of crossover and mutation are applied as described below.

Crossover. For mixed chromosomes (with both binary and integer genes)
and binary-only chromosomes, a single-point crossover is used. This randomly
chooses a locus and exchanges the subsequences before and after that locus
between two chromosomes to create two new offspring. For example, the strings
00000000 and 11111111 could be crossed over at the third locus to produce the
two offspring 00011111 and 11100000. The crossover is applied to individuals
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S1

eventm 
[guardm]

Guard not satisfied

approach_level := 0

branch_level := obj(guard
m)

Sm+1SmS2

Guard not satisfied

approach_level := m-1

branch_level := obj(guard
1)

Guard not satisfied

approach_level := m-2

branch_level := obj(guard
2)

S3

event1
[guard1]

event2
[guard2]

Fig. 2. Calculating the fitness function

selected at random, with a probability (rate) pc. Depending on this rate, the
next generation will contain the parents or the offspring.

For integer chromosomes, we used a heuristic real value crossover, inspired
from [12], that showed to be the most efficient type of crossover for our problem.
This uses the fitness of the individual for determining the direction of the search.
For parents x = (x1, . . . , xm), y = (y1, . . . , ym), x fitter than y, one offspring z =
(z1, ..., zm) is generated, with zi being the integer-rounded value of α·(xi−yi)+xi,
α ∈ (0, 1). Heuristic real value and single-point crossovers can be combined.

Mutation is used to introduce variation in the population by randomly
changing genes in the chromosome. Mutation can occur at each bit position in
a string with some probability pm, usually very small [13]. For binary genes,
the mutation operator randomly flips some bits in a chromosome. For example,
the string 00000100 could be mutated in its second position to yield 01000100.
For integer genes, the gene value is replaced by another integer value that is
randomly chosen from the same interval.

4.3 Fitness function

The algorithm evaluates a candidate solution by executing each event with the
values encoded in the chromosome’s genes until the guard of the current event is
not satisfied. The fitter individuals are the ones which enable more events from
the given path. They are rewarded with a lower fitness value. The fitness function
is calculated using a formula widely used in the search-based testing literature
[11, 8], using two components. The first evaluates how close a chromosome is to
executing the given path, by counting the events executed. The second measures
how close is the first unsatisfied guard predicate to being true.

fitness := approach level + normalized branch level

The first component, approach (approximation) level is similar a metric in evo-
lutionary structural test data generation [11]. This is calculated by m − 1 − n,
where m is the length of the path to be executed and n is the number of events
successfully executed until the first unsatisfied guard on the path, as in Fig. 2.

A fitness function formed only from the approach level has many plateaux
(i.e. for each value 0, 1, . . . ,m−1) and it would not offer enough guidance to the
search. Consequently, the second component, called branch level, was introduced.
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Table 3. Tracey’s objective functions for relational predicates and logical connectives.
The value K, K > 0, refers to a constant which is always added if the term is not true.

Relational predicate
Objective function obj

or logical connective

a = b if abs(a− b) = 0 then 0 else abs(a− b) + K
a 6= b if abs(a− b) 6= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) + K
a ≤ b if a− b ≤ 0 then 0 else (a− b) + K
a > b if b− a < 0 then 0 else (b− a) + K
a ≥ b if b− a ≤ 0 then 0 else (b− a) + K

Boolean if TRUE then 0 else K
a ∧ b obj(a) + obj(b)
a ∨ b min(obj(a), obj(b))
a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))
¬a Negation is moved inwards and propagated over a

This computes, for the place where the actual path diverges from the required
one, how close was the guard predicate to being true.

For numeric types, the branch level can be derived from the guards predicates
using Tracey’s objective functions as shown in Table 3 [17, 10]. The branch level
is then mapped onto the interval [0,1) or normalized.

We extended the calculation of the branch level to applications which involve
set theory based constraints as described below. The applications considered use
basic types that can be mapped onto either an interval ([p..q], 0 ≤ p < q,) or an
enumeration of non-negative integers ({p1, . . . , pn}, n ≥ 1, pi ≥ 0, 1 ≤ i ≤ n).
Furthermore, the derived types use the ∪, ∩, \ and × set operators. Then the
objective function for the a ∈ A and a /∈ A predicates can be derived using the
transformations given at the top of Table 4. The formulae are then extended for
the ⊆ and = set operators, as shown at the bottom of Table 4.

5 Experiments

We have implemented our approach as a plugin for the Eclipse-based Rodin
platform for Event-B. The plugin is designed to automatically generate test
data for given paths in the Event-B model. It can generate test data, i.e. the
input parameters for the events on the given path, employing the fitness function
described in Section 4.3. The execution of the events (including the initialization)
was performed using the Event-B model simulation of the ProB plugin [9].

For the benchmark of 5 models mentioned in Section 3, we have considered a
set of 18 random paths likely to be feasible, which covered all the events from the
models. The paths length varied between 2 and 5 events (without counting the
initialization event). The number of parameters on each path varied between:
(a) 1 and 7 for numerical models; (b) 1 and 2 non-numerical parameters, such
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Table 4. The extension of Tracey’s objective functions to set operators

Predicate involving ∈ for basic
Objective function obj

or derived sets

a ∈ [p, q] obj((a ≥ p) ∧ (a ≤ q))
a /∈ [p, q] obj((a < p) ∨ (a > q))
a ∈ {p1, . . . , pn} obj((a = p1) ∨ . . . ∨ (a = pn))
a /∈ {p1, . . . , pn} obj((a 6= p1) ∧ . . . ∧ (a 6= pn))

a ∈ A ∪B obj((a ∈ A) ∨ (a ∈ B))
a ∈ A ∩B obj((a ∈ A) ∧ (a ∈ B))
a ∈ A \B obj((a ∈ A) ∧ (a /∈ B))
(a, b) ∈ (A,B) obj((a ∈ A) ∧ (b ∈ B))

Predicates for ⊆ and = operators Objective function obj

[p, q] ⊆ A obj(∧q
i=p(i ∈ A))

{p1, . . . , pn} ⊆ A obj((p1 ∈ A) ∧ . . . ∧ (pn ∈ A))
[p, q] 6⊆ A obj(∨q

i=p(i /∈ A))

{p1, . . . , pn} 6⊆ A obj((p1 /∈ A) ∨ . . . ∨ (pn /∈ A))
A = B obj((A ⊆ B) ∧ (B ⊆ A))
A 6= B obj((A 6⊆ B) ∨ (B 6⊆ A))

as x ∈ P(ITEMS) for set examples; (c) 2− 4 set parameters and 2− 3 numerical
parameters for the mixed model. The codification used was: integer-valued for
numerical parameters (the integer range was fixed to 2000) and bitmap for set
parameters.

As recommended in [2], a search algorithm (GA in this case) should be com-
pared with random search in order to check that the algorithm is not simply
successful because the search problem is easy. Therefore, we tried to generate
test data for the 18 selected paths mentioned above, denoted by P1 − P18,
using the two methods: search-based testing with genetic algorithms (GA) and
random testing (RT). For each path and each test generation method, 30 runs
were performed (this number was also recommended in [2]). A run is considered
successful if it can produce input test data that can trigger the whole path, or
equivalently, the fitness function associated has the value 0. The run ends when
a solution was found or when the maximum number of generations was reached.

Using genetic algorithms, the amount of time needed to obtain test data for
a path, i.e. the actual values of the parameters which trigger the path, varied
between 1 second (for very simple paths, where the solution could be found from
the first generation) and 60 seconds (for complex paths).

The genetic algorithm framework used for experimentation was the open
source Java Genetic Algorithms Package (JGAP) [7]. The maximum number of
generations for the genetic algorithm was set to 100 and the population size to
20. The selection operator employed was BestChromosomesSelector, an elitist
operator, the mutation rate was pm = 1/10 and the crossover was single-point
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(for non-numerical parameters) or heuristic crossover (for numerical ones), as
presented in Section 4.2.

For random testing, the same library was used: instead of applying recom-
bination or mutation, the population was randomly generated at each step, en-
suring this way an equal treatment, i.e. an equal number of generations (or
fitness function evaluations) for both methods, GA and RT. For each run, the
generation when the solution was found was recorded and Table 5 presents the
summarizing data: the success rate for each method (percent of successful runs
from the 30 ones considered) and other descriptive statistics, e.g. the average
(mean) number of generations, the median and the standard deviation.

Statistical tests should be realized to support the comparison of GA and RT
runs. In our experiments we have used two statistical tests: the parametric t-test
and the non-parametric Mann-Whitney U-test. The null hypothesis (H0) is thus
formulated as follows: There is no difference in efficiency (the number of genera-
tions needed to find a solution) between GA and RT. The alternative hypothesis
(Ha) follows: there is a difference between the two approaches, GA and RT. The
two tests measure different aspects: the t-test measures the difference in mean
values (the null hypothesis is H0 : µ1 = µ2), whereas the Mann-Whitney U-test
measures their difference in medians (H ′

0 : θ1 = θ2), i.e. whether the observations
in one data sample are more likely to be larger than observations in the other
sample.

The test results and the p-values obtained are given in Table 5. In the columns
t-test and U-test, the sign ‘+’ stands for rejecting the null hypothesis (conse-
quently, there is a statistically significant difference between GA and RT results),
while the ‘−’ indicates that the null hypothesis cannot be rejected at the signifi-
cance level considered, α = 0.01. The p-value computed by the statistical test is
also provided, excepting the case when it can not be computed, e.g. when both
approaches were able to find a solution from the first generation for all the runs
(paths P16, P17), where ‘†’ stands for not computed.

Some standardized effect size measures were also used and they are given in
the last two columns: the Vargha and Delaney’s A statistic, the Cohen’s D coef-
ficient. The Vargha and Delaney’s A statistic [2] is a performance measure, used
to quantify the probability that GA yield ‘better values’ than RT. In our case,
‘better values’ means lower number of generations needed to obtain a solution.

The Vargha and Delaney’s statistics is given in the column ‘A’. For simple
paths, where RT and GA provide the solution in the same number of generations,
the effect size is 0.5. For more complex paths, a value of 0.82 means that we
would obtain better results in 82% of the time with GA (they guide the search
to success in a lower number of generations). It is worth noting that GA clearly
outperformed RT for 14 out of 18 paths considered, and the difference in terms
of success rate, average (or median) number of generations was significant.

The last column of Table 5 presents the Cohen’s D coefficient, which is com-
puted as the absolute difference between two means, divided by a pooled stan-
dard deviation of the data [2, 15]. According to [15], Cohen has proposed the
following ‘D values’ as criteria for identifying the magnitude of an effect size:
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Table 5. Success rates, results of the statistical tests and effect size measures

Path Meth.
Success Avg.

Median
Std. t-test U-test

A D
rate gen. dev. p-val p-val

P1 GA 100.0% 18.2 12.0 18.8 + +
1.00 5.85

P1 RT 3.3% 99.0 100.0 5.3 < 0.001 < 0.001

P2 GA 100.0% 14.9 11.0 12.5 + +
1.00 6.45

P2 RT 3.3% 97.6 100.0 13.1 < 0.001 < 0.001

P3 GA 96.7% 22.7 14.5 19.8 + +
0.98 4.61

P3 RT 10.0% 96.9 100.0 11.1 < 0.001 < 0.001

P4 GA 100.0% 12.4 8.0 11.6 + +
0.82 1.17

P4 RT 96.7% 35.0 32.5 24.8 < 0.001 < 0.001

P5 GA 66.7% 53.3 44.5 38.7 + +
0.83 1.71

P5 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P6 GA 100.0% 23.5 21.0 9.2 + +
1.00 11.73

P6 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P7 GA 100.0% 12.7 12.0 4.5 + +
1.00 16.72

P7 RT 6.7% 98.5 100.0 5.7 < 0.001 < 0.001

P8 GA 100.0% 16.9 17.0 4.4 + +
1.00 26.59

P8 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P9 GA 100.0% 13.7 13.0 2.4 + +
1.00 12.46

P9 RT 3.3% 98.3 100.0 9.3 < 0.001 < 0.001

P10 GA 100.0% 30.9 31.5 6.3 + +
1.00 15.51

P10 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P11 GA 96.7% 20.0 13.0 22.6 + +
0.98 4.64

P11 RT 3.3% 98.6 100.0 7.9 < 0.001 < 0.001

P12 GA 100.0% 13.5 13.0 2.8 + +
1.00 43.66

P12 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P13 GA 100.0% 11.9 11.5 2.2 + +
1.00 56.56

P13 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P14 GA 100.0% 1.3 1.0 1.6 − −
0.47 0.29

P14 RT 100.0% 1.0 1.0 0.0 0.28 0.49

P15 GA 100.0% 1.0 1.0 0.0 − −
0.50 †

P15 RT 100.0% 1.0 1.0 0.0 † 1.00

P16 GA 100.0% 1.0 1.0 0.0 − −
0.50 †

P16 RT 100.0% 1.0 1.0 0.0 † 1.00

P17 GA 90.0% 16.9 5.5 29.9 + +
0.91 1.79

P17 RT 53.3% 72.2 83.5 31.7 < 0.001 < 0.001

P18 GA 100.0% 1.8 1.0 2.4 − −
0.53 0.17

P18 RT 100.0% 1.5 1.0 0.8 0.53 0.63
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a) small effect size: D ∈ (0.2, 0.5), b) medium effect size D ∈ [0.5, 0.8), c) large
effect size D ∈ [0.8,∞). According to this classification, it can be easily noticed
that the difference between the results obtained with GA versus RT correspond
for most paths (14 out of 18) to a large effect size.

6 Final discussion

Bottom line. In this paper, we have presented an approach based on genetic
algorithms that allows generating test data for event paths in the Event-B
framework. One distinguishing feature of Event-B is its set-theoretic founda-
tion, meaning that in Event-B models, numerical variables are used together
with non-numerical types based on sets. To address this, we extended the fitness
functions available in the search-based testing literature to set types. Moreover,
the encoding of the sought solutions included mixed chromosomes containing
both numerical and non-numerical types. Finally, we followed standard statis-
tical guidelines [2] to demonstrate the efficiency and effectiveness of our imple-
mentation on a diversified benchmark inspired by discussions with the industry.

Related work. The only approach of test generation for Event-B models
is based on explicit model-checking [19] with ProB [9], which suffers from the
classical state space explosion problem. There is also related work on applying
search-based techniques to EFSMs [8, 5, 20]. Differently from these, we address
a different modeling language and tackle non-numerical types. However, we can
certainly extend our work with ideas from these papers, e.g. regarding feasible
path generation, or from previous work on test generation from B models (the
precursor of Event-B language, even though B is not an event-based language)
[14], [18, ch.3].

Future work. Since the goal is to develop a test method that scales for
industrial Event-B models, we have performed a survey of 29 publicly available
Event-B models posted by the DEPLOY academic and industrial partners3.
Beside the large size of industrial models, there are a couple of other dimensions
still to be addressed. For instance, Event-B uses a rich set of operations as
well as complex data based on set relations, sets of sets or partial functions.
In principle, these can be mapped to sets and use the proposed methods but
this may not scale, so the fitness functions and encodings might need to be
further specialized for these operators. Moreover, industrial models are usually
decomposed in order to mitigate modeling complexity, which means that we have
to extend our methods to work for modular and component-based models.
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