Flows Tool

Alexei lliasov

Newcastle University

Contents

Introduction

Example 1: assumption propagation
Example 2: scenario folding

Example 3: deadlock-freeness and feasibility
Generation of program counters

Aspects

Relative deadlock-freeness, refinement diagrams!

2

vV vV vV vV vV v VY

Diagram animation

Yin version 1.1

2in version 1.2

Flow

The Flows plugin is an extension of the Event B Rodin platform.
Its purpose is to allow a modeller to verify a range of properties
related to the order of event enabling in an Event B model. The
tool offers a simple graphical notation and is meant to complement
the core Event B development method.

Flow

A flow diagram is a visual editor for entering certain kind of
theorems. Such theorems could be added directly into a machine
but this is impractical and error-prone. These set of new theorems
provides an extension of the Event B proof semantics and hence
gives a modeller an additional modelling tool.

An alternative viewpoint is seeing a flow diagram as a use case
scenario specification. A set of such scenarious would be typically
specified in system requirements and it is naturall to try to use
these as verification conditions during the modelling process.

The meaning of flow POs

The core theorems generated by the tool characterise the relation
between the after-state of one event and the guard of another.

B — ©

©

In the figure above, two events, f and g, are characterised by their
domains (guards) and ranges (after-states of actions). The
righ-hand side part is the flow diagram notation.

Enabling (FENA)

The enabling relation states that the first event enables the second
event. Hence, when the first event happens it is always true that
the second may happen next. Formally, the domain of the second
event is fully contained in the range of the first event.

On a diagram this is denoted by a solid arrow connecting two
events. Corresponding proof obligations end with FENA suffix

Disabling (FDIS)

An event disables another event if the guard of the second event is
guaranteed to be not enabled in the state produced by the first
event.

OO

The diagram notation is a dashed red arrow and the PO suffix is
FDIS.

Possibly enabling (FFIS)

An event possibly enables another event if it potentially produces
an after-state that enables the guard of the second event.

© ©

This connector is often used to check that an event is feasible in a
given context. The notation is a dash-dot yellow line and the PO
suffix is FFIS.

Combinations

Assuming that FENA, FDIS, FFIS denote relations as defined
above, the following conditions apply.

—-FENA = FFIS vV FDIS FENA A FFIS = FENA
—FDIS = FFIS FENAA FDIS = L
—FFIS = FDIS FFIS N FDIS = L

Thus, for instance, the following is a contradiction:

O

Diagram nodes

The main node class is a machine event. There is a dedicated node
type for the initialisation event and nodes for implicit events skip
and stop.

An aspect is a property formulated

Start (initialisation) event skip (no state change) in isolation and then attached to
one or more events

[scenario

[dscenario Link Aspect
o) ® -

Stop (deadlock or
termination) event A subscenario element

All further node types are used for structuring large diagrams.

Combining relations

There are two different ways to combine node relations. One is to
use a new instance of a source node and the other is to have
several connectors originating from the same node. The former is
called AND combination and results in two (or more) theorems.
The latter is an OR combinations and there is just one theorem.

AND OR

5

O
©

The general rule is that AND requires that all the specified event
relations hold while for OR requires that a given relation at least
for one pair of events. Different types of connectors originating
from the same node do not interfere.

Relation constraints

There are additional ways to constrain the OR case of the enabling
relation. It is useful to be able to state that certain events are
never enabled together or, on the contrary, are always enabled at
the same time (in the context of the after state of a given event).

©
"©

In the above, events f and g must be both enabled after the
execution of event e.

Relation constraints

In general, one can cluster the outgoing connectors it several
groups and define the constrain separately for each group.

The example diagram above states that after e events f and g
must be enabled together, or, alternatively, events m and n must
be enabled together.

Relation constraints

Another constraints kind is the xor-like exclusion where only one of
the events is enabled. The same rules in principles apply.

Example 1

As an illustration we consider the following simple Event B model.
MACHINE calc

VARIABLES v

INVARIANT v € N

INITIALISATION v := 0

EVENTS
inc = BEGIN v:=v+1END
dec = WHEN v >0 THEN v := v + 1 END
set = ANY z WHERE z € N THEN v := z END
double = BEGIN v := v %2 END
half = ANY U WHERE U * U = v THEN VvV := u END

END

Example 1 (1)

A simple flow diagram below states that after inc the system can
always engage into either dec or double or half.

Note that there is just one theorem corresponding to the relation
formed by three enabling connectors originating from event inc

@"inc/dec:double: half/FENA

Example 1 (2)

Suppose we also want to check whether double may be followed by
dec or half.

A new theorem appears and this one cannot be discharged.

@'inc/dec:double: half/FENA
@.doublefhalf:dec/FENA

Example 1 (3)

Looking closer at the double/half : dec/ FENA proof obligation we
would discover the need to show that either v has a natural square
root (to satisfy the guard of half) or that v is not zero (to satisfy
the guard of dec). There is nothing in event double itself to satisfy
these conditions. However, from the diagram we know that, in this
particular case, double becomes enabled after event inc; since inc
assigns to v a non-zero number we should be able to satisfy the
guard of dec.

Example 1 (3)

To do the proof we have to propagate the information about the
after-state of inc to the point where we need to prove the
enabledness of dec. This done by placing a predicate v > 0 (called
guard) on a connector from inc to double. For event inc the
predicate is an assertion - the condition to proven to hold in the
after-state. For double, it is an assumption - a condition assumed
to hold whenever control is passed from inc to double.

Example 1 (3)

Assertion /assumption propagation is not limited to one step. One
can use a complex of guards to propagate through a longer chain.
Obviously, this requires more proofs as each assertion leads to an
additional verification condition.

If the same property holds for a subset of a flow diagram it may be
more efficient to define it using a subscenario or an aspect.

Example 1 (4)

Let us focus on the more challenging branch leading from inc to
half via double and investigate under what conditions these event
sequence may take place (a reminder: half computes the square
root of v).

it

It it is difficult to come up with a suitable condition straight away.
A quick check shows that fitting values for v prior to the execution
of inc look like this: 1,7,17,31,....

Example 1 (4)

We do not need to guess what law governs these numbers. It is
easily deduced from the diagram. The technique is the following.
One starts by formulating an assumption that would be enough to
discharge the theorem of interest. In our case, a natural
assumption is that at the point when half becomes enabled there
exists a natural number n that is a square root of v.

>
double
O3n n+n=vw

The addition of the assumption trivially discharges the half
enabledness theorem.

Example 1 (4)

The new assumption results in an assertion for event double; this
cannot be proved on its own. The form of the proof suggests an
additional assumption for event double, as shown below.

Oan:n#n=w?

-

o3an- - n#*n=y

Example 1 (4)

Clearly, a natural number can be divided by two only if it is an even
number. Hence, we can replace v by v x 2 in both guard predicates

O 3n - 24nsn=v

-

double
oD3ncdansn=vy

Example 1 (4)

The new assumption gives rise to a new assertion condition, now
for event inc. There are no incoming connection for inc hence we
cannot push assertions any further. Instead we derive a specific
instance of inc with a stronger enabling condition. The condition
is easily computed and the overall result is shown below.

inc
<= an nenNl 4 2ensn-l=v

O 3n-2#nsn=v

-

double
o

In+4sn+n=v

Thus, in a number of steps we have discovered set of initial states
{2 % n? — 1||n € N1} satisfying our flow diagram. The set is
encoded as the constraining predicate of event inc.

Example 1 (5)

The constraining predicate of an event may reference event
parameters. This allows one to derive an event instance with
parameters constrained or even set them to concrete values.

set
&z e {16, 81}

