Exercise 1
Railway Safety Invariants

Exercise in UML-B Class and Context Diagram modelling

Colin Snook

1/15



Specification:
Railway Interlocking Safety Requirements

A Railway interlocking system controls trains passing through a track layout by
changing the state of Signals which can be Proceed, Warning and Stop.

The signal immediately before another signal is said to be RearOf the second signal.
The track layout is divided into Routes. Each Route has an Entry signal at its start.

Some Routes Conflict with others (e.g. use the same section of track). A route is
locked before it is used and then unlocked again.

The following safety requirements are specified:

SR1 - If a signal shows Stop, the signal RearOf it must show Stop or Warning

SR2 - If the entry signal of a route shows Proceed or Warning, then the Route is locked
SR3 - If a route is locked then no route that conflicts with it is locked

2/15



Instructions:
Railway Interlocking Safety Requirements (cont.)

Model this domain in just enough detail to be able to express the safety
requirements.

Use a UML-B Context diagram for the static parts and a Class Diagram for the
varying parts. (Link the Classes to the ClassTypes using the Instances property
of the Class).

Add invariants to your model to reflect these requirements.
Add guards to your events to ensure the system does not violate the invariants.

Verify the model using the prover

3/15



Analysis

Our aim is to keep the model as simple as possible. We just want enough detail
to be able to express the safety requirements as invariants and no more.

Looking at SR1 we need to model a set of Signals. Signals have exactly one
associated RearOf signal. This is a constant® so we should model itin a

Context Diagram (That means we will have to make Signal a ClassType in a
Context Diagram).

We need to talk about the state of Signals (called ‘aspect’ in railway jargon) so
we will need to define an enumerated type. We can do this with a Class Type
that has instances set to {Proceed,Warning,Stop}.

Since the aspect of the Signal varies we will need to model that in a Class
Diagram. So we need a Class signal that is linked to the ClassType Signal . We

will need events to set each state. (Note that it is better to model separate
setter events for each state so that we can put different guards on each of

them)

* Actually rearOf might depend on the which routes are currently locked but for simplicity we assume it is a constant for now

4/15



Analysis (cont.)

From SR2 we need to model a set of Routes. Routes have an associated Entry
Signal which we can model as an association. Again this is a constant, so we
will put it in a ClassType on the Context Diagram. Routes can be locked and
unlocked. We could model that as a boolean variable attribute, ‘locked’, in a
linked Class and we will need lock and unlock events to change it.

Finally, from SR3 routes may be in conflict with other routes. This is a constant
association from Routes to Routes so we should put it as a ‘self’ loop in the
ClassType for Routes. Since each route may have none or many conflicting
routes we will make this a multiplicity many association (i.e. relation).

* Actually rearOf might depend on the which routes are currently locked but for simplicity we assume it is a constant for now

5/15



Context Diagram

<% ROUTE
Attributes
<% SIGNAL o Entry: SIGNAL . .n
Attributes < o Conflicts: ROUTE o
© RearOf: SIGNAL 1..1 8..n p—
% true
1..1 8..n o Entry < true
© RearOf

<~ ASPECT: [{Proceed,Warning,Stop}]
o Conflicts

6/15



Class Diagram

‘o Signal= SIGNAL
Attributes
¢ aspect: ASPECT
Events
% setStop
%+ setWarning
% setProceed
Invariants
<~ thisSignal-aspect = Stop = thisSignal-RearOf-aspect € {Warning, Stop}

‘& Route= ROUTE
Attributes
¢ locked: BOOL
Events
% lock
< unlock
Invariants
<~ thisRoute-Entry-aspect # Stop = (thisRoute-locked = TRUE)
e (thisRoute- locked=TRUE » thisRouteedom(Conflicts)) = (Vcr-creConflicts[{thisRoute}] = cr-locked = FALSE) !

7/15



Class Diagram with guards and actions

guard: thisSignal-RearOf-aspect € {Warning, Stop}
action: thisSignal-aspect = Stop
guard: Vr-reeEntry~[{thisSignal}] = (r-locked = TRUE)
action: thisSignal-aspect = Warning
o Signal= SIGNAL
— AS/ guard: Vs:s € RearOf~[{thisSignal}] =s-aspect # Stop
guard: Vr-reeEntry~[{thisSignal}] = (r-locked = TRUE)
i::::ggﬁmg/ action: thisSignal-aspect = Proceed
% setProceed
4 thisSignal-aspect = Stop = th;nsv;?gn:al-RearOf-aspect € {Warning, Stop)
guard: Vcr-creConflicts[{thisRoute}] = cr-locked = FALSE
© Route= ROUTE action: thisRoute-locked = TRUE
¢ Llocked: BOO e
guard: thisRoute-Entry-aspect = Stop

% lock
4 unlock </ action: thisRoute:locked := FALSE

Invariants

<~ thisRoute-Entry-aspect # Stop = (thisRoute-locked = TRUE)
<~ (thisRoute-locked=TRUE A thisRouteedom(Conflicts)) = (Vcr-creConflicts[{thisRoute}] = cr-locked = FALSE)

8/15



One proof obligation does not prove automatically

v (= Safetylnvariants.eventB
» @ Domain0Ctx
» @ Domain0_implicitContext Could the lock event violate the
v @, Domain0 SR3 conflicts invariant
» © Variables
» <, Invariants
> 4, Events lock/Invariant_SR3/INV
v @ Proof Obligations
@" Invariant_SR2
@" Invariant_SR3
@" Invariant_SR1
@" INITIALISATIO
@" INITIALISATIO
@" INITIALISATIO
@" INITIALISATIO
@" INITIALISATIO
@" lock/lock.Gua
@" lock/locked.n
@ lock/Invariant_one s uve
@4, lock/Invariant_SR3 /INV
@" unlock/unlock.Guard_SR2 /W
@" unlock/locked.type/INV
@" unlock/Invariant_SR2 /INV

nA tmlack: Hlnvavinne €D 2 JINIVS

9/15

e Event in DomainB
lock:
ANY thisRoute WHERE
thisRoute.type: thisRoute € Route
lock.Guard SR3: Vcr-creConflicts[{thisRoute}] = locked(cr) = FALSE
THEN
lock.Actionl: Llocked(thisRoute) = TRUE
END
e Invariant in Domain@
Invariant SR3: VthisRoute-((thisRouteeRoute)=>((locked(thisRoute)=TRUE A this




The Lock event

® locked route

O un-locked route

Q changes from
unlocked to locked

conflicts

thisRoute

the lock event checks that the set

of conflicting routes contains no
locked routes before locking ‘thisRoute’

10/15



A route that conflicts with itself

® locked route What if conflicts contains thisRoute?

O un-locked route then the invariant breaks

Q changes from
unlocked to locked

conflicts

°

thisRoute

11/15



A route that conflicts with itself

We can disallow this in our definition
® lockedroute of conflicts because it is safe to use a route if

0O un-locked route it is the only conlicting locked route

Q changes from
unlocked to locked

conflicts

e

thisRoute

12/15



Symmetry

What if we lock one of the conflicting routes later on in
® locked route another lock event...
O un-locked route then the invariant breaks

Q changes from
unlocked to locked

conflicts

thisRoute

13/15



Symmetry

We prevent this by insisting on symmetry so that the
guard in the lock event prevents us from locking
thisRoute2 when thisRoute is already locked.

Our real-life’ concept of conflicts is symmetric.

conflicting routes

o locked route

O un-locked route

14/15




New Axioms added to ROUTE

% ROUTE

Attributes
o Entry: SIGNAL

o Conflicts: ROUTE

8..n Axioms
< ¥rl,r2-rledom(Conflicts) A r2eConflicts[{rl}] = (r2edom(Conflicts) a rl € Conflicts[{r2}])

< ¥rl- rl € dom(Conflicts) = (rl & Conflicts[{rl}])

o Conflicts

The axioms make our definition of Conflicts more precise.

15/15



Now everything proves

16/15



