
1

Deploy Plenary Meeting 27/10/10

Andy Edmunds ae2@ecs.soton.ac.uk

and

Michael Butler mjb@ecs.soton.ac.uk

2

One-Place Buffer Example

Writer ReaderBuffer

“write a single NAT value to buffer”

“read the value from the buffer”

write read

3

The Route To Code

AbstractBuffer

ReadWriteBuffer

Writer Shared Reader

Writer
Task

Reader
Task

Shared
Machine

Writer
Ada Task

Reader
Ada Task

Shared
Ada Protected

Object

Event-B

Tasking Event-B

4

Abstract Machine

machine AbstractBuffer

variables buff wVal rVal wCount sCount

…

event write
where

buff < 0
then
buff ≔ wVal
sCount ≔ sCount + 1
wCount ≔ sCount + 1

end

“buff is initially -1”

5

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

…

event write refines write
any p1 p2

where
p1 = wVal
p2 = sCount + 1
buff < 0

then
buff ≔ p1

sCount ≔ sCount + 1
wCount ≔ p2

end

was buff ≔ wVal

“The parameter wVal”

Parameterised for Decomposition (i)

6

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

…

event write refines write
any p1 p2

where
p1 = wVal
p2 = sCount + 1
buff < 0

then
buff ≔ p1

sCount ≔ sCount + 1
wCount ≔ p2

end

was wCount ≔ sCount + 1

“The parameter: sCount + 1”

Parameterised for Decomposition (ii)

7

Decomposed Machines

machine Writer

variables wVal wCount

…

event Twrite refines write
any outAP inAP

where
inAP∈ ℤ
outAP∈ ℤ
outAP = wVal

with
p1 = outAP

p2 = inAP

then
wCount ≔ inAP

end

machine Shared

variables buff sCount

…

event Swrite refines write
any inFP outFP

where
outFP∈ ℤ
inFP∈ ℤ
outFP = sCount + 1
buff < 0

with
p1 = inFP

p2 = outFP

then
buff ≔ inFP

sCount ≔ sCount + 1
end

• Refinement: renaming is for clarity,
• parameters will be ‘paired’ in order of declaration
for translation.

8

Adding the Tasking Constructs

taskingtaskingtaskingtasking machine Writer
prioritypriorityprioritypriority 5
tasktypetasktypetasktypetasktype periodic(500)
variables wVal wCount

…

bodybodybodybody
w1: � Twrite || Shared.Swrite � ;
w2: …

event syncsyncsyncsync Twrite refines write

any
actualOutactualOutactualOutactualOut outAP

actualInactualInactualInactualIn inAP

where
inAP∈ ℤ
outAP∈ ℤ
outAP = wVal

then
wCount ≔ inAP

end

machine Shared

variables buff sCount

…

event Swrite
any
formalInformalInformalInformalIn inFP

formalOutformalOutformalOutformalOut outFP

where
outFP∈ ℤ
inFP∈ ℤ
outFP = sCount + 1
buff < 0

then
buff ≔ inFP

sCount ≔ sCount + 1
end

9

Ada Code - Task

taskingtaskingtaskingtasking machine Writer
prioritypriorityprioritypriority 5
tasktypetasktypetasktypetasktype periodic(500)
variables wVal wCount …

…

bodybodybodybody
w1: � Twrite || Shared.Swrite � ;

w2: TcalcWVal;

Output(“wVal is ”, wVal)

10

Ada Code – Protected Body

“Conditional waiting
in implementations”

machine Shared

variables buff sCount

…

event Swrite
any
formalInformalInformalInformalIn inFP

formalOutformalOutformalOutformalOut outFP

where
outFP∈ ℤ
inFP∈ ℤ
outFP = sCount + 1
buff < 0

then
buff ≔ inFP

sCount ≔ sCount + 1
end

11

The Resulting Event-B model

machine Shared

variables buff sCount

invariants
… // various typing

event Swrite refines write
any inFP outFP

where
outFP∈ ℤ
inFP∈ ℤ
outFP = sCount + 1
buff < 0

then
buff ≔ inFP

sCount ≔ sCount + 1
end

machine Writer refines Writer
sees autoGenCTX_Writer

variables
wVal wCount wCount2 Writer_pc

Invariants
…
Writer_pc∈Writer_pc_Set

events
event Twrite refines TWrite
any outAP inAP

where
inAP∈ ℤ
outAP∈ ℤ
outAP = wVal
Writer_pc = w1

then
wCount ≔ inAP

Writer_pc ≔ w2
end

“Using Program Counters”

12

The Resulting Event-B model

machine Writer refines Writer
sees autoGenCTX_Writer

variables
wVal wCount wCount2 write

Invariants
…
write∈ BOOL

events
event Twrite refines Twrite
any outAP inAP

where
inAP∈ ℤ
outAP∈ ℤ
outAP = wVal
write = TRUE

then
wCount ≔ inAP

write ≔ FALSE
end

“Using Boolean Flags”

13

Tasking Event-B

Tasking Event-B is an extension of Event-B,

• where we have attempted to provide a ‘streamlined’ approach,

• with a small semantic gap between the

Event-B abstract development and the

implementation specification.

• using decomposition to handle complexity,

and ultimately, a tasking (implementation) specification

for code generation.

• currently we have translators that map to Ada, and map to an

Event-B model; i.e. the model of the implementation.

14

Tasking Event-B

Targeting implementations with,

• Multi-tasking capability

• Tasking

• for shared memory systems.

• using interleaving atomic executions.

• Sharing data between tasks using ‘protected objects’,

• using atomic procedure calls,

• with blocking behaviour.

15

Modelling/Specifying Tasks

Tasking Machines are an abstraction of,

• Ada tasks

• Java threads

• pthreads etc.

Shared Machines are an abstraction of,

• monitors,

• protected objects etc.

Tasking Machine Algorithmic constructs,

• Loop,

• Branch,

• Sequence,

• Synchronisation.

Tasking Machine Implementation Specifics:

• Task type, task priority.

16

Modelling Mutually Exclusive

Access

Tasking Machines do not communicate directly with each other,

• communication is only with Shared Machines.

• Shared machines are just Event-B machines.

Protected Object’s updates,

• modelled by Shared Event Composition.

Events can map to,

• a subroutine definition.

• part of a subroutine call.

• part of a loop /branch implementation.

17

Synchronized Events

A local event el belongs to a tasking machine,

and only updates the task’s state.

A remote event er belongs to a shared machine,

and only updates a shared machine’s state.

e = el ∥e er

‘Synchronisation’ e of a local and remote events

decomposition semantics; i.e. guards are

conjoined.

parallel updates.

18

Implementation of

Synchronized Events

el ∥e er

el() ; s.er(a1..an)implemented as:

where:

el() is a local call derived from an event with no blocking guards.

s.er(a1..an) is a call to a shared machine instance ‘s’.
er may have blocking guards.

er may have in or out parameters derived from the guards
of el and er .

19

Implementation - Abstraction

Common Language Metamodel (IL1)

An abstraction of various programming constructs.

20

Common Language Metamodel

Facilitates translation to multiple targets e.g. Ada/C etc.

Make use of Model-to-Model translation tools.

‘Invisible’ to the user.

21

Tasking Event-B Notation V1

TaskBody ::=

TaskBody ; TaskBody

| if EventSynch end
[else if EventSynch end] …

[else EventSynch end]

| do EventSynch [finally EventSynch] od

| EventSynch

| Output

More details @

http://wiki.event-b.org/images/TranslationV20100722.pdf

22

Tasking Event-B Notation V1

tasktype ::= Periodic(p) | One Shot | Repeating | Triggered

priority(n)

Sequence

• modelled using an abstract program counter which,

• may be derived from labelled events,

• may use of boolean flags (where feasible).

23

Branching

IF e1 END

[ELSE IF ex END]

[ELSE en END]

ei = eir ∥e gil→ ail where i : 1..x..n

if(g1l) then body end

[else if(Gxl) then body end]

[else body end]
body = eir(); ail

… in task maps to:

… in protected maps to: subroutine eir() is

begin air end

where Gil is derived from gil

24

Before Decomposition

1. Specify the abstract development.

2. Prepare for decomposition. For each event,

- identify and specify parameters (using event guards),

- substitute expressions by parameters, in event actions, where
applicable.

25

3. Allocate variables to machines during shared event decomposition
(typically to multiple Tasking/ Shared Machines)

4. Complete the decomposition.

Decompose

“Shared Machines are
ordinary Event-B machines”

26

Translation

5. Copy, or reference, decomposed machines for use in the tasking model.

6. Add Tasking Constructs to create Tasking and Shared Machines.
e.g. synch, loop, branch, sequence, priority, etc.

7. Automatic Translation to Code and Event-B

27

Summing Up

This approach,

• extends Event-B with Implementation Constructs.

• uses small steps which are easy to reason about.

• makes use of decomposition.

• generates code.

Need:

• to work on Documentation/Guidelines.

• a better user interface.

• more automation.

