UNIVERSITY OF

Southampton

Deploy Plenary Meeting 27/10/10

School of Electronics
and Computer Science

Tashing BventB for Coda Benaration

Andy Edmunds ae2@ecs.soton.ac.uk
and
Michael Butler mib@ecs.soton.ac.uk

Southampton

One-Place Buffer Example

School of Electronics
and Computer Science

“write a single NAT value to buffer”

rite read
hdl Buffer

\ 4

\ 4

Writer Reader

“read the value from the buffer”

Southampton The Route To Code

School of Electronics

and Computer Science

AbstractBuffer
ReadWriteBuffer
\ 4

Writer Shared Reader
Event-B
Tasking Event-B v v y

Writer Shared Reader

Task Machine Task

\ 4 \ 4 \ 4
Writer Shared Reader
Ada Task Ada Protected Ada Task
Object

Southampton

Abstract Machine

School of Electronics
and Computer Science

machine AbstractBuffer

variables buff wVal rVal wCount sCount

event write
where
buff < 0
then
buff = wVal
sCount = sCount + 1
wCount = sCount + 1
end

“ouff is initially -1”

UNIVERSITY OF

SllnEnslll Parameterised for Decomposition (i)

School of Electronics
and Computer Science

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

event write refines write
any p1 p2
where
p1=wVal
p2 =sCount + 1
buff < 0 was buff = wVal
then
buff = p1
sCount = sCount + 1
wCount = p2
end

“The parameter wVal” 5

UNIVERSITY OF
sllGE el Parameterised for Decomposition (ii)

School of Electronics
and Computer Science

machine ReadWriteBuffer
refines AbstractBuffer

variables buff wVal rVal wCount
sCount

event write refines write
any p1 p2
where
p1=wVal
p2 = sCount + 1
buff < 0 was wCount = sCount + 1
then
buff = p1
sCount = sCount + 1
wCount = p2
end

“The parameter: sCount + 1”

Southampton

Decomposed Machines

School of Electronics

and Computer Science

machine Writer

variables wVal wCount

event Twrite refines write

machine Shared

variables buff sCount

event Swrite refines write

any outAP inAP any inFP outFP
where where
inAP € £ ol e
OUtAP € £ inFP € Z
outAP = wVal outFP = sCount + 1
with buff < 0
p1 = outAP with
p2 = inAP pl = inFP
then p2 = outFP
wCount = inAP then
end buff = inFP
sCount = sCount + 1
end

» Refinement: renaming is for clarity,

 parameters will be ‘paired’ in order of declaration

for translation.

UNIVERSITY OF
Southampton

Adding the Tasking Constructs

School of Electronics

and Computer Science

tasking machine Writer
priority5

tasktype periodic(500)
variables wVal wCount

body

w1: <] Twrite || Shared.Swrite > ;

w2

event sync Twrite refines write
any
actualOut outAP
actualln inAP
where
inAP € £
OUtAP € [
outAP = wVal
then
wCount = inAP
end

machine Shared

variables buff sCount

event Swrite
any
formalln inFP
formalOut outFP
where
OUtFP € Z
inFP € Z
outFP = sCount + 1
buff < 0
then
buff = inFP
sCount = sCount + 1
end

UNIVERSITY OF
Southampton

School of Electronics
and Computer Science

Ada Code - Task

task WriterTsk is
pragma Priority(S):;

end WriterTsk:

task body WriterTsk i=
t: Time:;

tasking machine Writer period: constant Time Span := To Time Span(0.5);
. . w¥val : Integer := 5;

prlorlty5 e .—__———’//////////’9 wCount : Integer := 0;

tasktype periodic(500) = 0;

variables wVal wCount ...

body
w1: < Twrite || Shared.Swrite [> ;

w2: TcalcWVal,;

wCountZ : Integer := 0;
procedure ITwrite is
begin
wCount?2 = wCountz + 1;
end;
procedure TcalcWval is
begin
wval = wval * 2;
end;
begin
loop
t = clock;
Twrite;
sharedtskInst.Swrite (wVal, wCount) ;

OUtpUt(“‘wVal is 7, wVal) TcalcWVal;
\\\\\\\\“*———________5> put ("wval ="); put({wval): New Line ;

delay ontil t + period:;
end loop;
end WriterTsk:

Southampton Ada Code — Protected Body

School of Electronics

and Computer Science

machine Shared

variables buff sCount

package body SharedIskPkg is
protected body SharedIsk i=
entry Swrite (inFP: in Integer; outFP: out Integer}f,_j-irhen buff < 0 '15..}

event Swrite begin e
any outFP i=_sI:|:|u.n1: + 1;
. buff := inFP;
formalln inFP sCount := sCount + 1;
formalOut outFP end;
entry Sread({outFP: ont Integer) when buff >= 0 is
Where begin
OUtFP € outFP := buff;
inFP € T baff = -1;
end;
outFP = sCount + 1 end SharedTsk;
buff < O end SharedT=kPkg;
then
buff = inFP
sCount = sCount + 1) N E
end Conditional waiting

in implementations”

10

UNIVERSITY
Southampton

School of Electronics
and Computer Science

The Resulting Event-B model

machine Writer refines Writer
sees autoGenCTX_ Writer

variables
wVal wCount wCount2 Writer pc

Invariants
Writer_pc € Writer_pc_Set

events
event Twrite refines TWrite
any outAP inAP
where
inAP € £
OUtAP €
outAP = wVal
Writer_pc = w1
then
wCount = inAP
Writer_pc = w2
end

machine Shared
variables buff sCount

invariants
.. // various typing

event Swrite refines write
any inFP outFP
where
OUtFP € £
inFP € &
outFP = sCount + 1
buff < 0
then
buff = inFP
sCount = sCount + 1
end

“Using Program Counters” 11

Southampton The Resulting Event-B model

School of Electronics

and Computer Science

machine Writer refines Writer
sees autoGenCTX_ Writer

variables
wVal wCount wCount2 write

Invariants
write € BOOL
events

event Twrite refines Twrite
any outAP inAP

where
inAP € Z
OUtAP €
outAP = wVal
write = TRUE
then
wCount = inAP
write = FALSE
end

“Using Boolean Flags”

12

UNIVERSITY OF

Southampton

Tasking Event-B

School of Electronics
and Computer Science

Tasking Event-B is an extension of Event-B,

» where we have attempted to provide a ‘streamlined’ approach,
 with a small semantic gap between the
Event-B abstract development and the
implementation specification.

* using decomposition to handle complexity,
and ultimately, a tasking (implementation) specification
for code generation.

* currently we have translators that map to Ada, and map to an
Event-B model; i.e. the model of the implementation.

13

UNIVERSITY OF

Southampton

Tasking Event-B

School of Electronics
and Computer Science

Targeting implementations with,
 Multi-tasking capability

 Tasking
» for shared memory systems.
* using interleaving atomic executions.

» Sharing data between tasks using ‘protected objects’,
* using atomic procedure calls,
« with blocking behaviour.

14

UNIVERSITY OF

Southampton

School of Electronics

Modelling/Specifying Tasks

and Computer Science

Tasking Machines are an abstraction of,
» Ada tasks
 Java threads
* pthreads etc.

Shared Machines are an abstraction of,
* monitors,
* protected objects etc.

Tasking Machine Algorithmic constructs,
* Loop,
» Branch,
» Sequence,
« Synchronisation.

Tasking Machine Implementation Specifics:
 Task type, task priority.

15

UNIVERSITY OF

Southampton Modelling Mutually Exclusive
School of Electronics AC C e s s

and Computer Science

Tasking Machines do not communicate directly with each other,
« communication is only with Shared Machines.
» Shared machines are just Event-B machines.

Protected Object’s updates,
» modelled by Shared Event Composition.

Events can map to,
* a subroutine definition.
« part of a subroutine call.
» part of a loop /branch implementation.

16

UNIVERSITY OF

Southampton

Synchronized Events

School of Electronics
and Computer Science

‘Synchronisation’ e of a local and remote events
decomposition semantics; i.e. guards are
conjoined.
parallel updates.

e =-e I, e,

A local event e, belongs to a tasking machine,
and only updates the task’s state.

A remote event e, belongs to a shared machine,
and only updates a shared machine’s state.

17

UNIVERSITY OF

Southampton Implementation of
School of Electronics Synchronized EventS

and Computer Science

e, I, e

implemented as: ¢() ; s.e(a,..a,)

where:
e/() is a local call derived from an event with no blocking guards.

s.e(a,..a,) is a call to a shared machine instance ‘s’.
€, may have blocking guards.
e, may have in or out parameters derived from the guards
of e;and e,..

18

Southampton

Implementation - Abstraction

School of Electronics
and Computer Science

Common Language Metamodel (IL1)

An abstraction of various programming constructs.

C
EMF Model

Ada
EMF Model

Epsilon ETL

//_\~

Extended Event-B Metamodel Common Language Metamodel |

C Code
(Text)

Ada Code
(Text)

19

UNIVERSITY OF

Southampton

Common Language Metamodel

School of Electronics
and Computer Science

Facilitates translation to multiple targets e.g. Ada/C etc.

Make use of Model-to-Model translation tools.

‘Invisible’ to the user.

20

UNIVERSITY OF

Southampton

Tasking Event-B Notation V1

School of Electronics
and Computer Science

TaskBody ::=
TaskBody ; TaskBody
| if EventSynch end
[else if EventSynch end | ...
[else EventSynch end |
| do EventSynch [finally EventSynch] od
| EventSynch
| Output

More details @
http://wiki.event-b.org/images/TranslationV20100722.pdf

21

UNIVERSITY OF

Southampton

Tasking Event-B Notation V1

School of Electronics
and Computer Science

tasktype ::= Periodic(p) | One Shot | Repeating | Triggered

priority(n)

Sequence
» modelled using an abstract program counter which,
» may be derived from labelled events,
» may use of boolean flags (where feasible).

22

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

Branching

... In task maps to:

IF e, END
[ELSEIF e, END]
[ELSE e, END]

€;r e G;1— aj; wherei - 1..x..n

if(g,,) then body end

[else if(G,,) then body end] body = e.(); a,

[else body end]

where G, is derived from g,

... in protected maps to: subroutine g,() is

begin a, end

23

Southampton

School of Electronics
and Computer Science

Before Decomposition

1. Specify the abstract development.

2. Prepare for decomposition. For each event,

- identify and specify parameters (using event guards),

- substitute expressions by parameters, in event actions, where

applicable.

Abstract Development

~| Decomposition

Format for

24

Southampton

Decompose

School of Electronics
and Computer Science

3. Allocate variables to machines during shared event decomposition
(typically to multiple Tasking/ Shared Machines)

4. Complete the decomposition.

Tasking
Machine

L

e

Format for
Decomposition

\ (Shared)

Machine

Abstract Development Decompose

“Shared Machines are
ordinary Event-B machines”.

S tHJNWERSFTY OF
outhampton Translation

School of Electronics
and Computer Science

5. Copy, or reference, decomposed machines for use in the tasking model.

6. Add Tasking Constructs to create Tasking and Shared Machines.
e.g. synch, loop, branch, sequence, priority, etc.

7. Automatic Translation to Code and Event-B

Event-B
Machine
Refines
Translate
Tasking | Taanslate
Tasks
Machine !
/
Format for Implemenfation Code

Abstract Development o
Decomposition

\ (Shared) A Protected

Machine !
Translate
y—

1

Refines

UNIVERSITY OF

Southampton

School of Electronics S u m m I n g U p
and Computer Science

This approach,

» extends Event-B with Implementation Constructs.
 uses small steps which are easy to reason about.

» makes use of decomposition.
* generates code.

Need:

» to work on Documentation/Guidelines.
* a better user interface.

* more automation.

27

