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Abstract. Formal modelling is indispensable for engineering highly dependable
systems. However, a wider acceptance of formal methods is hindered by their in-
sufficient usability and scalability. In this paper, we aim at assisting developers in
rigorous modelling and design by increasing automation of development steps.
We introduce a notion of refinement patterns – generic representations of typi-
cal correctness-preserving model transformations. Our definition of a refinement
pattern contains a description of syntactic model transformations, as well as the
pattern applicability conditions and proof obligations for verifying correctness
preservation. This work establishes a basis for building a tool that would support
formal system development via pattern reuse and instantiation. We present a pro-
totype of such a tool and some examples of refinement patterns for automated
development in the Event B formalism.

1 Introduction

Over the recent years model-driven development has became a leading paradigm in
software engineering. System development by stepwise refinement is a formal model-
driven development approach that advocates development of systems correct by con-
struction. Development starts from an abstract model, which is gradually transformed
into a specification closely resembling an implementation. Each model transformation
step, called a refinement step, allows a designer to incorporate implementation details
into the model. Correctness of refinement steps is validated by mathematical proofs.

The refinement approach significantly reduces the required testing efforts and, at the
same time, supports a clear traceability of system properties through various abstraction
levels. However, it is still poorly integrated into existing software engineering process.
Among the main reasons hindering its application are complexity of carrying proofs,
lack of expertise in abstract modelling, and insufficient scalability.

In this paper we propose an approach that aims at facilitating integration of formal
methods into the existing development practice by leveraging automation of refinement
process and increasing reuse of models and proofs. We aim at automating certain model
transformation steps via instantiation and reuse of prefabricated solutions, which we
call refinement patterns. Such patterns generalise certain typical model transformations
reoccurring in a particular development method. They can be thought of as ”refinement
rules in large”.

In general, a refinement pattern is a generic model transformer. Essentially it con-
sists of three parts. The first part is the pattern applicability conditions, i.e., the syntactic
and semantic conditions that should be fulfilled by the model to be eligible for a refine-
ment pattern application. The second part contains definition of syntactic manipulations



over the model to be transformed. Finally, the third part consists of the proof obligations
that should be discharged to verify that the performed model transformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hence some large model trans-
formation steps can be represented by a certain combination of refinement patterns, and
therefore can also be seen as refinement patterns per se. A possibility to compose pat-
terns significantly improves scalability of formal modelling. Moreover, reducing execu-
tion of a refinement step to a number of syntactic manipulations over a model provides
a basis for automation. Finally, our approach can potentially support reuse of not only
models but also proofs. Indeed, by proving that an application of a generic pattern pro-
duces a valid refinement of a generic model, we at the same time verify the correctness
of such a transformation for any of its instances. This might significantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns presented in this paper estab-
lished a basis for building a prototype tool for automating refinement process in Event
B[13]. The tool has been developed as a plug-in for the RODIN platform [1] – an open
toolset for supporting modelling and refinement in the Event B framework. We be-
lieve that, by creating a large library of refinement patterns and providing automated
tool support for pattern matching and instantiation, we will make formal modelling and
verification more accessible for software engineers and hence facilitate integration of
formal methods into software engineering practice.

2 Towards Refinement Automation

2.1 Formal Development by Refinement

System development by refinement is a formal model-driven development process. Re-
finement allows us to ensure that a refined, i.e., more elaborated, model retains all the
essential properties of its abstract counterpart. Since refinement is transitive, the model-
driven refinement-based development process enables development of systems correct-
by-construction.

The precise definition of refinement depends on the chosen modelling framework
and hence might have different semantics and the degree of rigor. The foundations of
formal reasoning about correctness and stepwise development by refinement were es-
tablished by Dijkstra [9] and Hoare [12], and then further developed by R.Back and J.
von Wright [5] as well as C.Morgan [16].

In the refinement calculus framework, a model is represented by a composition of
abstract statements. Formally, we say that the statement S is refined by the statement
S′, written S v S′, if, whenever S establishes a certain postcondition, so does S′ [9].
Since statement composition is monotonic with respect to the refinement relation, re-
finement of a model statement is also refinement of the whole model. In general, the re-
finement process can be seen as a way to reduce non-determinism of the abstract model,
to replace abstract mathematical data structures by data structures implementable on a
computer, and, hence, gradually introduce implementation decisions.

There have been several attempts to facilitate the refinement process, by generaliz-
ing the typical refinement transformations into a set of refinement rules [5, 16]. These
rules can be seen as generic templates (or patterns) that define the general form of
the statement to be transformed, the resultant statement, and the proof obligations that



should be discharged to verify refinement for that particular transformation. However,
a refinement rule usually describes a small localized transformation of a certain model
part. Obviously, the tools developed to automate application of such refinement rules [8,
17] lack scalability.

On the other hand, such frameworks as Z, VDM, Event B support the formal de-
velopment by entire model transformation. For instance, the RODIN platform – a tool
support for refinement in Event B – allows us to perform refinement by introducing
many changes at once and verify by proofs that these changes result in correct model
refinement. Often a refinement step can be seen as a composition of ”standard” (fre-
quently reoccurring) localized transformations distributed all over the model. It remains
unclear, though, if we can employ transformational approach to automate execution of
these transformations by reusing the models and proofs that were constructed previ-
ously.

In this paper we propose to tackle this problem via definition and use of refinement
patterns. Our definition of refinement patterns builds on the idea of refinement rules.
In general, a refinement pattern is a model transformer. Unlike design patterns [10], a
refinement pattern is ”dynamic” in a sense that the process of pattern application takes
a model as an input and produces a new model as an output.

To formalize and automate the process of pattern application, we define a pattern as
a model transformer consisting of three parts. The first part is the pattern applicability
conditions, i.e., the syntactic and semantic conditions that should be fulfilled by the
model for a refinement pattern to be applicable. The second part contains definition of
syntactic manipulations on the model to be transformed. Finally, the third part consists
of the proof obligations that should be discharged to verify that the performed model
transformation is indeed a refinement step. It is easy to see that a refinement pattern
manipulates a model on both syntactic and semantic level.

In principle, refinement patterns can be defined for any refinement-based modelling
frameworks. In this paper we present our proposal for refinement patterns in the Event B
formalism and also describe a prototype tool that implements them. We start by briefly
introducing the Event B language and giving semantic and syntactic views on its mod-
els.

2.2 Event B

In this section we introduce our formal framework – the B Method [2]. It is an ap-
proach for the industrial development of highly dependable software. The method has
been successfully used in the development of several complex real-life applications. Re-
cently the B method has been extended by the Event B framework [3], which enables
modelling of event-based (reactive) systems. In fact, this extension has incorporated the
action system formalism [6, 4] into the B Method.

Event B uses the Abstract Machine Notation for constructing and verifying models.
An abstract machine encapsulates a state (the variables) of the model and provides
operations on the state. A simple abstract machine has the following general form:



MACHINE AM
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS
E1

. . .
EN

The machine is uniquely identified by its name AM. The state variables of the machine,
v, are declared in the VARIABLES clause and initialised in INIT as defined in the
INITIALISATION clause. The variables are strongly typed by constraining predicates
of the machine invariant I given in the INVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates and the predicates defining the
properties of the system that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events specified
in the EVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where the guard g is conjunction of the predicates over the machine variables v, and
the action S is an assignment to state variables. For simplicity, in this paper we do not
consider Event B events with parameters or local variables.

The occurrence of events represents the observable behaviour of the system. The
guard defines the conditions under which the action can be executed, i.e., when the
event is enabled. The action can be either a deterministic assignment to the variables or
a non-deterministic assignment from a given set or according to a given postcondition.
The semantics of actions is defined as a before-after (BA) predicate as follows:

Action Before-after predicate
x := E(x, y) x′ = E(x, y) ∧ y′ = y
x :∈ Set ∃ t. (t ∈ Set ∧ x′ = t) ∧ y′ = y
x :| P (x, y, x′) ∃ t. (P (x, t, y) ∧ x′ = t) ∧ y′ = y

where x and y are disjoint lists (partitions) of state variables, and x′, y′ represent their
values in the after state.

Event B adopts interleaving semantics while treating parallelism. If several events
are enabled then any of them can be chosen for execution non-deterministically. If none
of the events is enabled then the system deadlocks.

To check consistency of Event B machine, we should verify two types of properties:
event feasibility and invariant preservation. Intuitively, event feasibility means that exe-
cution of an event from any state where both the machine invariant and the event guard
hold is possible, i.e., it can produce at least one after state that satisfies the before-after
predicate, i.e.,

I(v) ∧Ge(v)⇒ ∃ v′. BAe(v, v
′)

The invariant preservation property simply states that invariant should be maintained:

I(v) ∧Ge(v) ∧BAe(v, v
′)⇒ I(v′)



The main development methodology of Event B is refinement – the process of trans-
forming an abstract specification while preserving its correctness and gradually intro-
ducing implementation details. Let us assume that the refinement machine AM ′ is a
result of refinement of the abstract machine AM:

MACHINE AM ′

VARIABLES w
INVARIANT I ′

INITIALISATION INIT′

EVENTS
E1

. . .
EM

In AM ′ we replace the abstract variables of AM (v) with the concrete ones (w).
The invariant of AM ′ – I ′ – defines now not only the invariant properties of the refined
model, but also the connection between the newly introduced variables and the abstract
variables that they replace. For a refinement step to be valid, every possible execution
of the refined machine must correspond (via I ′) to some execution of the abstract ma-
chine. To demonstrate this, we should establish two facts – feasibility of refined events
and their correctness with respect to the abstract events. To demonstrate feasibility, we
should prove the following:

I(v) ∧ I ′(v, w) ∧G′
e(w)⇒ ∃w′. BA′

e(w,w
′)

whereG′(w) is the guard of the refined event andBA′(w,w′) its before-after predicate.
To demonstrate that each event is a correct refinement of its abstract counterpart,

we should first prove that the guard is strengthened in the refinement:

I(v) ∧ I ′(v, w) ∧G′
e(w)⇒ Ge(v)

Finally, we need to demonstrate a correspondence between the abstract and concrete
postconditions:

I(v) ∧ I ′(v, w) ∧G′
e(w) ∧BA′

e(w,w
′)⇒ ∃ v′. (BAe(v, v

′) ∧ I ′(v′, w′))

The refined model can also introduce new events. In this case, we have show that these
new events are refinements of implicit empty (skip) events of the abstract model.

While presenting Event B above, we have slightly simplified matters by omitting the
fact that Event B model consists of two separate parts. The static part, called context,
contains the declaration of new types(sets), constants and axioms. The presented, dy-
namic part (machine) contains the variable declarations and events. However, this sim-
plification is of syntactic nature and is insignificant as such. Our approach to refinement
pattern definition that we are presenting next can be easily extended to compensate it.

2.3 Event-B Models as Syntactic Objects

To define refinement patterns, let us now consider an Event B model as a syntactic math-
ematical object. For brevity, we omit representations of some of elements of models
here, though they are supported in our tool implementation [13]. The subset of Event-B
models used in this paper can be described by the following data structure:



model :: var : VAR∗

evt : event∗

inv : PRED∗

event :: name : EVENT
param : PARAM∗

guards : PRED∗

actions : action∗

action :: var : VAR
style : STYLE
expr : EXPR

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressions, event names and parameters.
An event is represented by a tuple containing the event name, (a list of) its parameters,
guards, and actions. The reserved event name init denotes the initialisation event. An
action, in its turn, is a tuple containing a variable, an action style and an expression,
where an action style denotes one of assignment types : i.e., STYLE = {:=, :∈, :|}.

Sub-elements of a model element can be accessed by using the dot operator, e.g.,
act.style is the style of an action act. Instances of the models, events and actions are
constructed using a special notation 〈a1 | · · · | an〉. The following example shows how
an Event-B model is represented in our notation:

MACHINE m0
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS
count = BEGIN x := x+ 1 END

〈x |
”x ∈ Z” |
〈init | − | − | 〈x |:=| ”0”〉〉,

〈count | − | − | 〈x |:=| ”x+ 1”〉〉〉

In the example, x is an element of VAR, init and count are event names from
EVENT, ”x ∈ Z” is a predicate, and ”0”, ”x+ 1” are model expressions.

Now we have set a scene for a formal definition of refinement patterns that aim at
automating refinement process in Event B.

2.4 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B model as a syntactic math-
ematical object. For brevity, we omit representations of some model elements here,
though they are supported in our tool implementation [13]. A subset of Event-B models
used in this paper can be described by the following data structure:

model :: var : VAR∗

inv : PRED∗

evt : event∗

event :: name : EVENT
param : PARAM∗

guards : PRED∗

actions : action∗

action :: var : VAR
style : STYLE
expr : EXPR

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressions, event names and parameters.
An event is represented by a tuple containing the event name, (a list of) its parameters,
guards, and actions. The reserved event name init denotes the initialisation event.
An action, in its turn, is a tuple containing a variable, an action style and an expression,
where an action style denotes one of the assignment types : i.e., STYLE = {:=, :∈, :|}.

Sub-elements of a model element can be accessed by using the dot operator: act.style
is the style of an action act. Instances of the models, events and actions are constructed
using a special notation 〈a1 | · · · | an〉. The following example shows how an Event B
model is represented in our notation:



MACHINE m0
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS
count = BEGIN x := x+ 1 END

〈 〈x〉 |
〈”x ∈ Z”〉 |
〈 〈init | − | − | 〈x |:=| ”0”〉〉,

〈count | − | − | 〈x |:=| ”x+ 1”〉〉〉〉

In the example, x is an element of VAR, init and count are event names from
EVENT, ”x ∈ Z” is a predicate, and ”0”, ”x+ 1” are model expressions.

Now we have set a scene for a formal definition of refinement patterns that aim at
automating refinement process in general and Event B in particular.

3 Refinement Patterns

3.1 Definitions

Definition 1. Let S be a set of all well-formed models defined according to the syntax
of Event B. Then a transformation rule T is a function computing a new model for a
given input model:

T : S × C 7→ S

where C contains a set of all possible configurations (i.e., additional parameters) of a
transformation rule.

Note that T is defined as a partial function, i.e., it produces a new model only for some
acceptable input models s and configurations c, i.e., when (s, c) ∈ dom(T ).

Definition 2. A refinement pattern is a transformation rule P : S × C 7→ S that
constructs a model refinement for any acceptable input model and configuration:

∀ s, c.(s, c) ∈ dom(P ) ⇒ s v P (s, c)

where v denotes a refinement relation.

In this paper we rely on the Event-B proof theory when demonstrating that a transfor-
mation rule is indeed a refinement pattern.

3.2 The Language of Transformations

We propose a special language to construct transformation rules. The proposed lan-
guage contains basic transformation rules as well as the constructs allowing to com-
pose complex rules from simpler ones. For instance, a refinement pattern is usually
composed from several basic transformation rules. These rules themselves might not
be refinement patterns. However, by attaching to them additional proof obligations, we
can verify that their composition becomes a refinement pattern.

The structure of the basic rules reflects the way a transformation rule or a refine-
ment pattern is applied. First, rule applicability for a given input model and configura-
tion parameters is checked. The applicability condition to be checked can contain both
syntactic and semantic constraints on input models and configurations. Mathematically,



for a transformation rule T , its applicability condition corresponds to dom(T ). Then,
the input model s for the given configuration c is syntactically transformed into the
output model calculated as function application T (s, c). Finally, in case of a refinement
pattern, the result T (s, c) should be demonstrated to be a refinement of the input model
s, i.e., s v T (s, c). The last expression, using the proof theory of Event B, can be
simplified to specific proof obligations on model elements to be verified.

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO1(c, s)
. . .
proof obligation POn(c, s)

Here name and c are correspondingly denote the rule name and list of its parameters.
The predicate Q(c, s) defines the rule application context (applicability conditions),
where s is the model being transformed. The effect function E(c, s) computes a new
model from a current model s and parameters c. The proof obligation part contains a list
of theorems to be discharged to establish that the rule is a (part of) refinement pattern
and not just a transformation rule. From now on, we write context(r), effect(r) and
proof obligations(r) to refer to the context, effect computation function, and collection
of proof obligations of a rule r.

As an example, let us consider two primitive rules for the Event-B method. The first
transformation adds one or more new variables:

rule newvar(vv)
context vv ∩ s.var = ∅
effect 〈s.var ∪ vv | s.inv | s.evt〉
proof obligation ∀ v ∈ vv · (∃ a · a ∈ s.init.action ∧ v ∈ a.var)

The rule applicability condition requires that the new variables have fresh names for the
input model. The effect function simply adds the new variables to the model structure.
The rule also has a single proof obligation requiring that the variable(s) is assigned in
the initialisation action. Such an action would have to be added by some other basic
rule for the same refinement step.

Another example is the rule for adding new model invariant(s).

rule newinv(ii)
context ii ⊆ PRED ∧ ∀ i ∈ ii · FV (ii) ⊆ s.var
effect 〈s.var | inv ∪ ii | evt〉
proof obligation
∀(e, v, v′) · e ∈ s.evt ∧

Inv(v) ∧ Guardse(v) ∧ BA(v, v′) ⇒ Inv(v′)
proof obligation ∃ v · lnv(v)

Here FV (x) is set of free variables in x, Inv stands for (
∧

i∈s.inv∪ii i), Guardse is
defined as (

∧
g∈e.guards g) and BA is the before-after predicate. Both proof obligations

are taken directly from the Event-B semantics (i.e., the corresponding proof obligation
rules). The first obligation requires to show that the new invariant is preserved by all
model events, while the second one checks feasibility of such an addition by asking to



p(c) = basic(c) primitive rule
| p; q sequential composition
| p‖q parallel composition
| if Q(c, s) then p end conditional rule
| conf i : Q(i, c, s) do p(i ∪ c) end parameterised rule
| par i : Q(i, c, s) do p(i ∪ c) end generalised parallel composition

Fig. 1. The language of transformation rules

prove that the new invariant is not contradictory. This example illustrates how the un-
derlying Event B semantics is used to derive proof obligations for refinement patterns.

The table below lists the basic rules for the chosen subset of Event B. There are
two classes of rules – for adding new elements and for removing existing ones. All
the rules implicitly take an additional argument – the model being transformed. A
double-character parameter name signifies that a rule accepts a set of elements, e.g.,
newgrd(e, gg) adds all the guards from a given set gg to an event e.

rule newvar(vv) rule delvar(vv)
rule newinv(ii) rule delinv(ii)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)
rule newactexp(e, a, p)

To construct more complex transformations, we introduce a number of composition
operators into our language. They include the sequential, p; q, and parallel, p‖q, com-
position constructs. In addition, there is the conditional rule construct, if c then p end, as
well as a construct allowing to introduce additional rule parameters - conf i : Q do p(i) end.
Finally, to handle rule repetitions, generalised parallel composition is introduced in the
form of a loop construct: par c : Q do p(c) end. The language summary is given in
Figure 1.

3.3 Examples

In this section we present a couple of simple examples of refinement patterns con-
structed using the proposed language.

Example 1 (New Variable). A refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is added to the list of model variables.
Second, the typing invariant is added to the model. Finally, an initialisation action is
provided for the variable. The following refinement pattern adds a new variable de-
clared to be a natural number and initalised with zero:

conf v : ¬ (v ∈ s.var) do
newvar({v});
(newinv({”v ∈ N”}, s) ‖ newact(init, {〈v |:=| ”0”〉}))

end

The only pattern parameter (apart from the implicit input s) is some fresh name for the
new model variable.

A pattern application example is given below. The left-hand side model is an input
model and the righ-hand side is the refined version constructed by the pattern. The
example assumes that variable name q for chosen for parameter v.



MACHINE m0
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS
count = BEGIN x := x+ 1 END

MACHINE m1
VARIABLES x, q
INVARIANT x ∈ Z ∧ q ∈ N
INITIALISATION x := 0‖q := 0
EVENTS
count = BEGIN x := x+ 1 END

A more general (and also useful) pattern version could accept a typing predicate and
initialisation action as additional pattern parameters.

Example 2 (Action Split). In Event B, an abstract event may be refined into a choice
between two or more concrete events, each of which must be a refinement of the abstract
event. A simple case of such refinement is implemented by the refinement pattern below.
The pattern creates a copy of an abstract event and adds a new guard and its negation to
the original and new events. The guard expression is supplied as a pattern parameter.

conf e, en : e ∈ s.evt ∧ ¬ (en ∈ s.evt) do
newevt(en, s);
newgrd(en, e.guard) ‖
newact(en, e.action);
conf g : g ∈ PRED ∧ FV (g) ⊆ s.var

do newgrd(e, g) ‖ newgrd(en,¬g) end
end

The pattern configuration requires three parameters. Parameter e refers to the event to
be refined from the input model s, en is some fresh event name, and g is a predicate on
the model variables.

The pattern is applicable to models with at least one event. The result is a model with
an additional event and a constrained guard of the original event. As an input model we
use the model from the previous example.

MACHINE m1
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS
count = WHEN xmod 2 = 0 THEN x := x+ 1 END
inc = WHEN ¬(x mod 2 = 0) THEN x := x+ 1 END

Here, the pattern parameters are instantiated as follows: e as count, en as inc, and x as
xmod 2 = 0.

4 Pattern Composition

In the previous section we defined the notion of a basic transformation rule as a combi-
nation of the applicability conditions, transformation (effect) function, and refinement
proof obligations. Moreover, In Figure 1, we also introduced various composition con-
structs for creating complex transformation rules. In this section we will show how
we can inductively define the applicability conditions, effect, and proof obligations for
composed rules.



4.1 Rule Applicability Conditions

For a basic rule, the rule applicability condition is defined in its context clause. For
more complex rules constructed using the proposed language of transformation rules,
rule applicability is derived inductively according to the following definition:

app(basic)(c, s) = context(basic)(c, s)
app(p; q)(c, s) = app(p)(c, s) ∧ app(q)(c, eff(p)(c, s))
app(p‖q)(c, s) = app(p)(c, s) ∧ app(q)(c, s) ∧

inter(scope(p), scope(q)) = �
app(if G(c, s) then p end)(c, s) = G(c, s)⇒ app(p)(c, s)
app(conf i : Q(i, c, s) do p(i) end)(c, s) = ∀ i ·Q(i, c, s)⇒ app(p(i))(c, s)
app(par i : Q(i, c, s) do p(i) end)(c, s) = ∀ i ·Q(i, c, s)⇒ app(p(i))(c, s) ∧

∀(i, j) ·Q(i, c, s) ∧ Q(j, c, s) ∧ i 6= j ⇒
inter(scope(p(i)), scope(p(j))) = �

The consistency requirements for the sequential composition, conditional and parame-
terised rules are quite standard. Two rules can be applied in parallel if they are work-
ing on disjoint scopes. For instance, a rule transforming an event (e.g., adding a new
guard) cannot be composed with another rule transforming the same event. A similar
requirement is formulated for the loop rule, since it is realised as generalised parallel
composition.

The rule scopes are calculated by using the predefined function scope, which re-
turns a pair of lists, containing the model elements that the rule updates or depends on.
Intersection of rule scopes is computed as an intersection of the elements updated by
the transformations and the pair-wise intersection of elements updated by one rule and
depended on by another:

inter((r1, w1), (r2, w2)) = (w1 ∩ w2) ∪ (r1 ∩ w2) ∪ (r2 ∩ w1)

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an output model can be syntactically
constructed in a compositional way. For a basic rule, the effect function is directly ap-
plied to transform an input model. For more complex rules, a new model is constructed
according to an inductive definition of the function eff given below.

eff(basic)(c, s) = effect(basic)(c, s)
eff(p; q)(c, s) = eff(q)(c, eff(p)(c, s))
eff(p‖q)(c, s) = eff(q)(c, eff(p)(c, s)), or

= eff(p)(c, eff(q)(c, s))
eff(if G(c, s) then p end)(c, s) = eff(p)(c, s), if G(c, s)

= s, otherwise
eff(conf i : Q(i, c, s) do p(i) end)(c, s) = eff(p(i))(c, s), if Q(i, c, s)

= s, otherwise
eff(par i : Q(i, c, s) do p(i) end)(c, s) = (‖i ∈ Q(i, s, c) · eff(p(i))(c, s)),

if ∃(i, c, s) ·Q(i, c, s)
= s, otherwise

As expected, the result of sequential composition of two rules is computed by applying
the second rule to the result of the first rule. For parallel composition, the result is



computed in the same manner but the order of the rules should not affect the overall
result. The resulting model of the loop construct is computed as generalised parallel
composition of an indexed family of transformation rules. The last three cases depend
on some additional application conditions (i.e.,G(c, s) orQ(i, c, s)). If these conditions
are not true, rule application leaves the input model unchanged.

The rule application procedure based on the presented definition can be easily auto-
mated. The only interesting detail is in providing input values for the rule parameters.
In our tool implementation for the Event-B method, briefly covered later, the user is
requested to provide the parameter values during rule instantiation, while appropriate
contextual hints and descriptions are provided by the tool.

4.3 Pattern Proof Obligations
To demonstrate that a rule is a refinement pattern, we have to discharge all the prooof
obligations of individual basic rules occuring in the rule body. These proof obligations
cannot be discharged without considering the context produced by the neighbour rules.
The following inductive definition shows how the list of proof obligations is built for
a particular refinement pattern. The context information for each proof obligation is
accumulated, while traversing the structure of a pattern, as a set of additional hypotheses
that can be then used in automated proofs.

po(Γ, basic)(c, s) = {Γ |= proof obligations(basic)}
po(Γ, p; q)(c, s) = po(Γ ∪ {s′ = eff(p; q)(c, s)}, p(c, s′)) ∪

po(Γ ∪ {s′ = eff(p; q)(c, s)}, q(c, s′))
po(Γ, p‖q)(c, s) = po(Γ, p) ∪ po(Γ, q)
po(Γ, if G(c, s) then p end)(c, s) = po(Γ ∪ {G(c, s)}, p)
po(Γ, conf i : Q(i, c, s) do p(i) end)(c, s) =

⋃
i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))

po(Γ, par i : Q(i, c, s) do p(i) end)(c, s) =
⋃
i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))

Here Γ is a set of accumulated hypothesis containing pattern parameters c and the
initial model s as free variables. For each basic rule, we formulate a theorem whose
right-hand side is a list of the rule proof obligations and the left-hand side is a set of
hypotheses containing the knowledge about the context in which the rule is applied.

4.4 Assertions
The described procedure of building a list of proof obligations tries to include every
possible fact as a proof obligation hypothesis. This can be a problem for larger patterns
as the size of a list of accumulated hypotheses makes a proof obligation intractable.
To rectify the problem, we allow a modeller to manually add fitting hypotheses, called
assertions, that can be inferred from the context they appear in. An assertion would
be typically simple enough to be discharged automatically by a theorem prover. At the
same time, it can be used to assist in demonstrating the proof obligations of the rule
immediately following the assertion.

An assertion is written as assert(A(c, s)) and is delimited from the neighboring
rules by semicolons. An assertion has no effect on rule instantiation and application.
The following additional cases of the po definition are used to generate additional proof
obligations for assertions as well as insert an asserted knowledge into the set of collected
hypotheses of a refinement pattern.

po(Γ, p; assert(A(c, s)))(c, s) = Γ ∪ {s′ = eff(p)(c, s)} |= A(c, s′)
po(Γ, assert(A(c, s)); p)(c, s) = po(Γ ∪ {A(c, s)}, p)(c, s)
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5 Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) [15] is a fault-tolerance mechanism in which the
results of executing three identical components are processed by a voting element to
produce a single output that takes the majority view. This mechanism is schematically
shown in Fig.2.

The purpose of the mechanism is to mask a single component failure. In this section
we will demonstrate how to generalize a refinement step introducing the TMR arrange-
ment into a model as a refinement pattern.

Before creating our new pattern, we have to decide on its applicability conditions.
First, our input model should have a variable representing the output of the compo-
nent for which TMR will be introduced. Moreover, it should have an event that models
the behaviour of a component by non-deterministically updating this variable. Non-
determinism is used here to model unpredictable (possibly faulty) results produced by
the component. We do not make any assumptions about the variable type. Furthermore,
the event can contain some additional actions on other variables. Finally, our input
model should also contain an event that handles the component failure.

In the refined model, we replace the single abstract component with three similar
components. The outputs of the new components are modelled by fresh variables. The
variable types and initialisation of these variables are simply copied from their abstract
counterpart in the input specification.

The TMR pattern that we define uses a number of configuration parameters, as
shown below. The parameter s identifies a variable modelling the output of a com-
ponent; u is an event updating the variable s (in addition to possible update of other
variables); zz is an event handling a failure of the component modelled by u; finally, a
is an action from u updating the variable s.

conf s, u, zz, a :
s ∈ var ∧ u ∈ evt ∧ zz ∈ evt ∧ u 6= zz ∧
a ∈ u.actions ∧ a.style 6= (:=) ∧ {s} = a.var

do
conf ph, s1, s2, s3, r1, r2, r3 :
{s1, s2, s3, r1, r2, r3, ph} ⊆ (VAR− var) ∧
part({{s1}, {s2}, {s3}, {r1}, {r2}, {r3}, {ph}})

do
variables; events; voter ; abort ; invariant

end
end



As a result of pattern application, the new variables ph, si and ri are introduced
into the refined model. The variable ph keeps track of the current phase in the TMR
implementation, i.e., reading from the new components, voting on them, or delivering
the final result; the variables si, i = 1..3, are used to record the outputs produced by
the components; finally, the flags ri reflect availability of new outputs in the respective
output variables si.

The pattern consists of four major parts: the rules declaring the types and initialisa-
tion of new variables of the refined model; the definition of new events; the refinement
rules for transforming a single abstract event representing the functionality of a sole
component into the voter event; and, finally, the addition of an invariant characterising
the behaviour of a TMR block. The condition using the operator part simply states that
its arguments are disjoint sets.

variables
df
=

(newinv(”ph ∈ BOOL”);newini(〈ph |:=| ”FALSE”〉)) ‖
(newinv(”s1 ∈ s.type”);newini(〈s1 | init(s).style | init(s).expr〉))‖
(newinv(”r1 ∈ BOOL”);newini(〈r1 |:=| ”FALSE”〉))
. . .

Each new variable definition should come with a typing invariant and an initialisation
action. These are normally grouped together so that the related proof obligation rules
would work with a smaller context. For the brevity, we omit showing here the rules
defining the types and initialisation for the variables s2, s3 and r2, r3 (the omitted part
is indicated by . . . ). The shortcut notation newini(a) used in the pattern description
stands for declaration of the initialisation action: newini(a) df

= newact(init, a). The
shortcut init(v) refers to an action of the initialisation event assigning to the variable v.

The refined model specifies the behavior of three components of TMR (we call
them replicated components) as copies of the behaviour of the component specified in
the input model. Since we assumed that a component is represented by a single event,
the replicated components are created by adding three new events into the refined model
in the following way.

The guard of the event modelling behaviour of a replicated component essentially
coincides with the guard of an abstract component. However, it also contains an ex-
tra conjunct ensuring that the event is executed before passing control to the voter.
The event actions essentially copy the corresponding actions of the abstract component
(given as the pattern parameter a). The only difference that each replicated event records
the result into a separate variable si (for the copy i) instead of the abstract variable s. In
addition, a component copy also assigns to ri to indicate the availability of result in si.

events
df
=

conf u1, u2, u3 :
{u1, u2, u3} ⊂ EVENT \ s.evt ∧ part({{u1}, {u2}, {u3}})

do
copy1 ‖ copy2 ‖ copy3

end
The above creates three component copies, each constructed according to the following
rule.

copy1
df
=

newevt(〈u1 | − | {”r1 = FALSE”} ∪ u.guards |
〈s1 | a.style | a.expression〉, 〈r1 |:=| ”TRUE”〉, 〈ph |:=| ”FALSE”〉〉

. . .



The above rule 〈s1 | a.style | a.expression〉 constructs an action from the abstract
action a in such a way that it would have the same effect but update the new variable
s1. Here a.style is one of non-deterministic assignment styles.

The voter event is simply a refined version of the event modelling the abstract com-
ponent. Whereas the abstracted version was computing results itself, its refined coun-
terpart votes on the results of component copies. The voter is enabled once all the com-
ponents have produced a result (which is ensured by the first guard in the rule below).
The final result is computed according to a simple majority voting protocol. The event
parameter rr is set to the voting outcome in the second guard.

voter
df
=

newpar(u, ”rr”);
newgrd(u, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(u, ”(s1 = s2 ∨ s1 = s3 ∧ rr = s1) ∨ (s2 = s1 ∨ s2 = s3 ∧ rr = s2”);
(delact(u, a);newact(u, 〈s |:=| ”rr”〉);
(newact(u, 〈r1 |:=| ”FALSE”〉) ‖
newact(u, 〈r2 |:=| ”FALSE”〉) ‖
newact(u, 〈r3 |:=| ”FALSE”〉));

newact(u, 〈ph |:=| ”TRUE”〉)
As a result, the abstract action a of the component is replaced by a deterministic assign-
ment (to the same variable s) of the result of the winning component. The flags ri and
ph are reset in preparation for the next iteration.

In case all the component copies disagree, no final result may be computed. This
corresponds to an abort event of the abstract specification. The refined model simply
constraints the guard of the event so it only gets enabled in the situations when the
voting has failed.

abort
df
=

newgrd(zz, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(zz, ”s1 6= s2 ∧ s2 6= s3 ∧ s1 6= s3”);

Finally, a new invariant is added to the refined model to characterise the state of the
refined system after voting is completed. It summarises the cases when the majority
voting on component results succeeds.

invariants
df
=

newinv(”ph = TRUE ∧ (s1 = s2 ∨ s2 = s3))⇒ s = s1”);
newinv(”ph = TRUE ∧ s2 = s3)⇒ s = s2”)

Application of the pattern to a fairly simple abstract model (containing only two events
and two variables) saves a user from analysing and discharging 14 proof obligations,
three of which would have to be done manually in an interactive theorem prover. For
larger models or more elaborated patterns, the benefits are even greater.

6 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for the Event B method has been
realised as a plug-in to the RODIN Platform [1]. The plug-in seamlessly integrates with
the RODIN Platform interface so that a user does not have to switch between different
tools and environments while applying patterns in an Event B development. The plug-in
relies on two major RODIN Platform components: the Platform database, which stores
models, proof obligations and proofs constituting a development; and the prover which
is a collection of automated theorem provers supplemented by the interactive prover.



Fig. 3. The Event-B refinement patterns tool architecture.

The overall tool architecture is presented in Figure 3. The core of the tool is the pat-
tern instantiation engine. The engine uses an input model, imported from the Platform
database, and a pattern, from the pattern library, to produce a model refinement. The
engine implements only the core pattern language: the sequential and parallel compo-
sition, and forall construct. The method-specific model transformations (in this case,
Event-B model transformations) are imported from the model transformation library.

The process of a pattern instantiation is controlled by the pattern instantiation wiz-
ard. The wizard is an interactive tool which inputs pattern configuration from a user. It
validates user input and provides hints on selecting configuration values. Pattern con-
figuration is constructed in a succession of steps: the values entered at a previous step
influence the restrictions imposed on the values of a current step configuration.

The result of a successful pattern instantiation is a new model and, possibly, a set of
instantiation proof obligations - additional conditions that must be verified every time
when a pattern is applied. The output model is added to a current development as a
refinement of the input model and is saved in the Platform database. The instantiation
proof obligations are saved in an Event B context file. The RODIN platform builder
automatically validates and passes them to the Platform prover.

The tool is equipped with a pattern editor. The current version (0.1.7)[13] uses the
XML notation and an XML editor to construct patterns. The next release is expected to
employ a more user-friendly visual editor. The available refinement patterns are stored
in the local pattern library. Patterns in the library are organised in a catalogue tree,
according to the categories stated in pattern specifications. A user can browse through
the library catalogue using a graphical dialogue. This dialogue is used to select a pattern
for instantiation or editing.

When constructing a pattern, a user may wish to generate the set of pattern correct-
ness proof obligations. Proof obligations are constructed by the proof obligation gener-
ator component. The component combines a pattern declaration and the definitions of
the used model transformations to generate a complete list of proof obligations, based
on the rules given in Section 4.3. The result is a new context file populated with the-



orems corresponding to the pattern proof obligations. The standard Platform facilities
are used to analyse and discharge the theorems.

We believe it is important to facilitate pattern exchange and thus the tool includes
a component for interfacing with an on-line pattern library. The on-line pattern library
and the model transformation library are the two main extension points of the tool. The
pattern specification language can be extended by adding custom model transformations
to the library of model transformation; addition of a model transformation should not
affect the pattern instantiation engine and the proof obligation generator.

The current version of the tool is freely available from our web site [13].Several
patterns developed with this tool were applied during formal modelling of the Ambient
Campus case study of the RODIN Project [14].

7 Conclusions

In this paper we proposed a theoretical basis for automation of refinement process. We
introduced the notion of refinement patterns – model transformers that generically rep-
resent typical refinement steps. Refinement patterns allow us to replace a process of
devising a refined model and discharging proof obligations by a process of pattern in-
stantiation. While instantiating refinement patterns, we reuse not only models but also
proofs. All together, this establishes a basis for automation. In this paper we also demon-
strated how to define refinement patterns for the Event B formalism and described a
prototype tool allowing us to automate refinement steps in Event B.

Our work was inspired by several works on automation of refinement process. The
Refinement Calculator tool [8] has been developed to support program development
using the Refinement Calculus theory by R.Back and J. von Wright. [5] The theory was
formalised in the HOL theorem prover, while specific refinement rules were proved as
HOL theorems. The HOL Window Inference library[11] has been used to to facilitate
transformational reasoning. The library allows us to focus on and transform a particular
part of a model, while guaranteeing that the transformation, if applicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (called tactics) and the tool
support for their application has been developed by Oliveira, Cavalcanti, and Wood-
cock [17]. The framework (called ArcAngel) provides support for the C.Morgan’s ver-
sion of the Refinement Calculus. The obvious disadvantage of both these frameworks is
that the refinement rules that can be applied usually describe small, localised transfor-
mations. An attempt to perform several transformations on independent parts of the
model at once, would require deriving and discharging additional proof obligations
about the context surrounding transformed parts, that are rather hard to generalise.
However, while implementing our tool, we found the idea of using the transformational
approach for model refinement very useful.

Probably the closest to our tool is the automatic refiner tool created by Siemens/Matra
[7]. The tool automatically produces an implementable model in B0 language (a vari-
ant of implementable B) by applying the predefined rewrite rules. A large library of
such rules has been created specifically to handle the specifications of train systems.
The use of this proprietary tool resulted in significant growth of developer productivity.
Our work aims at creating a similar tool yet publicly available and domain-independent.
The idea of reuse via instantiation of generic Event B models has also been explored
by Silva and Butler [18]. However, they focus on the instantiation of the static part of



the model – the context – while our approach mainly manipulates its dynamic part.
Nevertheless, these two approaches are complementary and can be integrated.

Obviously the idea to use refinement patterns to facilitate the refinement process
was inspired by the famous collection of software design patterns [10]. However in
our approach the patterns are not just descriptions of the best engineering practice but
rather ”active” model transformers that allow a designer to refine the model by reusing
and instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the theoretical aspects of the
proposed language of refinement patterns as well as extend the existing collection of
patterns. Obviously, this work will go hand-in-hand with the tool development. We
believe that by building a sufficiently large library of patterns and providing designers
with automatic tool supporting refinement process, we will facilitate better acceptance
of formal methods in practice.
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