
Development of Rabin Choice Coordination in Event-B ?

Emre Yilmaz and Thai Son Hoang

Deparment of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich),

CH-8092, Zurich, Switzerland
yilmaze@student.ethz.ch, htson@inf.ethz.ch

Abstract. We continue the investigation with the integration of qualitative prob-
abilistic reasoning into Event-B further towards the direction of having a tool sup-
port. In passing by, we formalise a non-trivial algorithm, namely Rabin’s choice
coordination. Our correctness reasoning is a combination of termination proofs
in terms of probabilistic convergence and standard invariants techniques. More-
over, we discuss how qualitative probabilistic reasoning can be maintained during
refinement.
Keywords: Event-B, qualitative reasoning, probabilistic termination, tool sup-
port, Rabin’s choice coordination.

1 Introduction

In some systems, termination cannot be guaranteed for certain. Instead a slightly weaker
property is mostly sufficient and appropriate: termination with probability one. An ex-
ample having such a property is when tossing a fair coin, eventually heads will come
up. In other words, the coin will turn up heads with probability one. There are many
applications in distributed systems of such a “coin flip” and in particular for symmetry-
breaking protocols [8,10].

This kind of qualitative probability reasoning has been integrated into Event-B [5].
Beside the standard non-deterministic actions in Event-B, a new kind of actions is
added, namely, probabilistic actions where the probability for each possible alternative
being neither 0 nor 1 (i.e. “proper” [9]). Most of the time, actions of this type behave
identically to the non-deterministic actions, except when reasoning about termination:
they are interpreted angelically (as opposed to demonic nondeterminism). The result
is a practical method for handling qualitative reasoning that generates only proof obli-
gations in standard first-order logic of Event-B, in particular, the exact probability for
different alternatives can be left unspecified.

We continue our research to realise a tool support for this extension to Event-B.
In the process, we formalise a non-trivial algorithm, namely, Rabin’s choice coordi-
nation [10]. The reasoning on probabilistic termination of the algorithm is non-trivial,
involving a lexicographic variant which needs to be carefully formalised and mechan-
ically proved to have adequate assurance about the correctness of the algorithm. The
? Part of this research was carried out within the European Commission ICT project 214158 DE-

PLOY (http://www.deploy-project.eu/index.html). We thank Jean-Raymond
Abrial, Andreas Fürst and Stefan Hallerstede for their comments on drafts of this paper.

http://www.deploy-project.eu/index.html

2

case study acts as an illustration for the scalability of the approach for reasoning quali-
tatively in Event-B: it can be applied to more complex systems than just “coin tossing”
examples.

Our development comprises several refinements and includes reasoning about both
standard and probabilistic termination, and deadlock-freedom. Our approach is to first
establish the model of the system without any termination arguments, then having sev-
eral refinement layers dedicated to proving convergence properties of events according
to a lexicographic variant. Essentially, with this style of development, our probabilistic
termination arguments are preserved with refinement.

Our contribution hence is a methodology for proving almost certain-termination,
with the main novelty is the restrictions on refinement and additional condition on vari-
ants so that probabilistic termination property can be establish. We use the Rabin’s
Choice Coordination to illustrate our approach and extend the RODIN Platform ac-
cordingly in order to support our reasoning.

The rest of the paper is structured as follows. In Section 2 we give a brief overview
of the Event-B modelling method, focusing on proofs of convergence and qualitative
reasoning. Section 3 is dedicated to the formalisation of Rabin’s choice coordination
algorithm. We present the summary of our tool support in Section 4. Finally, we draw
some conclusions in Section 5.

2 Qualitative Reasoning in Event-B

Event-B [1] is a modelling method for formalising and developing systems whose com-
ponents can be modeled as discrete transition systems. We will not describe in detail
the semantics of Event-B here, instead just describe some of the proof obligations that
are important for our development.

Event-B models are organised in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the
dynamic part. Contexts may contain carrier sets, constants and axioms. Carrier sets are
similar to types. Axioms constrain carrier sets and constants.

We give an overview about machines in Section 2.1, then about machine refinement
in Section 2.2 and finally about convergent and qualitative reasoning in Section 2.3.

2.1 Machines

Machines specify behavioural properties of Event-B models. Machines may contain
variables, invariants, events, and variants. Variables v define the state of a machine and
are constrained by invariants I(v). Possible state changes are described by events.

Events An event can be represented by the term “any t where G(t, v) then S(t, v) end”,
where t stands for the event’s parameters, G(t, v) is the guard (the conjunction of one
or more predicates) and S(t, v) is the action. The guard states the necessary condition
under which an event may occur, and the action describes how the state variables evolve
when the event occurs. We use the short form “when G(v) then S(v) end” when the

3

event does not have any parameters, and we write “begin S(v) end” when, in addi-
tion, the event’s guard equals true. A dedicated event of the last form is used for the
initialisation event (usually respresented as init).

The action of an event is composed of one or more assignments of the form “x :=
E(t, v)” or “x :∈ E(t, v)” or “x :| Q(t, v, x′)”, where x are some of the variables
contained in v, E(t, v) is an expression, and Q(t, v, x′) is a predicate. Note that the vari-
ables on the left-hand side of the assignments contained in the action must be disjoint.
The last form refers to Q which is a before-after predicate relating the values x (before
the action) and x′ (afterwards). All assignments of an action S(t, v) occur simultane-
ously, which is expressed by conjoining together their before-after predicates. Hence
each event corresponding to a before-after predicate S(t, v, v′) established by conjoin-
ing all before-after predicates associated with each assignment and y = y′ (where y are
unchanged variables).

Proof Obligations Event-B defines proof obligations, which must be proved to show
that machines have their specified properties. We describe below the proof obligation
for invariant preservation. Formal definitions of all proof obligations are given in [1].
Invariant preservation states that invariants are maintained whenever variables change
their values. Obviously, this does not hold a priori for any combination of events and in-
variants and therefore must be proved. For each event, we must prove that the invariants
I are re-established after the event is carried out. More precisely, under the assump-
tion of the invariants I and the event’s guard G, we must prove that the invariants still
hold in any possible state after the event’s execution given by the before-after predicate
S(t, v, v′).

Similar proof obligations are associated with a machine’s initialisation event. The
only difference is that there is no assumption that the invariants hold. For brevity, we do
not treat initialisation differently from ordinary machine events. The required modifi-
cations of the associated proof obligations are straightforward. Note that in practice, by
the property of conjunctivity, we can prove the preservation of each invariant separately.

2.2 Machine Refinement

Machine refinement is a mechanism for introducing details about the dynamic proper-
ties of a model [1]. For more details on the theory of refinement, we refer the reader to
the Action System formalism [4], which has inspired the development of Event-B. Here
we sketch some central proof obligations for machine refinement which are related to
our development in Section 3.

A machine CM can refine another machine AM. We refer to AM as the abstract machine
and CM as the concrete machine. The states of the abstract machine are related to the
states of the concrete machine by gluing invariants J(v, w), where v are the variables
of the abstract machine and w are the variables of the concrete machine. Typically, the
gluing invariants are declared as invariants of CM and also contain the local concrete
invariants constraining only w.

Each event ea of the abstract machine is refined by a concrete event ec (later we
will relax this one-to-one constraint). For simplicity, we assume that both events have

4

the same parameters t. Let the abstract event ea and concrete event ec be as follows.

ea =̂ any t where G(t, v) then S(t, v) end (1)
ec =̂ any t where H(t, w) then T (t, w) end (2)

Somewhat simplifying, we can say that ec refines ea if the guard of ec is stronger than
the guard of ea, and the gluing invariants J(v, w) establish a simulation of ec by ea.

I(v), J(v, w), H(t, w) ` G(t, v) (GRD)

I(v), J(v, w), H(t, w),T(t, w,w′) ` ∃v′ ·S(t, v, v′) ∧ J(v′, w′) (SIM)

A special case of refinement (called superposition refinement) is when v is kept in
the refinement, i.e. v ⊆ w. In particular, if the actions are deterministic for both abstract
and concrete events, and the expressions assigned to v are equivalent, the proof obliga-
tion SIM reduces to just proving the gluing invariants J(v′, w′) being re-established.
Our reasoning in the later sections will often use this fact. In the course of refinement,
new events are often introduced into a model. New events must be proved to refine the
implicit abstract event SKIP, which does nothing.

The one-to-one correspondence between the abstract and concrete events can be
relaxed. When an abstract event ea is refined by more than one concrete events ec,
we say that the abstract event ae is split and prove that each concrete ec is a valid
refinement of the abstract event. Conversely, several abstract events ae can be refined
by one concrete ec. We say that these abstract events are merged together.

2.3 Convergence and Qualitative Reasoning

At any stage, it may be proved that some set of events do not collectively diverge (we
call them convergent events). In other words, these convergent events cannot take con-
trol forever and hence one of the other events eventually occurs. To prove this, one gives
a variant V , which maps a state to a finite set. One then proves that each convergent
event strictly decreases V . Since the variant maps a state to a finite set, V induces a
well-founded ordering on system states given by strict subset-inclusion of their images
under V . The corresponding proof obligation is as follows.

I(v), G(t, v) ` ∀v′ ·S(t, v, v′)⇒ V (v′) ⊂ V (v) (VAR)

As explained above, we assume that the variant is a set expression. In Event-B, a vari-
ant can also be a natural number expression with the normal decreasing order “<” [1].
Later we are going to use both types of variant for our development. Note that in
some cases the convergence of some events cannot be immediately shown, but only
in a later refinement. In this case, their convergence is anticipated and we must prove
that V (v′) ⊆ V (v), that is, these anticipated events do not enlarge the variant. The
convergent attribute of an event is denoted by the keyword status with three possible
values: convergent, anticipated, and ordinary (for events which are not convergent).
Effectively, the use of anticipated events allows us to construct a lexicographic variant
relying on the fact that standard convergent property preserved by refinement.

5

In some cases, termination is not definite but almost certain, i.e. the probability
of termination is 1. An example is when flipping a coin, heads will eventually appear
with probability one. This type of reasoning has been introduced into Event-B as in
[5]. According to this work, the action of an event can be either probabilistic or non-
deterministic (but not both). With respect to most proof obligations, a probabilistic ac-
tion is treated identically as a nondeterministic action. However, it behaves angelically
with respect to VAR: an event with probabilistic action may (as in contrast to must)
decrease the variant V (v). The new proof obligation rule for probabilistic events is as
follows.

I(v), G(t, v) ` ∃v′ ·S(t, v, v′) ∧ V (v′) ⊂ V (v) (PRV)

Note that the rule that we showed here is for an abstract convergent event. For a concrete
event, the corresponding proof obligation rule is similar with the exception that one can
assume both abstract and gluing invariants hold.

Even though probabilistic convergent events can increase the variant V (v), it is
required that V (v) is bounded above [5]. The upper bound B is a constant1 and the proof
obligation BND, which needs to be discharged for all anticipated events and convergent
events (both standard and probabilistic), is as follows.

I(v), G(t, v) ` V (v) ⊆ B (BND)

Finally, it is required that the possible alternatives for a probabilistic action are finite.

I(v), G(t, v) ` finite({v′ | S(t, v, v′)}) (FINACT)

Since events with probabilistic actions behaves almost identically to standard non-
deterministic events (with the exception of convergent proof obligations), we do not
introduce additional syntax to Event-B. Instead, we have an additional possible value
for the convergent attribute of an event, namely probabilistic and treat this events dif-
ferently when generating proof obligations.

A very important point is that in the same refinement, there could be some an-
ticipated events, some (standard) convergent events and some probabilistic convergent
events. However, regardless of their status, they have to use the same variant.

2.4 Our Contribution

The earlier work in [5] does not address the refinement of the probabilistic events.
Whereas standard convergent argument is preserved by refinement, probabilistic con-
vergent argument is not maintained since a “good” choice for termination could be ac-
cidentally removed. Forbidding refinement all together after proving probabilistic con-
vergent is not an option for us, since we want to construct a lexicographic variant using
refinement. As a result we restrict our refinement such that the event and variable system
must stay same after proving probabilistic convergence. The only allowed modifications
are additional invariants. Note that event splitting by having additional guards, e.g. in
Section 3.2 and event merging satisfy this condition, i.e. they preserve the probabilistic
convergent proofs. This is also the key aspect of our approach for proving probabilistic
termination of algorithm, with some additional features as follows.

1 In general, this could be a non-decreasing function on the state.

6

– To prove that eventually the algorithm establishes certain conditions, we follow the
approach in [7] for reasoning about liveness properties, with the correctness argu-
ment combining appropriate proofs of event convergence (both standard and prob-
abilistic) and deadlock freedom. More details on this approach is in Section 3.2.

– We first establish the full algorithm with several anticipated events, before convert-
ing them to convergent, either standard or probabilistic (taking into account the
above restriction on the refinement). The use of anticipated events is first suggested
in [5].

– Finally, with the use of anticipated events in early refinement and later converting
them to either convergent where some of them probabilistically, we prove that the
set of events terminates probabilistically. For this reason we need to prove that the
combining lexicographic variant is bounded above. As a result, we require that not
only the variant concerning with the probabilistic events, but all other variants need
to be bounded above as well.

We have used the RODIN Platform [2] for our formal development. This is an
industrial-strength tool for creating and analysing Event-B models. It includes a proof-
obligation generator and support for interactive and semi-automated theorem proving.
We have extended the tool for specifying probabilistic convergent events and generating
appropriate proof obligations. The new obligations are still in first-order logic hence we
can reuse the proving support of the RODIN Platform without needing any additional
extension. More detailed discussions on the tool support are in Section 4.

3 Rabin’s Choice Coordination Algorithm

Rabin’s choice coordination algorithm as explained in [10] is an example of the use of
probability for symmetry breaking. The choice coordination is a problem where pro-
cesses P1, ..., Pn must reach a common choice out of k alternatives A1, ..., Ak. It does
not matter which alternative will be chosen at the end. The protocol uses k shared vari-
ables v1, ..., vk, one for each alternative. A process Pj arriving at Ai can access and
modify vi in one step without any interruption from other processes. The algorithm
proposed by Rabin terminates with probability 1. Our second contribution is the for-
malisation of the algorithm in Event-B and the proofs of the associated obligations
using the RODIN Platform.

3.1 Description of the Problem and Algorithm

We will look at a simplified version of the problem and the corresponding algorithm
as described by Morgan et. al. [9]. Instead of n processes and k alternatives we have n
tourists and 2 destinations (which we call LEFT and RIGHT accordingly). We also
distinguish the inside and outside for each destination.

ENV 1 Each tourist can be in one of the following locations: inside-left, inside-right,
outside-left, outside-right.

7

Each tourist can move between the two outside locations, i.e. from outside-left to
outside-right and vice versa. Furthermore, a tourist can move from the outside to the
inside of the same place, e.g. from outside-left to inside-left.

ENV 2 A tourist can move between the two outside locations.
ENV 3 A tourist can move from the outside to the inside of the same place.

Other movements of the tourists are forbidden, in particular if a tourist enters an inside
place, he cannot change his location anymore.

ENV 4 A tourist in an inside place cannot change his location.

The purpose of the algorithm is to have all tourists to reach a common decision of
entering the same place, without communicating directly with each other.

FUN 5 Eventually, all tourists enter the same place.

Rabin’s choice coordination algorithm as described by Morgan et. al. in [9] is as follows.
Each tourist carries a notepad and he can write a number on it. Moreover, there are two
noticeboards at the outside-left and outside-right.

ALG 6 Each tourist has a notepad on which he can write a number.
ALG 7 There are noticeboards at the outside-left and outside-right.

In the beginning, number 0 is written on all tourist notepads and on the two notice-
boards. Initially, each tourist independently chooses LEFT- or RIGHT-place and goes
to the outside location of that place (i.e. outside-left or outside-right). Afterwards, a
tourist at an outside location can alternate between different locations according to the
following algorithm.

ALG 8 An outside tourist alternates between different locations as follows.
– If there is any tourist inside, he enters this place.
– Otherwise, he compares the number n on his notepad with the number N on

the noticeboard.
• If N < n, the tourist goes inside.
• If N > n, the tourist replaces n with N on his notepad and goes to the

outside of other place.
• If N = n, the tourist tosses a coin. If the coin comes up head, the tourist

sets N ′ to N +2. Otherwise, he sets N ′ to the conjugate2 of N +2. Then,
he writes N ′ on the noticeboard and his notepad and goes to the outside of
the other place.

We are going to formalise this version of the problem, algorithm, and proofs from Mor-
gan et. al. [9] accordingly in the next section. Note that we make an assumption about
the tourist capability: he/she from an outside location can “look” inside of the same
place (he still cannot see the other place, either inside or outside). A more realistic im-
plementation as described in [9] is to have a the first tourist entering an inside location to
write some special note e.g. “Here”, on the noticeboard. However, this will complicate
our reasoning hence we make this simplification.

2 The conjugate of a number n (denoted by n) is defined to be n+ 1 if n is even and n− 1 if n
is odd.

8

3.2 Formal Development
In this section, we present the formal development of Rabin’s choice coordination al-
gorithm in Event-B3.

Initial Model. The Sets of Inside Tourists We assume that there is a context with a
finite carrier set T representing the set of tourists. In this initial model, we have two
sets of tourists, namely lin and rin , representing those at the inside-left and inside-right
accordingly. Note that invariant inv0 3 states that at least one of the two locations is
always empty. Initially, both variables are empty sets, since all tourists are outside.

variables: lin, rin

invariants:
inv0 1 : lin ⊆ T
inv0 2 : rin ⊆ T
inv0 3 : lin = ∅ ∨ rin = ∅

init
begin
lin := ∅
rin := ∅

end

We have two events L IN and R IN to model the situation when a tourist enters the
inside-left or inside-right accordingly (ENV 3). Moreover there are no leaving events:
a tourist once inside cannot change his location (ENV 4).

L IN
status convergent
any t where

rin = ∅
t /∈ lin

then
lin := lin ∪ {t}

end

R IN
status convergent
any t where
lin = ∅
t /∈ rin

then
rin := rin ∪ {t}

end

variant: T \ (lin ∪ rin)

The two events are convergent, with the variant V0 representing the set of tourists not
inside the two places. Note that the variant V0 here is bounded above by the set of
tourists T which is finite.

Finally, we have one ordinary event, namely final. This is an observer event (similar
to those defined in [7]) in the sense that this does not change the state of model, but
to observe certain condition about the state of the model. The observing condition is
encoded as the guard of the events: if the event is enabled, the condition is satisfied.
Here we are interested in the fact that all tourists will end up in the same place. Note
that according to invariant inv0 3, if all tourists are in one place, the other place must
be empty.

final =̂ when rin = T ∨ lin = T then SKIP end

Further refinements keep event final unchanged and our goal is to prove that eventu-
ally event final is enabled. At the end of the development, beside event final we have
a number of events e1, . . . , en. We will prove that all events e1, . . . , en are conver-
gent (standard or probabilistically). We must prove that the event system containing
e1, . . . , en and final are deadlock-free. According to the convergence argument, all
events e1, . . . , en will eventually converge, i.e. these events will be disabled. Together
with the deadlock-freedom argument, the only event that does not deadlock is final
whose guard must be satisfied when all other events are disabled.

3 The archive of the development can be found on-line at http://deploy-eprints.
ecs.soton.ac.uk/232/.

http://deploy-eprints.ecs.soton.ac.uk/232/
http://deploy-eprints.ecs.soton.ac.uk/232/

9

Refinement 1. The Sets of Outside Tourists There are two new variables lout and
rout representing the tourists outside the two places. Invariant inv1 1 states that a
tourist cannot be at two locations at the same time, and each tourist must be in one of
the locations4. This corresponds to requirement ENV 1. Initially, some tourists decide
to go to the outside-left and some tourists to the outside-right.

variables: . . . , lout, rout

invariants:
inv1 1 : partition(T , lin, rin, lout, rout)

init
begin
. . .
lout, rout :| lout′ = T \ rout′

end

There are two new events namely L 2 R and R 2 L to model the movement of a
tourist between the two outside locations. This corresponds to the requirement ENV 2.

L 2 R
status anticipated
any t where
t ∈ lout
lin = ∅

then
rout, lout := rout ∪ {t}, lout \ {t}

end

R 2 L
status anticipated
any t where
t ∈ rout
rin = ∅

then
lout, rout := lout ∪ {t}, rout \ {t}

end

The guards lin = ∅ and rin = ∅ state that the tourists can only alternate between
the outside locations if there is no one inside. This is a part of the algorithm described
by requirement ALG 8. The two new events only modify new variables rout , lout
hence clearly refine SKIP. Moreover, invariant inv1 1 is preserved since the events only
change the location for one particular tourist from outside-left to outside-right and vice
versa. These events are anticipated at the moment, we will consider their convergent
property in subsequent refinements.

Events L IN and R IN are refined accordingly to take into account the new variables.
Since the events corresponding to LEFT and RIGHT are symmetric, from now on,
we present only events corresponding to LEFT . The refinement of event L IN is as
follows.

(abstract)L IN
any t where

rin = ∅
t /∈ lin

then
lin := lin ∪ {t}

end

(concrete)L IN
any t where
rin = ∅
t ∈ lout

then
lin, lout := lin ∪ {t}, lout \ {t}

end

Note that the guard strengthening proof obligation GRD follows from the fact that a
tourist can only be in one location at a time (invariant inv1 1). The assigned expres-
sions to old variable lin are the same in both abstract and concrete events. Moreover
invariant inv1 1 is maintained since the event merely moves a tourist from the outside-
left to the inside-left.

4 partition(S, s1, . . . , sn) means that subsets s1, . . . , sn are pairwise disjoint and their union
is S.

10

Refinement 2. Rabin’s Algorithm We introduce the two noticeboards outside the
places and the tourists’ notepads where they can write some number on it. Initially,
number 0 is written on the noticeboards and all the notepads. This corresponds to the
requirements ALG 6 and ALG 7.

variables: . . . ,L,R,np

invariants:
inv2 1 : L ∈ N
inv2 2 : R ∈ N
inv2 3 : np ∈ T → N

init
begin
. . .
L,R,np := 0, 0,T × {0}

end

We can now specify under which condition a tourist can move from one location to
another.

L IN
any t where
. . .
L < np(t) ∨ lin 6= ∅

then
. . .

end

Events modelling the movement of a tourist from an outside location to an inside loca-
tion, i.e. event L IN (and similarly R IN), are guard-strengthened as follows. The guard
L < np(t) ∨ lin 6= ∅ states that a tourist t can move inside the left place only if the
number on his notepad is greater than the number on the left-noticeboard or if there is
already someone at inside-left.

For events modelling the movement of a tourist between two outside locations, there
are two different cases. The events corresponding to the movement of a tourist from the
LEFT to RIGHT are modelled by two events L 2 R EQ and L 2 R NEQ depending
on if the number on the tourist notepad is equal or strictly smaller than the number on
the noticeboard. Using n for the conjugate number of n, the two events are as follows.

L 2 R NEQ
refines L 2 R
status anticipated
any t where

. . .
np(t) < L

then
. . .
np(t) := L

end

L 2 R EQ
refines L 2 R
status anticipated
any t where
. . .
np(t) = L

then
. . .

L,np :| L′ ∈ {L + 2,L + 2} ∧ np′ = np C− {t 7→ L′}
end

The actions of the above events update the tourist notepad and the noticeboard accord-
ingly. Note that both events are refinements of the original event L 2 R, i.e. the original
event is split into two cases. Note that these events model the movement of a tourist ac-
cording to requirement ALG 8, with the exception that we use nondeterministic choice
at the moment in L 2 R EQ. This is an abstraction of the actual probabilistic choice (i.e.
coin tossing), which we will introduce later.

Up to this refinement model we have modelled all the requirements except for FUN
5. In other words, we have established the model of the problem and the algorithm.
Subsequent refinements are dedicated to prove the main properties of the algorithm, i.e.
eventually all tourists end up in the same place.

11

Refinements 3–6. Convergence Proofs Recall in the previous model, we have an ordi-
nary event final, two convergent events, namely L IN and R IN, and anticipated events
L 2 R NEQ, L 2 R EQ, R 2 L NEQ and R 2 L EQ. In this section, we describe our
proof of (probabilistic) convergence of the anticipated events. We formalise the variant
that has been proposed in [9]. The variant is a lexicographic one, with two layers: the
outer layer (with higher priority) deals with the changes to L and R, the inner layer
(with lower priority) deals with the tourists’ movements.

Outer layer We compare the values of L and R and notice how they can be varied.
In order to understand the variant at this layer, we look at the definition of conjugate
numbers. We separate the set of natural numbers into pairs: (0, 1) | (2, 3) | (4, 5) |
(6, 7) | For each pair, a number is the conjugate of the other number in the pair and
vice versa. The even number of each pair is also the minimum of the two. We will refer
to this splitting of natural numbers later in our reasoning. We reason about the outer
variant in two refinement steps.

invariants:
inv3 1 : ∀x·x ∈ lout ⇒ np(x) ≤ R
inv3 2 : ∀x·x ∈ rout ⇒ np(x) ≤ L

inv3 3 : L̃− R̃ ∈ {−2, 0, 2}
inv3 4 : L /∈ np[rout]

inv3 5 : R /∈ np[lout]

Refinement 3. Invariants inv3 1–5 constraint the relationship between L and R. Be-
low, we use the notation ñ to denote the minimum of n and its conjugate n. We will not
go into details about proving the preservation of these invariants, only give some brief
descriptions of them. Invariant inv3 1 states that every tourist at the outside-left car-
ries a number no greater than the right-noticeboard. Invariant inv3 5 states that there is
no tourist at the outside-left carrying the number which is the conjugate of the number
on the right-noticeboard. The invariants related to the tourists at the outside-right, i.e.
inv3 2 and inv3 4 are symmetric. Invariant inv3 3 states that the values of the two
noticeboards cannot be “too far apart”. Referring to the splitting of natural numbers into
pairs, this invariant states that L and R must be in a same pair or in two adjacent pairs.
Note that when L̃ = R̃, i.e. they are in the same pair, there can be two cases, either
L = R or L = R (equivalently R = L). We can distinguish the relationship between L
and R in three different cases: either L̃− R̃ ∈ {−2, 2} or L = R or L = R. Our variant
is based on this relationship.

Refinement 4. For the outer variant, we define the following constant function rE
as follows

axioms:
rE 1 : rE ∈ N× N 7→ {0, 1, 2}
rE 2 : ∀l, r·l 7→ r ∈ dom(rE)⇔ l̃− r̃ ∈ {−2, 0, 2}
rE 3 : ∀l, r·l ∈ N ∧ l = r⇒ rE(l 7→ r) = 2
rE 4 : ∀l, r·l ∈ N ∧ l = r⇒ rE(l 7→ r) = 0

rE 5 : ∀l, r·l ∈ N ∧ l̃− r̃ ∈ {−2, 2} ⇒ rE(l 7→ r) = 1

variant: rE(L 7→ R)

bound: 2

and define the variant V1 as rE (L 7→ R) with upper bound of 2. We split event
L 2 R EQ into three different cases, depending on the current value of rE (L 7→ R).

12

L 2 R EQ 0
refines L 2 R EQ
status convergent
any t where
t ∈ lout
lin = ∅
np(t) = L
rE(L 7→ R) = 0

then
. . .

end

L 2 R EQ 1
refines L 2 R EQ
status probabilistic
any t where
t ∈ lout
lin = ∅
np(t) = L
rE(L 7→ R) = 1

then
. . .

end

L 2 R EQ 2
refines L 2 R EQ
status convergent
any t where
t ∈ lout
lin = ∅
np(t) = L
rE(L 7→ R) = 2

then
. . .

end

We prove that L 2 R EQ 0, L 2 R EQ 2 are convergent, and L 2 R EQ 1 is proba-
bilistically convergent whereas L 2 R NEQ is anticipated (which will be convergent
with using the inner variant). The convergence attribute for the events correspond-
ing to the RIGHT are symmetric. First of all, we need to prove that the variant is
bounded above (BND) by the declared upper bound. This is trivial since by definition,
rE (L 7→ R) ≤ 2. Next we show that each event satisfies (VAR) or (PRV) depending
on their convergence attribute.

For L 2 R EQ 0, this corresponds to the case that never happens, since we have
rE (L 7→ R) = 0, i.e. L = R, hence np(t) = R. However, since t ∈ lout and according
to invariant inv3 5, we have R /∈ np[lout] which is a contradiction. In other words,
the guard of L 2 R EQ 0 can be used to derive ⊥. Hence anything can be proved under
the assumption of the guard of this events, including convergence proof.

For L 2 R EQ 2, we have rE (L 7→ R) = 2, i.e. L = R. The action will change L
to either L+ 2 or L+ 2, and keep R the same, hence the new value L′ will be different
from R′, hence rE (L′ 7→ R′) 6= 2 which is less than rE (L 7→ R). As a result, the
variant V1 is decreased, hence satisfy VAR.

For L 2 R NEQ, it does not change the value of L or R, hence the value of V1 stays
the same, i.e. non-increasing.

For L 2 R EQ 1, firstly we have that the possible alternatives of the after states are
finite (2 in this case) hence the event satisfies FINACT. Secondly, we prove that the
event may decrease the variant V1, i.e. satisfies PRV. The actual proof obligation (with
some simplifications by removing unnecessary hypotheses) is as follows.

rE(L 7→ R) = 1
∀x·x ∈ lout ⇒ np(x) ≤ R
t ∈ lout
np(t) = L
`
∃L′,np′ ·L′ ∈ {L + 2,L + 2} ∧ np′ = np C− {t 7→ L′} ∧ rE(L′ 7→ R) < rE(L 7→ R)

We have from rE (L 7→ R) = 1 that L̃ − R̃ ∈ {−2, 2}. In particular, from invariant
inv3 1, i.e. ∀x·x ∈ lout⇒np(x) ≤ R, and from event’s guards t ∈ lout and np(t) =

L, we have that L ≤ R hence L̃ − R̃ must be −2. Referring to the splitting of natural
numbers into pairs, when we have L̃ − R̃ = −2, it means that L is in one pair and R
is in the next higher adjacent pair, for example, if L is either 2 or 3 then R is either 4
or 5. The meaning of the action assigning L′ to either L + 2 or L+ 2 is to have L′ to
be in the same pair as R, hence one of the alternative will satisfy condition L′ = R.
For this case, rE (L′ 7→ R) = 0 < 1 = rE (L 7→ R) As a result, we have proved that
L 2 R EQ 1 may decrease the variant V1.

13

Inner layer The variant for the inner layer is used to prove the convergence property of
events L 2 R NEQ and R 2 L NEQ. This is done in two refinement steps.

Refinement 5. We prove that L 2 R NEQ converges and R 2 L NEQ is anticipated
with the variant V2 defined to be {t | np(t) < L}, i.e. the set of tourists carrying
a number on strictly smaller than the left-noticeboard. Event L 2 R NEQ changes the
value of a tourist notepad from strictly less to equal to L hence it decreases V2. Event
R 2 L NEQ increase the value of a tourist notepad, hence it cannot increase V2.

Refinement 6. In the second step, we prove that R 2 L NEQ converges with a sym-
metric variant V3 to be {t | np(t) < R} following similar reasoning as above.

Note that both variant V2 and V3 are bounded above by the finite set of tourists T .

Refinement 7. Deadlock-freedom

invariants:
inv7 1 : ∀x·x ∈ lin ⇒ np(x) ≤ R
inv7 2 : ∀x·x ∈ rin ⇒ np(x) ≤ L
inv7 3 : lin 6= ∅⇒ (∃x·x ∈ lin ∧ np(x) > L)
inv7 3 : rin 6= ∅⇒ (∃x·x ∈ rin ∧ np(x) > R)

In this final refinement, we merge the events that have been split earlier together, i.e.
L 2 R EQ and R 2 L EQ. Combining the convergent attribute of the sub-events, we
have now that these two events are probabilistic convergent. We add a theorem to prove
that our system at this point is deadlock-free, i.e. the disjunction of all guards always
holds. In order to prove the theorem, we need the following additional invariants about
the set of tourists inside the two places.

Together with the proof of convergence earlier, we can now ensure that our sys-
tem satisfies requirement FUN 5. Our reasoning is based on the approach in [7] and
is as follows. At the last model, we have the following events: event final which is or-
dinary, events L IN, R IN, L 2 R NEQ, R 2 L NEQ which are convergent and events
L 2 R EQ and R 2 L EQ which are probabilistically convergent. Because of the con-
vergent proof, we ensure that together the set of convergent events (standard and prob-
abilistic) will terminate (being disabled) with probability 1. Moreover, because of the
deadlock-freedom proof, when the convergent events are disabled, event final is the
only one left, and must be enabled, i.e. all tourists are in the same place.

Model Total Auto.(%) Man.(%)
Initial model 6 6(100%) 0(N/A)
1st Refinement 8 7(88%) 1(12%)
2nd Refinement 19 15(79%) 4(21%)
Outer variant 68 45(66%) 23(34%)
Inner variant 7 4(57%) 3(43%)
Deadlock freedom 32 22(69%) 10(31%)
Total 140 99(71%) 41(29%)

Table 1. Proof statistics

Proof Statistics The statistics for our proofs is in Table 1. A large number of manual
proofs are in the models for proving the outer variants and deadlock-freedom, since we

14

need several additional supporting invariants. In particular, in order to prove obligations
related to the outer variant, we decided to split the events L 2 R EQ and R 2 L EQ into
different cases. As a result, we have more proof obligations, which are simpler to prove.
As an alternative, we can do the split while proving, i.e. to do proof by cases, without
splitting the events. This will reduce the number of proof obligations, however, it hides
the termination argument inside the proofs and they become more complicated. Our
development is more intuitive, with the correctness being easier to observe by splitting
the events accordingly. Finally, most of the manual proofs are dealing with arithmetic
reasoning related to modulo operator (as consequent of the use of conjugate number),
sometimes involves doing case distinctions which known to be difficult for automated
provers.

4 Tool Support

We have implemented a plug-in to the RODIN Platform [2] for supporting the gener-
ation of proof obligations for proving probabilistic termination. The summary of the
work done is as follows. More details can be seen in [11].
Probabilistic attribute : An event can be marked as probabilistic. A probabilistic event

is only treated differently from a standard event when it comes to convergence proof
obligation.

Bound element : A new modelling element is added for declaring the upper bound.
Static Checking : The conditions below are checked for a model containing proba-

bilistic events.
1. The variant V (declared as usual) is either of the type integer or some set.
2. There is exactly one bound for a model where the probabilistic converge is

proved. The bound element B must be of the same typed as the declared vari-
ant.

3. Every probabilistic event must be refined by a probabilistic event.
4. Merging a probabilistic event and a convergent event results in a probabilistic

event.
Proof Obligations : Given a model, the following additional proof obligations are gen-

erated for proving probabilistic convergence property.
1. The variant is always bounded above by the declared bound. (BND)
2. The variant might be decreased by the probabilistic events. (PRV)
3. The bound must be finite if it is a set. (BFN)
4. The bound must be well-defined. (BWD)

5 Conclusion and Future Work

In conclusion, we have presented a method for reasoning about termination with prob-
ability one using refinement as an extension of the work in [5]. We have developed Ra-
bin’s choice coordination algorithm [10] in Event-B. In particular, we have formalised
the lexicographical variant as presented in [9]. We extended the RODIN Platform [2]
for supporting the generation of appropriate proof obligations concerning with this type

15

of reasoning, and proved all the obligations using the proving support of the RODIN
Platform [2].

The example of Rabin’s choice coordination is also used in [6, Chapter 3] as an
illustrative example for reasoning about almost certain termination using classical B.
The main difference between the two developments is that in classical B, one ends
up with a sequential program which is a model of the algorithm. Our development in
Event-B gives us a model of a fully distributed system. Moreover, the formalisation of
lexicographic variants is suited better for Event-B since in classical B, one can only
have a single natural number variant. As a result, the lexicographic variant has to be
encoded (unnaturally) into a natural number variant, which leads to more complicated
proofs.

Using our newly developed tool support, we have modelled other examples for prov-
ing termination including contention resolution [5] and duelling cowboys [6, Chapter
6]. In the near future, we will try to integrate the reasoning about contention resolu-
tion with the development of the Firewire protocol [3] and the full k-version of Rabin’s
Choice Coordination algorithm [10]. In particular for the latter example, the model of
the algorithm will be quite straight-forward with each event having an additional pa-
rameter representing a particular alternative (currently the alternative is “hard-coded”
as LEFT and RIGHT and we have separate events for each alternative). However the
challenges will be on finding the right lexicographic variant for proving probabilistic
termination of the algorithm using our tool.

We have presented our development involving several refinements, which involves
reasoning about both standard and probabilistic terminations and deadlock-freedom.
However, we only use superposition refinement, in particular, when dealing with con-
vergent proofs, we merely keep the models the same, and the various refinements are
there to accommodate the lexicographic variant. For this reason, i.e. having the same
model through out, our reasoning about probabilistic termination is preserved. This is
a very strong assumption, and it could reduce the effectiveness of using refinement.
However, in general, standard refinement does not preserve this type of reasoning: a
valid standard refinement can accidentally remove the choice that lead to possible ter-
mination. The argument becomes more complicated with data refinement, i.e. when
one replaces some abstract variables by some new concrete variables. In order to re-
lax the restriction on having the same model through out, additional proof obligation(s)
will be needed to guarantee that our reasoning at the abstract level about probabilistic
convergence remains valid at the concrete level. We regard this as possible future work.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, May 2010.

2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. RODIN: An
open toolset for modelling and reasoning in Event-B. Internation Journal on Software Tools
for Technology Transfer (STTT), April 2010.

3. J-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental development
of ieee 1394 tree identify protocol. Formal Asp. Comput., 14(3):215–227, 2003.

16

4. R-J. Back. Refinement Calculus II: Parallel and Reactive Programs. In J. W. deBakker, W. P.
deRoever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume
430 of LNCS, pages 67–93, Mook, The Netherlands, May 1989. Springer-Verlag.

5. S. Hallerstede and T.S. Hoang. Qualitative Probabilistic Modelling in Event-B. In Jim David
and Jeremy Gibbons, editors, IFM 2007: Integrated Formal Methods, volume 4591 of LNCS,
pages 293–312, Oxford, U.K., July 2007. Springer Verlag.

6. T.S. Hoang. The Development of a Probabilistic B-Method and a Supporting Toolkit. PhD
thesis, The University of New South Wales, July 2005.

7. T.S. Hoang, H. Kuruma, D. Basin, and J-R. Abrial. Developing topology discovery in event-
b. Sci. Comput. Program., 74(11-12):879–899, 2009.

8. IEEE. IEEE Std 1394a-2000 High Performance Serial Bus – Amendment 1, 2000.
9. C. Morgan and A. McIver. Abstraction, Refinement and Proof for Probabilistic Systems.

Springer Verlag, 2005.
10. M. Rabin. The choice coordination problem. Acta Informatica, 17:121-134, 1982.
11. E. Yilmaz. Tool support for qualitative reasoning in Event-B. Master’s thesis, Department

of Computer Science, ETH Zurich, Switzerland, August 2010.

	Development of Rabin Choice Coordination in Event-B

