

Overview The Requirement Documen Formal Models

Purpose of this Lecture (2)

- Each model will be analyzed and proved to be correct
- The aim is to obtain a system that will be correct by construction
- The correctness criteria are formulated as proof obligations
- Proofs will be performed by using the sequent calculus
- Inference rules used in the sequent calculus will be reviewed

Cars on a Bridge

The Requirement Document

What you will Learn

- The concepts of state and events for defining models
- Some principles of system development: invariants and refinement
- A refresher of classical logic and simple arithmetic foundations
- A refresher of formal proofs

Overview The Requirement Document Formal Models

A Requirements Document (1)

- The system we are going to build is a piece of software connected to some equipment.
- There are two kinds of requirements:
 - those concerned with the equipment, labeled EQP,
 - those concerned with the function of the system, labeled FUN.
- The function of this system is to control cars on a narrow bridge.
- This bridge is supposed to link the mainland to a small island.

Cars on a Bridge

Initial ModelFirst RefinementSecond Refinement

Third Refinement

2 The Requirement Document

B. Abrial (ETH-Züric)

Outline

Bucharest, 14-16/07/10 7

ETH

ETH

Bucharest, 14-16/07

The Requirement Document Formal Models

A Requirements Document (2)

The system is controlling cars on a bridge between the mainland and an island FUN-1

- This can be illustrated as follows

Overview The Requirement Document Formal Models

A Requirements Document (4)

- One of the traffic lights is situated on the mainland and the other one on the island. Both are close to the bridge.
- This can be illustrated as follows

A Requirements Document (3)

- The controller is equipped with two traffic lights with two colors.

The system has two traffic lights with two colors: green and red	EQP-1
--	-------

Overview The Requirement Document Formal Models

A Requirements Document (5)

The traffic lights control the entrance to the bridge at both ends of it	EQP-2
--	-------

- Drivers are supposed to obey the traffic light by not passing when a traffic light is red.

Cars are not supposed to pass on a red traffic light, only on a green one	EQP-3
---	-------

Cars on a Bridge

STREET, STREET

I-R. Abrial (ETH-Zürich)

A Requirements Document (6)

- There are also some car sensors situated at both ends of the bridge.

- These sensors are supposed to detect the presence of cars intending to enter or leave the bridge.

- There are four such sensors. Two of them are situated on the bridge and the other two are situated on the mainland and on the island.

The system is equipped with four car sensors EQP-4 each with two states: on or off

		ETTH Higherdards related to Facility and the factor of the
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 13 / 284

The Requirement Document Formal Models

A Requirements Document (8)

• This system has two main constraints: the number of cars on the bridge and the island is limited and the bridge is one way.

The number of cars on the bridge and the island is limited	FUN-2
The bridge is one way or the other, not both at the same time	FUN-3

The Requirement Document Formal Models

A Requirements Document (7)

The sensors are used to detect the presence EQP-5 of cars entering or leaving the bridge

- The pieces of equipment can be illustrated as follows:

The Requirement Document Formal Models

The Reference Document (1)

The system is between the m	controlling cars on a bridge nainland and an island	9	FUN-1		
The number of ca	irs on the bridge and the is	and	FUN-2	2	
The bridge is one same time	way or the other, not both	at the	FUN	-3	
			E E E E E E E E E E E E E E E E E E E	genässische Technisci iss Federal Institute o	l he Hochschule Zürich f Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge		Bucharest, 14-16/07	7/10	16/284

ETH

The Reference Document (2)

	The system h colors: green	nas two traffic lights with two and red	EQP-1	
	The traffic ligh bridge at both	ts control the entrance to the ends of it	EQP-2	
	Cars are not su light, only on a g	pposed to pass on a red traffic green one	EQP-3	
5 5 5	J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	J Kohe Technische Mischischule Zürich nal Institute of Technetegy Zurich 17 / 284

2 The Requirement Document

3 Formal Models

- Initial Model
- First Refinement
- Second Refinement
- Third Refinement

The Reference Document (3)

The system is equipped with four car sensors each with two states: on or off	EQP-4
The sensors are used to detect the presence of cars entering or leaving the bridge	EQP-5

Overview Initial I Requirement Document Secon Formal Models Third

Our Refinement Strategy

- Initial model: Limiting the number of cars (FUN-2)
- First refinement: Introducing the one way bridge (FUN-3)
- Second refinement: Introducing the traffic lights (EQP-1,2,3)
- Third refinement: Introducing the sensors (EQP-4,5)

ETH

19/284

Bucharest, 14-16/07/10

Overview Initial Mode Requirement Document Formal Models Second Re Third Refine

Outline

- First Refinement
- Second Refinement
- Second Reinement
- Third Refinement

Initial Model

- It is very simple
- We completely ignore the equipment: traffic lights and sensors

nitial Model

- We do not even consider the bridge
- We are just interested in the pair "island-bridge"
- We are focusing FUN-2: limited number of cars on island-bridge

Overview le Requirement Document Formal Models Third Refinement

Two Events that may be Observed

Formalizing the State: Constants and Axioms

- STATIC PART of the state: constant d with axiom axm0_1

constant: d

axm0_1: $d \in \mathbb{N}$

- d is the maximum number of cars allowed on the Island-Bridge
- **axm0_1** states that *d* is a natural number
- Constant *d* is a member of the set $\mathbb{N} = \{0, 1, 2, \ldots\}$

Formalizing the State: variable

- DYNAMIC PART: variable v with invariants inv0_1 and inv0_2

- *n* is the effective number of cars on the Island-Bridge
- *n* is a natural number (**inv0_1**)
- *n* is always smaller than or equal to *d* (**inv0_2**): this is FUN_2

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Event ML_out	

- This is the first transition (or event) that can be observed
- A car is leaving the mainland and entering the Island-Bridge

- The number of cars in the Island-Bridge is incremented

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Naming Conventions	

- Labels axm0_1, inv0_1, ... are chosen systematically
- The label **axm** or **inv** recalls the purpose: axiom of constants or invariant of variables
- The **0** as in **inv0_1** stands for the initial model.
- Later we will have inv1_1 for an invariant of refinement 1, etc.
- The 1 like in inv0_1 is a serial number
- Any convention is valid as long as it is systematic

Event ML_in

- We can also observe a second transition (or event)
- A car leaving the Island-Bridge and re-entering the mainland

- The number of cars in the Island-Bridge is decremented

6		ETTH Bigraduska radioska radioska zarók keis heine bistrák et feloridarg zarók
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 29 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Why an Approximation?	

These events are approximations for two reasons:

- They might be refined (made more precise) later
- They might be insufficient at this stage because not consistent with the invariant

We have to perform a proof in order to verify this consistency.

Formalizing the two Events: an Approximation

- Event ML_out increments the number of cars

$$ML_out$$
 $n := n + 1$

- Event ML_in decrements the number of cars

 ML_in n := n - 1

- An event is denoted by its name and its action (an assignment)

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Invariants		

- An invariant is a constraint on the allowed values of the variables
- An invariant must hold on all reachable states of a model
- To verify that this holds we must show that
 - 1. the invariant holds for initial states (later), and
 - 2. the invariant is preserved by all events (following slides)
- We will formalize these two statements as proof obligations (POs)

Cars on a Bridge

- We need a rigorous proof showing that these POs indeed hold

Towards the Proof: Before-after Predicates

- To each event can be associated a before-after predicate
- It describes the relation between the values of the variable(s) *just before* and *just after* the event occurrence
- The before-value is denoted by the variable name, say n
- The after-value is denoted by the primed variable name, say n'

Before-after Predicate Examples

The Events

$$ML_out n := n + 1$$

$$ML_in n := n - 1$$

The corresponding before-after predicates

$$n'=n+1$$
 $n'=n-1$

These representations are equivalent.

Overview Initial M The Requirement Document Formal Models Second Third R

Intuition about Invariant Preservation

- Let us consider invariant inv0_1

 $n \in \mathbb{N}$

- And let us consider event ML_out with before-after predicate

n′ = *n* + 1

- Preservation of inv0_1 means that we have (just after ML_out):

 $n' \in \mathbb{N}$ that is $n+1 \in \mathbb{N}$

Overview Initial Model The Requirement Document Formal Models Third Refinement

About the Shape of the Before-after Predicates

- The before-after predicates we have shown are very simple

$$n'=n+1$$
 $n'=n-1$

- The after-value n' is defined as a function of the before-value n
- This is because the corresponding events are deterministic
- In later lectures, we shall consider some non-deterministic events:

$$n' \in \{n+1, n+2\}$$

Overview equirement Document Formal Models

Being more Precise

- Under hypothesis $n \in \mathbb{N}$ the conclusion $n + 1 \in \mathbb{N}$ holds
- This can be written as follows

$$n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$$

- This type of statement is called a sequent (next slide)
- Sequent above: invariant preservation proof obligation for inv0_1
- More General form of this PO will be introduced shortly

		ETH Biggrafsstor re- Sens Feira Ital	thrische Hachschale Zürich tate of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	37 / 284

 Overview The Requirement Formal Models
 Inimit Models

 Proof Obligation: Invariant Preservation (1)

- We collectively denote our set of constants by c
- We denote our set of axiomss by A(c): $A_1(c)$, $A_2(c)$, ...
- We collectively denote our set of variables by v
- We denote our set of invariants by I(c, v): $I_1(c, v), I_2(c, v), \dots$

- A sequent is a formal statement of the following shape

- H denotes a set of predicates: the hypotheses (or assumptions)
- G denotes a predicate: the goal (or conclusion)
- The symbol "⊢", called the turnstyle, stands for provability. It is read: "Assumptions H yield conclusion **G**"

Overview uirement Document Formal Models

Proof Obligation: Invariant Preservation (2)

- We are given an event with before-after predicate v' = E(c, v)
- The following sequent expresses preservation of invariant $I_i(c, v)$:

 $A(c), I(c, v) \vdash I_i(c, E(c, v))$ INV

- It says: $I_i(c, E(c, v))$ provable under hypotheses A(c) and I(c, v)
- We have given the name INV to this proof obligation

Overview First Requirement Document Seco Formal Models

Explanation of the Proof Obligation

A(c), I(c, v)	⊢	$I_i(c, E(c, v))$	INV

- We assume that A(c) as well as I(c, v) hold just before the occurrence of the event represented by v' = E(c, v)
- Just after the occurrence, invariant $I_i(c, v)$ becomes $I_i(c, v')$, that is, $I_i(c, E(c, v))$
- The predicate $I_i(c, E(c, v))$ must then hold for $I_i(c, v)$ to be an invariant

STRUCTURE CONTRACTOR		
6		Edgreisnische Technische Hischschulz Zurich Swiss Federal Institute of Technistopy Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 41 / 284

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 Back to our Example

- We have two events

$$ML_out n := n + 1$$

$$ML_in n := n - 1$$

- And two invariants

inv0_1:
$$n \in \mathbb{N}$$
 inv0_2: $n \leq d$

- Thus, we need to prove four proof obligations

Overview The Requirement Document Formal Models

Vertical Layout of Proof Obligations

- The proof obligation

$$A(c), I(c, v) \vdash I_i(c, E(c, v))$$
 INV

can be re-written vertically as follows:

Overview Requirement Document Formal Models Third Ref

Proof obligation for ML_out and inv0_1

Cars on a Bridge

Bucharest, 14-16/07/10

Overview Initial Mo Prist Requirement Document Formal Models Third Re

Proof obligation for ML_out and inv0_2

- This proof obligation is named: ML_out / inv0_2 / INV

		Eigensetschen Tre Swiss Federal Instit	hrische Hachschale Zürich alle of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	45 / 284

Overview Initial Mode First Refine Formal Models Third Refine Third Refine

Proof obligation for ML_in and inv0_2

Proof obligation for ML_in and inv0_1

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement

Summary of Proof Obligations

Informal Proof of ML_out / inv0_1 / INV

- In the first step, we remove some irrelevant hypotheses
- In the second and final step, we accept the sequent as it is
- We have implicitly applied inference rules

- For rigorous reasor	ning we w	vill ma	ake the	se rules <mark>e</mark> x	xplicit		
						EECH Bidgendestache Ted Swins Federal Institu	nische Hochschule Zürich die of Tochnelogy Zurich

Formal Models Inference Rule: Monotonicity of Hypotheses

- The rule that removes hypotheses can be stated as follows:

- It expresses the monotonicity of the hypotheses

$$\frac{\mathbf{H}_1 \vdash \mathbf{G}_1 \quad \cdots \quad \mathbf{H}_n \vdash \mathbf{G}_n}{\mathbf{H} \vdash \mathbf{G}} \quad \text{RULE_NAME}$$

- Above horizontal line: *n* sequents called antecedents (n > 0)
- Below horizontal line: exactly one sequent called consequent
- To prove the consequent, it is sufficient to prove the antecedents
- A rule with no antecedent (n = 0) is called an axiom

Formal Models

Some Arithmetic Rules of Inference

- The Second Peano Axiom

$$\boxed{ 0 < \mathbf{n} \vdash \mathbf{n} - 1 \in \mathbb{N} } \quad \mathsf{P2'}$$

More Arithmetic Rules of Inference

- Axioms about ordering relations on the integers

		ETTH Higherbock: Federale Hadroburg 2016 Salas Inder al Without of Hadroburg 2016
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 53 / 284

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Proofs			

- A proof is a tree of sequents with axioms at the leaves.
- The rules applied to the leaves are axioms.
- Each sequent is labeled with (name of) proof rule applied to it.
- The sequent at the root of the tree is called the root sequent.
- The purpose of a proof is to establish the truth of its root sequent.

Application of Inference Rules

- Consider again the 2nd Peano axiom:

- It is a rule schema where **n** is called a meta-variable
- It can be applied to following sequent by matching a + b with **n**:

 $a+b \in \mathbb{N} \vdash a+b+1 \in \mathbb{N}$

- Proof requires only application of two rules: MON and P2

Overview First R Requirement Document Formal Models Third R

A Failed Proof Attempt: ML_out / inv0_2 / INV

- We put a ? to indicate that we have no rule to apply
- The proof fails: we cannot conclude with rule INC (n < d needed)

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 A Formal Proof of:
 ML_in
 / inv0_2 / INV

A Failed Proof Attempt: ML_in / inv0_1 / INV

- The proof fails: we cannot conclude with rule P2' (0 < n needed)

Overview The Requirement Document Formal Models	Initial Model First Relinement Second Refinement Third Refinement
Reasons for Proof Failure	

- We needed hypothesis *n* < *d* to prove ML_out / inv0_2 / INV
- We needed hypothesis 0 < n to prove ML_in / inv0_1 / INV

ML_out
$$n := n + 1$$
ML_in
 $n := n - 1$

- We are going to add n < d as a guard to event ML_out
- We are going to add 0 < n as a guard to event ML_in

Improving the Events: Introducing Guards

- We are adding guards to the events
- The guard is the necessary condition for an event to "occur"

3		ETH Ngo on and the Solar Maria Mari	chrische Hachschule Zürich Iste of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	61 / 284

Proof Obligation: General Invariant Preservation

- Given c with axioms A(c) and v with invariants I(c, v)
- Given an event with guard G(c, v) and b-a predicate v' = E(c, v)
- We modify the Invariant Preservation PO as follows:

		ETH Hapronica in Holes Foreral Hall	chrische Hachschule Zürich fate of Technology Zarich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	62 / 284

Overview Initial Model The Requirement Document Formal Models Third Refinement

A Formal Proof of: ML_out / inv0_1 / INV

$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ n < d \vdash $n+1 \in \mathbb{N}$	MON	$n \in \mathbb{N}$ \vdash $n+1 \in \mathbb{N}$	Ρ2
$n \leq d$ n < d \vdash $n + 1 \in \mathbb{N}$	MON	$n \in \mathbb{N}$ \vdash $n+1 \in \mathbb{N}$	P2

- Adding new assumptions to a sequent does not affect its provability

- Now we can conclude the proof using rule INC

ETH

Overview Requirement Document Formal Models

A Formal Proof of: ML_in / inv0_1 / INV

- Now we can conclude the proof using rule P2'

Overview The Requirement Document Formal Models Formal Models Formal Models Third Refinement Third Refinement Third Refinement

Re-proving the Events: No Proofs Fail

J-R. Abrial (ETH

	$egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccccccc} egin{array}{cccccccccccccccccccccccccccccccccccc$	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ $n < d$ \vdash $n + 1 \leq d$	i ≤ d
	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ $0 < n$ \vdash $n - 1 \in \mathbb{N}$	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ $0 < n$ \vdash $n - 1 \leq d$	⊆ d Barrier Magement Magement Magement
Zürich)		Cars on a Bridge	Bucharest, 14-16/07/10

67 / 284

Overview First Requirement Document Second

A Formal Proof of: ML_in / inv0_2 / INV

- Again, the proof still works after the addition of a new assumption

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Initialization		

- Our system must be initialized (with no car in the island-bridge)
- The initialization event is never guarded
- It does not mention any variable on the right hand side of :=
- -Its before-after predicate is just an after predicate

Bucharest, 14-16/07/10 68 / 284

Proof Obligation: Invariant Establishment

- Given c with axioms A(c) and v with invariants I(c, v)
- Given an init event with after predicate v' = K(c)
- The Invariant Establishment PO is the following:

		ETH Najarahatari Suka Televia	schritische Machischwale Zürlich Ittelie of Technology Zurlich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	69 / 284

Overview The Requirement Document Formal Models	initial Model First Refinement Second Refinement Third Refinement
Nore Arithmetic Inference	Rules

- First Peano Axiom

- Third Peano Axiom (slightly modified)

Applying the Invariant Establishment PO

Overview The Requirement Document Formal Models Third Refinement Second Refinement

Proofs of Invariant Establishment

J-R. Abrial (ETH-Zürich)

A Missing Requirement

- It is possible for the system to be blocked if both guards are false
- We do not want this to happen
- We figure out that one important requirement was missing

Once started, the system should work for ever	FUN-4
Once started, the system should work for ever	FUN-4

Proof Obligation: Deadlock Freedom

- Given c with axioms A(c) and v with invariants I(c, v)
- Given the guards $G_1(c, v), \ldots, G_m(c, v)$ of the events
- We have to prove the following:

tial Mode Overv Formal Models

Applying the Deadlock Freedom PO

- This cannot be proved with the inference rules we have so far
- $n \leq d$ can be replaced by $n = d \lor n < d$
- We continue our proof by a case analysis:

I-R. Abrial (ETH-Zürich

nitial Model Overvie Second Refiner Third Refineme Formal Models Inference Rules for Disjunction

- Proof by case analysis

- Choice for proving a disjunctive goal

ETH

Overview equirement Document Formal Models

Proof of Deadlock Freedom

Proof of Deadlock Freedom (cont'd)

 J.R. Abrial (ETH-Zürich)
 Cars on a Bridge
 Bucharest, 14-16/07/10
 77 / 284

Overview Initial Model The Requirement Document First Refinem Formal Models Third Refinem

Proof of Deadlock Freedom (cont'd)

- The first ? seems to be obvious

J-R. Abrial (ETH-Zürich)

The second ? can be (partially) solved by applying the equality

Cars on a Bridge

ETH

More Inference Rules: Identity and Equality

- The identity axiom (conclusion holds by hypothesis)

- Rewriting an equality (EQ_LR) and reflexivity of equality (EQL)

$$\begin{array}{c|c} H(F), \ E = F \ \vdash \ P(F) \\ \hline H(E), \ E = F \ \vdash \ P(E) \end{array} EQ_LR \\ \hline \ \vdash \ E = E \end{array} EQL$$

Overview quirement Document Formal Models

Proof of Deadlock Freedom (end)

- Thanks to the proofs, we discovered 3 errors
- They were corrected by:
 - adding guards to both events
 - adding an axiom
- The interaction of modeling and proving is an essential element of Formal Methods with Proofs

Adding the Forgotten Axiom

- If d is equal to 0, then no car can ever enter the Island-Bridge

Cars on a Bridge

Overview The Requirement Document Formal Models First Refinement Second Refinement Third Refinement

Proof Obligations for Initial Model

- We have seen three kinds of proof obligations:
 - The Invariant Establishment PO: INV
 - The Invariant Preservation PO: INV
 - The Deadlock Freedom PO (optional): DLF

Overvie Formal Models

Proof Obligations for Initial Model (cont'd)

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Outline			

Formal Models 3

Initial Model

- First Refinement
- Second Refinement
- Third Refinement

ETH

Summary of Initial Model

First Refinement Second Refineme Third Refinement Formal Models Reminder of the physical system

First Refinement: Introducing a One-Way Bridge

- We go down with our parachute
- Our view of the system gets more accurate
- We introduce the bridge and separate it from the island
- We refine the state and the events
- We also add two new events: IL_in and IL_out
- We are focusing on FUN-3: one-way bridge

6		ETH Magnetistics for Soles Foreign Fait	derische Hachschale Zürich tele of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	89 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Introducing Three New Var	iables: <i>a</i> . <i>b</i> . and <i>c</i>

First Refinemen

Formal Models

- Variables *a*, *b*, and *c* denote natural numbers

а	∈	N	
b	\in	N	
С	\in	N	

- a denotes the number of cars on bridge going to island
- b denotes the number of cars on island
- c denotes the number of cars on bridge going to mainland
- a, b, and c are the concrete variables
- They replace the abstract variable n

ETH

Formal Models Refining the State: Introducing New Invariants

- Relating the concrete state (*a*, *b*, *c*) to the abstract state (*n*)

$$a+b+c=n$$

First Refinement

- Formalizing the new invariant: one way bridge (this is FUN-3)

$$a=0 \lor c=0$$

Refining the State: Summary

- Invariants inv1 1 to inv1 5 are called the concrete invariants

ETH

I-R. Abrial (ETH-Zürich

ETH Bucharest, 14-16/07/10 95/284

First Refinement Formal Models

B-A Predicates:

Before-after predicates showing the unmodified variables:

Overvie First Refinement Second Refinemer Third Refinement Formal Models Intuition about refinement (1)

- The concrete version is not contradictory with the abstract one
- When the concrete version is enabled then so is the abstract one
- Executions seem to be compatible

Intuition about Refinement

The concrete model behaves as specified by the abstract model (i.e., concrete model does not exhibit any new behaviors)

To show this we have to prove that

1. every concrete event is simulated by its abstract counterpart (event refinement: following slides)

2. to every concrete initial state corresponds an abstract one (initial state refinement: later)

We will make these two conditions more precise and formalize them as proof obligations.

Overvie Formal Models

First Refinement Second Refineme Third Refinement

Intuition about refinement (2)

(abstract_)ML_in when	(concrete_)ML_in when
0 < <i>n</i>	0 < <i>c</i>
then	then
<i>n</i> := <i>n</i> − 1	c := c - 1
end	end

- Same remarks as in the previous slide
- But this has to be confirmed by well-defined proof obligations

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

Proof Obligations for Refinement

- The concrete guard is stronger than the abstract one
- Each concrete action is compatible with its abstract counterpart

Proving Correct Refinement: the Situation

Constants c with axioms A(c)

Abstract variables v with abstract invariant I(c, v)

Concrete variables w with concrete invariant J(c, v, w)

Abstract event with guards G(c, v): $G_1(c, v), G_2(c, v), \ldots$ Abstract event with before-after predicate v' = E(c, v)

Concrete event with guards H(c, w) and b-a predicate w' = F(c, w)

Over Formal Models

First Refinement Second Refinem Third Refinemen

Proof Obligation: Guard Strengthening

ETH J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10

Over First Refinement Second Refinement Formal Models

Correctness of Event Refinement

1. The concrete guard is stronger than the abstract one (Guard Strengthening, following slides)

- 2. Each concrete action is simulated by its abstract counterpart
- (Concrete Invariant Preservation, later)

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

Overview Requirement Document Formal Models

Proof Obligations for Guard Strengthening

- ML_out / GRD
- ML_in / GRD

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 105/284

Applying Guard Strengthening to Event ML_out

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 Proof of ML_out / GRD
 Proof of ML_out / GRD

The Requirement Document Formal Models First Refinement Second Refinement Third Refinement Third Refinement Third Refinement Third Refinement

Formal Models

Proof of ML_in / GRD

First Refinement

Second Refinemen Third Refinement

Proof of ML_in / GRD

First Refinement Second Refinemen Third Refinement Formal Models An Additional Rule: the Contradiction Rule

- In the previous proof, we have used and additional inference rule
- It says that a false hypothesis entails any goal

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Correctness of Invariant Refinement		

Bucharest, 14-16/07/10 111 / 284

ETH

lochschule Zürlei

Proof Obligation: Invariant Refinement

Axioms Abstract Invariants Concrete Invariants Concrete Guards	A(c) I(c, v) J(c, v, w) H(c, w)	INV
⊢ Modified Concrete Invariant	$\vdash \\ J_j(c, E(c, v), F(c, w))$	

Overview of Proof Obligations

- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV
- ML_out / inv1_5 / INV
- ML_in / inv1_4 / INV
- ML_in / inv1_5 / INV

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement

The Requirement Document	
Overview Initial Model	

Overview quirement Document Formal Models Third Refinement

Applying Invariant Refinement to Event ML_out

Proof of ML_out / inv1_5 / INV

First Refinement

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 Applying Invariant Refinement to Event ML_in

Proof of ML_in / inv1_4 / INV

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

Bucharest, 14-16/07/10 120 / 284

First Refinement Second Refinemen Third Refinement Formal Models

Applying Invariant Refinement to Event ML_in

Proof of ML_in / inv1_5 / INV

First Refinement Second Refinement Formal Models Refining the Initialization Event init

- Concrete initialization

- Corresponding after predicate

$$a'=0 \wedge b'=0 \wedge c'=0$$

Cars on a Bridge

ETH Bucharest, 14-16/07/10 123 / 284

e Hochschule Zürici

ETH

ochschule Zürle

Overview uirement Document Formal Models

Proof Obligation: Initialization Refinement

Constants c with axioms A(c)

Concrete invariant J(c, v, w)

Abstract initialization with after predicate v' = K(c)

Concrete initialization with after predicate w' = L(c)

SET SET SET			EDDA Najerskola i televici kulodni z Zarih Selo holizi ali televici kulodni z Zarih
	J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 125 / 284

A Requirement Document Formal Models Third Refinement

Applying the Initialization Refinement PO

Overview of Proof Obligations

- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV done
- ML_out / inv1_5 / INV done
- ML_in / inv1_4 / INV done
- ML_in / inv1_5 / INV done
- inv1_4 / INV
- inv1_5 / INV

Overview Initial Model Prist Refinement Formal Models Third Refinement

Adding New Events

- new events add transitions that have no abstract counterpart
- can be seen as a kind of internal steps (w.r.t. abstract model)
- can only be seen by an observer who is "zooming in"
- temporal refinement: refined model has a finer time granularity

Cars on a Bridge

TH-Zürich)

New Event IL_in

Before-after predicates

 $a' = a + 1 \land b' = b + 1 \land c' = c$ $a' = a \land b' = b - 1 \land c' = c + 1$

Cars on a Bridge

Overview Requirement Document Formal Models

Initial Model First Refinement Second Refinemer Third Refinement

New Event IL_out

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 The empty assignment: skip

The before-after predicate of skip in the initial model

The before-after predicate of skip in the first refinement

$$a' = a \land b' = b \land c' = c$$

The guard of the skip event is true.

Bucharest, 14-16/07/10 131 / 284

Refinement Proof Obligations for New Events

- (1) A new event must refine an implicit event, made of a skip action
 - Guard strengthening is trivial
 - Need to prove invariant refinement
- (2) The new events must not diverge
 - To prove this we have to exhibit a variant
 - The variant yields a natural number (could be more complex)
 - Each new event must decrease this variant

Overview of Proof Obligations

- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV done
- ML out / inv1 5 / INV done
- ML in / inv1 4 / INV done
- ML in / inv1 5 / INV done
- inv1 4 / INV done
- inv1 5 / INV done
- IL in / inv1 4 / INV
- IL in / inv1 5 / INV
- IL out / inv1 4 / INV
- IL_out / inv1_5 / INV

Proof of IL_in / inv1_5 / INV

Overview Initial Model First Refinement Formal Models The Requirement Models Third Refinement

Proof Obligation: Convergence of New Events (1)

Axioms A(c), invariants I(c, v), concrete invariant J(c, v, w)New event with guard H(c, w)Variant V(c, w)

Axioms Abstract invariants Concrete invariants Concrete guard of a new event \vdash Variant $\in \mathbb{N}$	$ \begin{array}{l} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ \mathbf{V}(c,w) \in \mathbb{N} \end{array} $	NAT
---	---	-----

J-R. Abrial (ETH-Zürich)

Proof Obligation: Convergence of New Events (2)

Axioms A(c), invariants I(c, v), concrete invariant J(c, v, w)New event with guard H(c, w) and b-a predicate w' = F(c, w)Variant V(c, w)

Axioms Abstract invariants Concrete invariants Concrete guard ⊢ Modified Var. < Var.	$ \begin{array}{ c c } A(c) & & \\ I(c,v) & & \\ J(c,v,w) & & \\ H(c,w) & \\ \vdash & \\ V(c,F(c,w)) < V(c,w) \end{array} $	VAR
---	--	-----

		ETTH High Hold - Velocity Fields Hold - Velocity - Sector - Velocity - Sector
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 141 / 284

Overview of Proof Obligations

Proposed Variant

- Weighted sum of a and b

First Refinement Second Refineme Third Refinement Formal Models

Decreasing of the Variant by Event IL_in

Overview Requirement Document Formal Models

Decreasing of the Variant by Event IL_out

Overview The Requirement Document Formal Models Third Refinement Second Refinement Third Refinement

Relative Deadlock Freedom

There a no new deadlocks in the concrete model, that is, all deadlocks of the concrete model are already present in the abstract model.

Proof obligation requires that whenever some abstract event is enabled then so is some concrete event.

This proof obligaiton is optional (depending on system under study).

Overview he Requirement Document Formal Models

Proof Obligation: Relative Deadlock Freedom

The $G_i(c, v)$ are the abstract guards

The $H_i(c, v)$ are the concrete guards

If some abstract guard is true then so is some concrete guard:

$\begin{array}{c} A(c) \\ I(c,v) \end{array}$	
$ \begin{array}{c} J(c, v, w) \\ G_1(c, v) \lor \ldots \lor G_m(c, v) \\ \vdash \end{array} $	DLF
$H_1(c,w) \lor \ldots \lor H_n(c,w)$	

J-R. Abrial (ETH-Zürich)

ETH

J-R. Abrial (ETH-Zürich)

nent dels First Refinement Second Refinement Third Refinement

Applying the Relative Deadlock Freedom PO

Cars on a Bridge

Overview Requirement Document Formal Models Third Refinement

More Inference Rules: Negation and Conjunction

$$\begin{array}{c|c} \hline H, \neg P \vdash Q \\ \hline H \vdash P \lor Q \end{array} \quad \text{NEG} \\ \hline \hline H, P, Q \vdash R \\ \hline H, P \land Q \vdash R \end{array} \quad \text{AND_L} \end{array} \qquad \boxed{\begin{array}{c|c} H \vdash P & H \vdash Q \\ \hline H \vdash P \land Q \end{array} \quad \text{AND_R} \end{array}}$$

Proof of DLF

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Sofficement Third Refinement Third Refinement

 Proof of DLF (cont'd)
 First Refinement

ETH

ische Hachschule Zürich Is of Technelsere Zurich

Overview First Refinement Second Refinemen Third Refinement Formal Models

Summary of Refinement POs

- For old events:
 - Strengthening of guards: GRD
 - Concrete invariant preservation: INV

For new events:

- Refining the implicit skip event: INV
- Absence of divergence: NAT and VAR

- For all events:

- Relative deadlock freedom: DLF

Overview Formal Models

First Refinement Second Refineme Third Refinement

Proof Obligations for Refinement (1/2)

Bucharest, 14-16/07/10 155 / 284

Proof Obligations for Refinement (2/2)

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Events of the First Refinem	ient

State of the First Refinement

Second Refinement: Introducing Traffic Lights

Formal Models

Second Refinement

	set: COLOR		
	con	stants: red, green	
ахі	m2 1:	$COLOR = \{green,$	red
axı	_ m2 2:	green \neq red	

Overview Initial Model The Requirement Document Second Refinement Formal Models Third Refinement

Extending the Invariant (1)

		Reperties related to 2004 takes in any second second second second
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 161 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Extending the Variables	

 $\textit{il_tl} \in \textit{COLOR}$

 $ml_tl \in COLOR$

Remark: Events IL_in and ML_in are not modified in this refinement

Eigensteinche Tredmindre Richtwisse Zurich Bigensteinche Mitchieder Zurich Swiss zweiner Mitchieder Zurich Bucharest, 14-16/07/10 163 / 284

Overview The Requirement Document Formal Models

Extending the Invariant (1)

Second Refinement

- A green mainland traffic light implies safe access to the bridge

ICENT HANDING	ml_tl =	$=$ green $\Rightarrow c = 0$	∧ a +	b < d	ETH Bidgen Switch Switcs Federal In	Technische Hachschale Zürich Atlitate of Technology Zurich
J-R. Abrial (ETH-Zü	ich)	Cars on a Bridge		Buc	charest, 14-16/07/10	165 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Refining Event ML_out	

Refining Event ML_out

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 Extending the Invariant (2)

Cars on a Bridge

Overview The Requirement Document Formal Models

Extending the Invariant (2)

First Refinement Second Refinement

- A green island traffic light implies safe access to the bridge

	il_t	$d = \text{green} \Rightarrow a = 0 \land 0$	< b	ETH Biggreister	Technische Hachschale Zürich na litate of Technology Zurich
J-R. Abrial (ETH-Zürich)		Cars on a Bridge		Bucharest, 14-16/07/10	169 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Refining Event IL_out	

Refining Event IL_out

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
New Events ML_tl_green a	Ind IL_tl_green

- Turning lights to green when proper conditions hold

Overvie Second Refinement Formal Models

Summary of State Refinement (so far)

variables: a, b, c, ml_tl, il_tl

inv2_1:
$$ml_t l \in COLOR$$

inv2_2: $il_t l \in COLOR$
inv2_3: $ml_t l = \text{green} \Rightarrow a + b < d \land c = 0$
inv2_4: $il_t l = \text{green} \Rightarrow 0 < b \land a = 0$

	E TH Biggrashick Solis Folder	Technische Hachschule Zürich satitate of Technology Zurich
Cars on a Bridge	Bucharest, 14-16/07/10	173 / 284
	Cars on a Bridge	Cars on a Bridge Bucharest, 14-16/07/10

Second Refinement Formal Models Superposition

variables: *a*, *b*, *c*, *ml_tl*, *il_tl*

- Variables a, b, and c were present in the previous refinement
- Variables *ml* tl and *il* tl are superposed to *a*, *b*, and *c*
- We have thus to extend rule INV

Summary of Old Events (so far)

Events ML_in and IL_ in are unchanged

Overview Formal Models

Second Refinement

Superposition: Introduction of a new Rule

Proving the Refinement of the Four Old Events

- We have to apply 3 Proof Obligations:
 - GRD,
 - SIM,
 - INV
- On 4 events: ML_out, IL_out, ML_in, IL_in
- And 2 main invariants:

inv2_3:
$$ml_t = \text{green} \Rightarrow a + b < d \land c = 0$$

inv2_4: $il_t = \text{green} \Rightarrow 0 < b \land a = 0$

Site of the second seco			ETH Biggersteine twice referst	e Technische Hachschule Zürich Institute of Technology Zurich
	J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	177 / 284

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Proving the Refinement of	the Four Old Events

Proving the Refinement of the Four Old Events

5		Eigenhicke Swiss Folderal In	Technische Hochschule Zürich atlitufe of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	178 / 284

Overview The Requirement Document Formal Models Third Refinement

Proving the Refinement of the Four Old Events

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

Overview First Refinement Formal Models First Refinement

Proving the Refinement of the Four Old Events

$\begin{array}{c} a := a + 1 \\ end \end{array} \qquad \qquad \begin{array}{c} b := b - 1 \\ c := c + 1 \\ end \end{array} \qquad \begin{array}{c} c := c - 1 \\ end \end{array} \qquad \qquad \begin{array}{c} b := b + 1 \\ end \end{array}$

- INV applied to ML_out and II	L_out raise some difficulties		
		E THA	Technische Hachschule Züri Institute of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	181 / 284

Overview The Requirement Document Formal Models First Refinement Second Refinement Third Refinement

More Logical Rules of Inferences

- Rules about implication

- Rules about negation

$$\begin{array}{c|c} \hline H \vdash P \\ \hline H, \neg P \vdash Q \end{array} \quad \text{NOT_L} \end{array} \qquad \begin{array}{c|c} \hline H, P \vdash Q & H, P \vdash \neg Q \\ \hline H \vdash \neg P \end{array} \quad \text{NOT_R} \end{array}$$

Second Refinement

What we Have to Prove

- ML_out / inv2_4 / INV
- IL_out / inv2_3 / INV
- ML_out / inv2_3 / INV
- IL_out / inv2_4 / INV

Proving Preservation of inv2_4 by Event ML_out

axm0_1 axm0_2 axm2_1 axm2_2 inv0_1 inv1_1 inv1_2 inv1_3 inv1_4 inv2_1 inv2_1 inv2_1 inv2_4 Guard of event ML_out	$d \in \mathbb{N}$ $0 < d$ $COLOR = \{green, red\}$ $green \neq red$ $n \in \mathbb{N}$ $n \leq d$ $a \in \mathbb{N}$ $b \in \mathbb{N}$ $c \in \mathbb{N}$ $a + b + c = n$ $a + b + c = n$ $if t \in COLOR$ $if t \in COLOR$ $if t \in GCLOR$ $if t = green \Rightarrow 0 < b \land a = 0$ $mf t = green$ $H = green$ $H = green$	ML_out / inv2_4 / INV
Guard of event ML_out	<i>ml_tl</i> = green	
Modified invariant inv2_4	$il_t = \text{green} \Rightarrow 0 < b \land a + 1 = 0$	
]

J-R. Abrial (ETH-Zürich)

J-R. Abrial (ETH-Zürich)

Overview Formal Models

Second Refinement

Tentative Proof

Tentative Proof

 $egin{array}{ccc} d &\in \mathbb{N} \\ 0 < d \end{array}$ COLOR = {green, red} green ≠ red $n \in \mathbb{N}$ $n \leq d$ $a \in \mathbb{N}$ green \neq red $b \in \mathbb{N}$ $il_t = \text{green} \Rightarrow 0 < b \land a = 0$ $c \in \mathbb{N}$ MON IMP R · · · ml_tl = green a+b+c=n $a = 0 \lor c = 0$ $ml_tl \in COLOR$ $il_t = \text{green} \Rightarrow 0 < b \land a + 1 = 0$ $il_t \in COLOR$ $\overline{ml}_t = \text{green} \Rightarrow a + b < d \land c = 0$ $il_t = green \Rightarrow 0 < b \land a = 0$ ml_tl = green $il_t = \text{green} \Rightarrow 0 < b \land a + 1 = 0$ green ≠ red green \neq red $\ddot{0} < b \land a = 0$ $il_t = \text{green} \Rightarrow 0 < b \land a = 0$ ml_tl = green ml tl = greenAND_L · · · IMP_L $il_t = green$ $il_t = green$ $0 < b \land a + 1 = 0$ $0 < b \land a + 1 = 0$ ETH ische Hachschule Zürich J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 186 / 284

e Hochschule Zürle

Overview ne Requirement Document Formal Models

Tentative Proof

Second Refinement

Tentative Proof

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
The Solution		

- In both cases, we were stopped by attempting to prove the following

$$green \neq red$$

 $il_tl = green$
 $ml_tl = green$
 \vdash
 $1 = 0$

Both traffic lights are assumed to be green!

- This indicates that an "obvious" invariant was missing - In fact, at least one of the two traffic lights must be red

inv2_5: $ml_tl = \text{red} \lor il_tl = \text{red}$

Overview The Requirement Document Formal Models

Completing the Proof

Second Refinement

Going back to the Requirements Document

inv2_5: $ml_t = red \lor il_t = red$

This could have been deduced from these requirements

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 What we Have to Prove

- ML_out / inv2_4 / INV done
- IL_out / inv2_3 / INV done
- ML_out / inv2_3 / INV
- IL_out / inv2_4 / INV
- ML_tl_green / inv2_5 / INV
- IL_tl_green / inv2_5 / INV

Overview Formal Models

Second Refinement

Tentative Proof

Tentative Proof

õ		ETH Hageneous in Subscribe Zicon Was head latitude of Echandrage such
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 197 / 284

- This requires splitting the ML_out in two separate events ML_out_1 and ML_out_2

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Intuitive Explanation	

Cars on a Bridge

- Consequently, the traffic light *ml* tl must be turned red (while the car enters the bridge)

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

Bucharest, 14-16/07/10 203 / 284

Cars on a Bridge

Formal Models

$egin{array}{lll} d &\in \mathbb{N} \\ 0 < d \\ \emph{COLOR} = \{ \texttt{green}, \texttt{red} \} \end{array}$ axm0_1 axm0_2 axm2_1 axm2_2 green ≠ red inv0_1 $n \in \mathbb{N}$ inv0_2 $n \leq d$ $a \in \mathbb{N}$ inv1_1 inv1_2 $b \in \mathbb{N}$ $c \in \mathbb{N}$ inv1_3 ML_out_1 / inv2_3 / INV inv1_4 a+b+c=n $\begin{array}{l} a = 0 \quad \lor \quad c = 0 \\ ml_tl \quad \in \quad COLOR \\ il_tl \quad \in \quad COLOR \end{array}$ inv1_5 inv2_1 inv2_2 $\overline{ml}_t = \text{green} \Rightarrow a + b < d \land c = 0$

Overview

Formal Models

Second Refinement

Proving Preservation of inv2_3 by Event ML_out_1

$\begin{array}{l} d \in \mathbb{N} \\ 0 < d \\ 0 < d \\ COLOR = \{green, red\} \\ green \neq red \\ n \in \mathbb{N} \\ d \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a+b+c=n \\ a=0 \lor c=0 \\ m! \ d! \in COLOR \\ il_{-}il \in COLOR \\ il_{-}il \in Green \Rightarrow a+b < d \land c=0 \\ il_{-}il = green \Rightarrow 0 < b \land a=0 \\ m! \ d! = green \\ a+1+b < d \\ \vdash \\ m! \ d! = green \Rightarrow a+1+b < d \land \\ c=0 \end{array}$	$MON \begin{bmatrix} ml_{-}tl = \text{green} \Rightarrow a + b < d \land c = 0\\ a + 1 + b < d\\ \\ ml_{-}tl = \text{green} \Rightarrow a + 1 + b < d \land c = 0 \end{bmatrix} \text{IMP_R} \cdot MOR_{-}$
---	---

Second Refinement

Proof

Second Refinement Formal Models

> ETH Bucharest, 14-16/07/10 204 / 284

che Technische Hachschule Zürich

J-R. Abrial (ETH-Zürich)

Proof (cont'd)

Second Refinement

Overview

Formal Models

Cars on a Bridge

Bucharest, 14-16/07/10 205 / 284

J-R. Abrial (ETH-Zürich)

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
What we Have to Prove	

- ML_out / inv2_4 / INV done
- IL_out / inv2_3 / INV done
- ML_out / inv2_3 / INV done
- IL_out / inv2_4 / INV
- ML_tl_green / inv2_5 / INV
- IL_tl_green / inv2_5 / INV

Proving Preservation of inv2_4 by Event IL_out

axm0_1 axm0_2 axm2_1 axm2_2 inv0_1 inv1_2 inv1_2 inv1_3 inv1_4 inv1_5 inv2_1 inv2_2 inv2_3 inv2_4 Guard of event IL_out ⊢ Modified invariant inv2_4	$\begin{array}{l} d \in \mathbb{N} \\ 0 < d \\ COLOR = \{\text{green}, \text{red}\} \\ \text{green} \neq \text{red} \\ n \in \mathbb{N} \\ d = 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	IL_out / inv2_4 / INV
•	IL_out when <i>il_tt</i> = green then <i>b</i> := <i>b</i> − 1 <i>c</i> := <i>c</i> + 1 end	

Cars on a Bridge

J-R. Abrial (ETH-Zürich)

ETH

Bucharest, 14-16/07/10 209 / 284

che Hochschule Zürle

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
ntuitive Explanation	

Cars on a Bridge

- When b=1, then only one car remains in the island
- Consequently, the traffic light *il_tl* can be turned red
 (after this car has left)

J-R. Abrial (ETH-Zürich)

Second Refinement

Overview

Formal Models

Proof

ETH

che Hachschule Zürich

rische Hochschule Zürich

Second Refinement Formal Models

Proof

But the new invariant **inv2_5** is not preserved by the new events

inv2_5:
$$ml_t = red \lor il_t = red$$

Unless we correct them as follows:

ETH

What we Have to Prove

- ML_out / inv2_4 / INV done
- IL out / inv2 3 / INV done
- ML_out / inv2_3 / INV done
- IL out / inv2 4 / INV done
- ML tl green / inv2 5 / INV
- IL_tl_green / inv2_5 / INV

Second Refinement Formal Models

Summary of the Proof Situation

- Correct event refinement: OK
- Absence of divergence of new events: FAILURE
- Absence of deadlock: ?

Cars on a Bridge

Divergence of the New Events

ML_tl_green	IL_tl_green
when	when
$ml_t = red$	<i>il_tl</i> = red
a + b < d	0 < b
c=0	a = 0
then	then
<i>ml_tl</i> := green	<i>il_tl</i> := green
<i>il_tl</i> := red	$ml_t := red$
end	end

Formal Models

Second Refinement

When *a* and *c* are both equal to 0 and *b* is positive, then both events are always alternatively enabled

The lights can chang	e colors very rapidly		
		ETH Bigeresteller Webs Federal	r Technische Hachschule Zürich natitate of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	221 / 284

 Overview
The Requirement Document
Formal Models
 Initial Model
First Refinement
Second Refinement
Third Refinement
Third Refinement

 ML_tl_green and IL_tl_green can run for ever

ML_tl_green and IL_tl_green can run for ever

First Refinement Second Refinement Formal Models

green can run for ever ML tl green and

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
ML_tl_green and IL_tl_gree	en can run for ever

tl green can run for ever ML_tl_green and I

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Solution			

- Allowing each light to turn green only when at least one car has passed in the other direction

- For this, we introduce two additional variables:

inv2_6:	$\textit{ml_pass}~\in~\{0,1\}$
inv2_7:	$\textit{il_pass}~\in~\{0,1\}$

First Refinement Second Refinement Formal Models

Modifying Events ML_out_1 and ML_out_2

ML_out_1 when $ml_tl = green$ $a+1+b < d$ then $a := a+1$ $ml_pass := 1$ end	ML_out_2 when ml_tl = gre a + 1 + b = then a := a + 1 ml_tl := re ml_pass := end	en = <i>d</i> d = 1
--	--	------------------------------

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Modifying Events ML tl gr	ee and IL tl green

Cars on a Bridge

ETH

Bucharest, 14-16/07/10 231 / 284

Modifying Events ML_out_1 and ML_out_2

First Refinement Second Refinement Third Refinement The Requirement Document Formal Models

Proving Absence of Divergence

We exhibit the following variant

variant_2: *ml_pass* + *il_pass*

Cars on a Bridge

Overview First Refinement Formal Models Third Refinement

To be Proved

<i>ml_tl</i> = red	$il_t = red$
a + b < d	b > 0
c = 0	<i>a</i> = 0
<i>il_pass</i> = 1	ml_pass = 1
\Rightarrow	\Rightarrow
il_pass+0 <	<i>ml_pass</i> + 0 <
ml_pass + il_pass	ml_pass + il_pass

This cannot be proved. This suggests the following invariants:

$$inv2_8: ml_tl = red \Rightarrow ml_pass = 1$$

$$inv2_9: il_tl = red \Rightarrow il_pass = 1$$

$$Inv2_9: ll_tl = red \Rightarrow il_pass = 1$$

The previous statement reduces to the following, which is true

No Deadlock (1)

	0 < <i>d</i>			
	$ml_t \in \{\text{red}, \text{green}\}$			
	<i>il</i> $\overline{t} \in \{\text{red}, \text{green}\}$			
	\overline{ml} pass $\in \{0,1\}$			
	il pass $\in \{0, 1\}$			
	$a \in \mathbb{N}$			
	$b \in \mathbb{N}$			
	$c \in \mathbb{N}$			
	$ml_t = red \Rightarrow ml_pass = 1$			
	$il \ \overline{tl} = red \Rightarrow il \ pass = 1$			
	\Rightarrow			
	$(ml \ tl = red \land a + b < d \land c = 0 \land il \ pass =$	= 1) ∨		
	$(il \ tl = red \land a = 0 \land b > 0 \land ml \ pass = 1)$	Ý		
	$\vec{ml} tl = \text{green} \lor il tl = \text{green} \lor \vec{a} > 0 \lor \vec{a}$	c > 0		
	_ 0 _ 0		ETH	
I			J Edgendesluche Tec Swiss Federal Insti	cheische Hochschule Zürich itate of Technology Zurich
LR AF	rial (ETH-Zürich) Cars on a Bridge	Rucharest 14-16	07/10	234/284

 Overview The Requirement Document Formal Models
 Initial Model First Refinement Second Refinement Third Refinement

 Second Refinement: Conclusion

- Thanks to the proofs:
 - We discovered 4 errors
 - We introduced several additional invariants
 - We corrected 4 events
 - We introduced 2 more variables

Bucharest, 14-16/07/10 235 / 284

ETH

Conclusion: we Introduced the Superposition Rule

Axioms Abstract invariants Concrete invariants Concrete guards ⊢ Same actions on common variables	SIM	
--	-----	--

Summary of Second Refinement: the State (1)

	0	D 1	111007140	000 (00
			ETH Bidgendestach Swiss Federal I	r Technische Hochschule Zi institute of Technology Zur
inv2_4:	$il_t = 1 \Rightarrow 0 < b \land a = 0$			
inv2_3:	$ml_t = 1 \Rightarrow a + b < d \land c =$	= 0		
inv2_2:	$il_tl \in \{\text{red}, \text{green}\}$			
inv2 1.	ml tl $\subset \{red areen\}$			
	inv2_1: inv2_2: inv2_3: inv2_4:	inv2_1: $ml_t l \in \{\text{red}, \text{green}\}$ inv2_2: $il_t l \in \{\text{red}, \text{green}\}$ inv2_3: $ml_t l = 1 \Rightarrow a + b < d \land c =$ inv2_4: $il_t l = 1 \Rightarrow 0 < b \land a = 0$	inv2_1: $ml_t l \in \{\text{red}, \text{green}\}$ inv2_2: $il_t l \in \{\text{red}, \text{green}\}$ inv2_3: $ml_t l = 1 \Rightarrow a + b < d \land c = 0$ inv2_4: $il_t l = 1 \Rightarrow 0 < b \land a = 0$	inv2_1: $ml_t l \in \{\text{red}, \text{green}\}$ inv2_2: $il_t l \in \{\text{red}, \text{green}\}$ inv2_3: $ml_t l = 1 \Rightarrow a + b < d \land c = 0$ inv2_4: $il_t l = 1 \Rightarrow 0 < b \land a = 0$

inv2_5:	$ml_t = red \lor il_t = red$
inv2_6:	$\textit{ml_pass} \in \{0,1\}$
inv2_7:	<i>il_pass</i> $\in \{0,1\}$
inv2_8:	$ml_t = red \Rightarrow ml_pass = 1$
inv2_9:	$il_t = red \Rightarrow il_pass = 1$
variant2:	ml pass + il pass

Summary of Second Refinement: the Event (1)

Service and the service of the servi

ETH

Second Refinement Formal Models

Summary of Second Refinement: the Event (2)

IL_out_1 when $il_tl = \text{green}$ $b \neq 1$ then b := b - 1 c := c + 1 $il_pass := 1$ end	IL_out_2 when <i>il_tl</i> = green <i>b</i> = 1 then <i>b</i> := <i>b</i> - 1 <i>c</i> := <i>c</i> + 1 <i>il_pass</i> := 1 <i>il_tl</i> := red end
---	--

		EXAMPLE To Construct An Annual Sectors Successful and the of Heading Sectors
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 241 / 284

- These events are identical to their abstract versions

ETH

Summary of Second Refinement: the Event (3)

		ETH Bigradacidar Skaladari z zaria Inna heined Institute of Hostindary Zariah
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 242 / 284

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Outline			
1 Overview			

2 The Requirement Document

Formal Models 3 Initial Model First Refinement Second Refinement

Third Refinement

Third Refinement: Adding Car Sensors

Reminder of the physical system

Closed Model

-We want to clearly identify in our model:

- The controller
- The environment
- The communication channels between the two

ETH

<i>b</i> ,
С,
ml_pass,
il_pass

Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement
Environment Variables	

Cars on a Bridge

These new variables denote physical objects Environment variables: <i>A</i> ,	
В,	
С,	

ML_OUT_SR,

ML_IN_SR,

IL_OUT_SR,

IL_IN_SR

Overview he Requirement Document Formal Models

Second Refinemer Third Refinement

Output Channel Variables

Output channels: *ml_tl*,

Output Channel Variables

*ml_in_*10,

*il_in_*10,

*il_out_*10

A message is sent when a sensor moves from "on" to "off":

Formal Models

First Refinement Second Refinement Third Refinement

carrier sets:	, SENSOR
constants:	, on, off

axm3_1:	$SENSOR = \{on, off\}$
axm3_2:	$\textit{on} \neq \textit{off}$

Cars on a Bridge

		E DH Higenstein Swies Feimi	r Technische Hachschule Zürich natitate of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	249 / 284

Over The Requirement Docum Formal Mod	iew Initial Model First Refinement Second Refinement Iels Third Refinement
Summary	

Variables (1)

inv3_1 :	$ML_OUT_SR \in SENSOR$
inv3_2 :	$ML_IN_SR \in SENSOR$
inv3_3 :	$IL_OUT_SR \in SENSOR$
inv3_4 :	$IL_IN_SR \in SENSOR$

Formal Models

First Refinement Second Refinement Third Refinement

		ETH High of shifts in Technology Handweddor Zarola Sana Telenal Haithtis of Technology Each
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 253 / 284

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Invariants (1)			

When sensors are on, there are cars on them

$$inv3_12: IL_IN_SR = on \Rightarrow A > 0$$

$$inv3_13: IL_OUT_SR = on \Rightarrow B > 0$$

$$inv3_14: ML_IN_SR = on \Rightarrow C > 0$$

The sensors are used to detect the presence of cars entering or leaving the bridge

Cars on a Bridge

ETH

Bucharest, 14-16/07/10 255 / 284

Variables (2)

J-R. Ab

ir	nv3_5 : <i>A</i> ∈ ℕ	
ir	№3_6 : <i>B</i> ∈ ℕ	
ir	№3_7 : <i>C</i> ∈ ℕ	
ir	№3_8 : <i>ml_out_</i> 10 ∈ BOOL	
ir	w 3_9 : <i>ml_in_</i> 10 ∈ BOOL	
ir	w3_10 : <i>il_out_</i> 10 ∈ BOOL	
ir	w3_11 : <i>il_in_</i> 10 \in BOOL	
		ETH Bigerotatuka redukuka Maduka Ja Swisa Rederal mattatuka of Radmataya Jan
-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 254 / 284

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Invariants (2)			

Drivers obey the traffic lights

inv3_15: $ml_out_10 = TRUE \Rightarrow ml_tl = green$ **inv3_16**: $il_out_10 = TRUE \Rightarrow il_tl = green$

Cars are not supposed to pass on a red traffic light, only on a green one EQP-3

Cars on a Bridge

J-R. Abrial (ETH-Zürich)

ETH

256 / 284

Overview First Refinement Formal Models Third Refinement

Invariants (3)

When a sensor is "on", the previous information is treated

 $inv3_17: IL_IN_SR = on \Rightarrow il_in_10 = FALSE$ $inv3_18: IL_OUT_SR = on \Rightarrow il_out_10 = FALSE$ $inv3_19: ML_IN_SR = on \Rightarrow ml_in_10 = FALSE$ $inv3_20: ML_OUT_SR = on \Rightarrow ml_out_10 = FALSE$

The controller must be fast enough so as to be able to treat all the information coming from the environment

o FUN-5

6		ETH High naive tech herri	e Technisch e Hachschala Zürleh Institute of Technology Zurich
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10	257 / 284

	Overview The Requirement Document Formal Models	Initial Model First Refinement Second Refinement Third Refinement	
Invariants (5)			

Linking the physical and logical cars (2)

inv3_25 :	$il_in_10 = \text{TRUE} \land il_out_10 = \text{TRUE} \Rightarrow B = b$
inv3_26 :	$il_in_10 = \text{TRUE} \land il_out_10 = \text{FALSE} \Rightarrow B = b + 1$
inv3_27 :	$il_in_10 = FALSE \land il_out_10 = TRUE \Rightarrow B = b - 1$
inv3_28 :	$il_in_10 = FALSE \land il_out_10 = FALSE \Rightarrow B = b$

inv3_29: $il_out_10 = \text{TRUE} \land ml_out_10 = \text{TRUE} \Rightarrow C = c$ **inv3_30**: $il_out_10 = \text{TRUE} \land ml_out_10 = \text{FALSE} \Rightarrow C = c + 1$ **inv3_31**: $il_out_10 = \text{FALSE} \land ml_out_10 = \text{TRUE} \Rightarrow C = c - 1$ **inv3_32**: $il_out_10 = \text{FALSE} \land ml_out_10 = \text{FALSE} \Rightarrow C = c$

Cars on a Bridge

Linking the physical and logical cars (1)

inv3_21 :	$il_in_10 = \text{TRUE} \land ml_out_10 = \text{TRUE} \Rightarrow A = a$
inv3_22 :	$il_in_10 = FALSE \land ml_out_10 = TRUE \Rightarrow A = a + 1$
inv3_23 :	$il_in_10 = \text{TRUE} \land ml_out_10 = \text{FALSE} \Rightarrow A = a - 1$
inv3_24 :	$il_in_10 = FALSE \land ml_out_10 = FALSE \Rightarrow A = a$

The basic properties hold for the physical cars

The number of cars on the bridge and the island is limited FUN-2 The bridge is one way or the other, not both at the same time FUN-3	inv3_33 : $A = 0 \lor C = 0$ inv3_34 : $A + B + C \le d$	
The bridge is one way or the other, not both at the same time FUN-3	The number of cars on the bridge and the island is limited	FUN-2
	The bridge is one way or the other, not both at the same time	FUN-3

Cars on a Bridge

ETH

260 / 28

Refining Abstract Events (1)

Third Refinement

Refining Abstract Events (2)

Overview The Requirement Document Formal Models First Refinement Second Refinement Third Refinement

Refining Abstract Events (4)

J-R. Abrial (ETH-Zürich)

Cars on a Bridge

ETH

che Hochschule Zürich

Bucharest, 14-16/07/10 264 / 284

ETH

ochschule Zürle

Overview ne Requirement Document Formal Models

Adding New PHYSICAL Events (1)

Third Refinement

Adding New PHYSICAL Events (2)

Overview The Requirement Document Formal Models
Initial Model First Refinement Second Refinement Third Refinement

- What is to be systematically proved?

- Invariant preservation
- Correct refinements of transitions
- No divergence of new transitions
- No deadlock introduced in refinements

- When are these proofs done?

Questions on Proving (cont'd)

- Who states what is to be proved?
 - An automatic tool: the Proof Obligation Generator
- Who is going to perform these proofs?
 - An automatic tool: the Prover
 - Sometimes helped by the Engineer (interactive proving)

About Tools

- Three basic tools:

- Proof Obligation Generator
- Prover
- Model translators into Hardware or Software languages
- These tools are embedded into a Development Data Base
- Such tools already exist in the Rodin Platform

Overview Initial Model First Refinement Formal Models Second Refinement Third Refinement

Cars on a Bridge

Summary of Proofs on Example

- This development required 253 proofs
 - Initial model: 7 (1)

B. Abrial (ETH-Züric)

- 1st refinement: 27 (1)
- 2nd refinement: 81 (1)
- 3rd refinement: 138 (5)
- All proved automatically (except 8) by the Rodin Platform

Overview he Requirement Document Formal Models

Summary of Mathematical Notations (1)

$P \land Q$	conjunction
$P \lor Q$	disjunction
$P \Rightarrow Q$	implication
¬ <i>P</i>	negation
$x \in S$	set membership operator
·	

Cars on a Bridge

Bucharest, 14-16/07/10 271 / 284

ETH

ETH

Bucharest, 14-16/07/10

Overview Requirement Document Formal Models Third Refinement Third Refinement

Summary of Mathematical Notations (2)

nrial (ETH Zürich)	Care on a Bridge	Bucharost 14,16/0	7/10 272/294
			ETH Edgendesische Technische Hachschule Zür Swiss Federal Institute of Technology Zuric
a–b	subtraction of <i>a</i> and <i>b</i>		
a+b	addition of <i>a</i> and <i>b</i>		
{ <i>a</i> , <i>b</i> ,}	set defined in extension		
Z	set of Integers: $\{0, 1, -1,$	2, -2,}	
\mathbb{N}	set of Natural Numbers:	$\{0, 1, 2, 3, \ldots\}$	

Summary of Mathematical Notations (3)

а	* b	product of <i>a</i> and <i>b</i>
а	= b	equality relation
а	\leq b	smaller than or equal relation
а	< b	smaller than relation

- For the init event in the initial model

- For other events in the initial model

Axioms of the constants Invariants Guard of the event	INV
⇒ Modified Invariants	

Addels First Refinement Second Refinement Third Refinement

Deadlock Freeness Rule

- This rule is not mandatory

Axiom of the constant Invariants	DLF
\Rightarrow Disjunction of the guards	

Refinement Rules (1): Guard Strengthening

- For old events only

Axioms of the constants Abstract invariants Concrete invariants Concrete guards	GRD
⇒ Abstract guards	

Refinement Rules (2): Invariant Establishment

- For init event only

Refinement Rules (3): Invariant Preservation

- For all events (except init)
- New events refine an implicit non-guarded event with skip action

INV

Cars on a Bridge

Refinement Rules (4): Non-divergence of New Events

- For new events only

 $\left.\begin{array}{c} \text{Axioms of the constants} \\ \text{Abstract invariants} \\ \text{Concrete invariants} \\ \text{Concrete guard of a new event} \\ \Rightarrow \\ \text{Variant} \in \mathbb{N} \end{array}\right. \text{NAT}$

Refinement Rules (5): Non-divergence of New Events

- For new events only

Axioms of the constants Abstract invariants Concrete invariants Concrete guard of a new event ⇒ Modiied variant < Variant	VAR	

6		ETH Sugarana transit standard zina Sain tarea kattar disabata zina
J-R. Abrial (ETH-Zürich)	Cars on a Bridge	Bucharest, 14-16/07/10 281 / 284

Refinement Rules (6): Relative Deadlock Freeness

- Global proof rule

Axioms of the constants Abstract invariants Concrete invariants Disjunction of abstract guards	DLF
Disjunction of concrete guards	

Third Refinement

Formal Models

Refinement Rules	(7)	
	1	,

- For old events (in case of superposition)

Axioms of constants Abstract invariants Concrete invariants Concrete guards	SIM
\Rightarrow Same actions on common variables	

ETH

ETH