
Overview
The Requirement Document

Formal Models

Controlling Cars on a Bridge

Jean-Raymond Abrial
(edited by Thai Son Hoang)

Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

Bucharest DEPLOY 2-day Course, 14th-16th July, 2010

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 1 / 284

Overview
The Requirement Document

Formal Models

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 2 / 284

Overview
The Requirement Document

Formal Models

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 3 / 284

Overview
The Requirement Document

Formal Models

Purpose of this Lecture (1)

To present an example of system development

Our approach: a series of more and more accurate models

This approach is called refinement

The models formalize the view of an external observer

With each refinement observer “zooms in” to see more details

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 4 / 284



Overview
The Requirement Document

Formal Models

Purpose of this Lecture (2)

Each model will be analyzed and proved to be correct

The aim is to obtain a system that will be correct by construction

The correctness criteria are formulated as proof obligations

Proofs will be performed by using the sequent calculus

Inference rules used in the sequent calculus will be reviewed

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 5 / 284

Overview
The Requirement Document

Formal Models

What you will Learn

The concepts of state and events for defining models

Some principles of system development:
invariants and refinement

A refresher of classical logic and simple arithmetic foundations

A refresher of formal proofs

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 6 / 284

Overview
The Requirement Document

Formal Models

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 7 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (1)

The system we are going to build is a piece of software
connected to some equipment.

There are two kinds of requirements:

those concerned with the equipment, labeled EQP,

those concerned with the function of the system, labeled FUN.

The function of this system is to control cars on a narrow bridge.

This bridge is supposed to link the mainland to a small island.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 8 / 284



Overview
The Requirement Document

Formal Models

A Requirements Document (2)

The system is controlling cars on a bridge
between the mainland and an island FUN-1

- This can be illustrated as follows

Bridge MainlandIsland

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 9 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (3)

- The controller is equipped with two traffic lights with two colors.

The system has two traffic lights with two
colors: green and red EQP-1

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 10 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (4)

- One of the traffic lights is situated on the mainland and the other
one on the island. Both are close to the bridge.

- This can be illustrated as follows

Bridge MainlandIsland

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 11 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (5)

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

- Drivers are supposed to obey the traffic light by not passing when a
traffic light is red.

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 12 / 284



Overview
The Requirement Document

Formal Models

A Requirements Document (6)

- There are also some car sensors situated at both ends of the bridge.

- These sensors are supposed to detect the presence of cars
intending to enter or leave the bridge.

- There are four such sensors. Two of them are situated on the bridge
and the other two are situated on the mainland and on the island.

The system is equipped with four car sensors
each with two states: on or off EQP-4

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 13 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (7)

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

- The pieces of equipment can be illustrated as follows:

BridgeIsland Mainland

traffic light
sensor

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 14 / 284

Overview
The Requirement Document

Formal Models

A Requirements Document (8)

This system has two main constraints: the number of cars
on the bridge and the island is limited and the bridge is one way.

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 15 / 284

Overview
The Requirement Document

Formal Models

The Reference Document (1)

The system is controlling cars on a bridge
between the mainland and an island FUN-1

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 16 / 284



Overview
The Requirement Document

Formal Models

The Reference Document (2)

The system has two traffic lights with two
colors: green and red EQP-1

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 17 / 284

Overview
The Requirement Document

Formal Models

The Reference Document (3)

The system is equipped with four car sensors
each with two states: on or off EQP-4

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 18 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 19 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Our Refinement Strategy

Initial model: Limiting the number of cars (FUN-2)

First refinement: Introducing the one way bridge (FUN-3)

Second refinement: Introducing the traffic lights (EQP-1,2,3)

Third refinement: Introducing the sensors (EQP-4,5)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 20 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 21 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Initial Model

- It is very simple

- We completely ignore the equipment: traffic lights and sensors

- We do not even consider the bridge

- We are just interested in the pair “island-bridge”

- We are focusing FUN-2: limited number of cars on island-bridge

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 22 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Situation as Seen from the Sky

M a i n l a n d
I s l a n d

+  b r i d g e

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 23 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Two Events that may be Observed

ML_out

ML_in

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 24 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Formalizing the State: Constants and Axioms

- STATIC PART of the state: constant d with axiom axm0_1

constant: d axm0_1: d ∈ N

- d is the maximum number of cars allowed on the Island-Bridge

- axm0_1 states that d is a natural number

- Constant d is a member of the set N = {0, 1, 2, , . . .}

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 25 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Formalizing the State: variable

- DYNAMIC PART: variable v with invariants inv0_1 and inv0_2

variable: n
inv0_1: n ∈ N

inv0_2: n ≤ d

- n is the effective number of cars on the Island-Bridge

- n is a natural number (inv0_1)

- n is always smaller than or equal to d (inv0_2): this is FUN_2

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 26 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Naming Conventions

- Labels axm0_1, inv0_1, ... are chosen systematically

- The label axm or inv recalls the purpose: axiom of constants or
invariant of variables

- The 0 as in inv0_1 stands for the initial model.

- Later we will have inv1_1 for an invariant of refinement 1, etc.

- The 1 like in inv0_1 is a serial number

- Any convention is valid as long as it is systematic

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 27 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Event ML_out

- This is the first transition (or event) that can be observed

- A car is leaving the mainland and entering the Island-Bridge

Before After

ML_out

- The number of cars in the Island-Bridge is incremented

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 28 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Event ML_in

- We can also observe a second transition (or event)

- A car leaving the Island-Bridge and re-entering the mainland

Before

ML_in

After

- The number of cars in the Island-Bridge is decremented

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 29 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Formalizing the two Events: an Approximation

- Event ML_out increments the number of cars

ML_out
n := n + 1

- Event ML_in decrements the number of cars

ML_in
n := n − 1

- An event is denoted by its name and its action (an assignment)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 30 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Why an Approximation?

These events are approximations for two reasons:

1 They might be refined (made more precise) later

2 They might be insufficient at this stage because not consistent
with the invariant

We have to perform a proof in order to verify this consistency.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 31 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants

- An invariant is a constraint on the allowed values of the variables

- An invariant must hold on all reachable states of a model

- To verify that this holds we must show that
1. the invariant holds for initial states (later), and
2. the invariant is preserved by all events (following slides)

- We will formalize these two statements as proof obligations (POs)

- We need a rigorous proof showing that these POs indeed hold

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 32 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Towards the Proof: Before-after Predicates

- To each event can be associated a before-after predicate

- It describes the relation between the values of the variable(s) just
before and just after the event occurrence

- The before-value is denoted by the variable name, say n

- The after-value is denoted by the primed variable name, say n′

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 33 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Before-after Predicate Examples

The Events

ML_out
n := n + 1

ML_in
n := n − 1

The corresponding before-after predicates

n′ = n + 1 n′ = n − 1

These representations are equivalent.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 34 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

About the Shape of the Before-after Predicates

- The before-after predicates we have shown are very simple

n′ = n + 1 n′ = n − 1

- The after-value n′ is defined as a function of the before-value n

- This is because the corresponding events are deterministic

- In later lectures, we shall consider some non-deterministic events:

n′ ∈ {n + 1, n + 2}

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 35 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuition about Invariant Preservation

- Let us consider invariant inv0_1

n ∈ N

- And let us consider event ML_out with before-after predicate

n′ = n + 1

- Preservation of inv0_1 means that we have (just after ML_out):

n′ ∈ N that is n + 1 ∈ N

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 36 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Being more Precise

- Under hypothesis n ∈ N the conclusion n + 1 ∈ N holds

- This can be written as follows

n ∈ N ` n + 1 ∈ N

- This type of statement is called a sequent (next slide)

- Sequent above: invariant preservation proof obligation for inv0_1

- More General form of this PO will be introduced shortly

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 37 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Sequents

- A sequent is a formal statement of the following shape

H ` G

- H denotes a set of predicates: the hypotheses (or assumptions)

- G denotes a predicate: the goal (or conclusion)

- The symbol "`", called the turnstyle, stands for provability.
It is read: "Assumptions H yield conclusion G"

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 38 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Invariant Preservation (1)

- We collectively denote our set of constants by c

- We denote our set of axiomss by A(c): A1(c), A2(c), . . .

- We collectively denote our set of variables by v

- We denote our set of invariants by I(c, v): I1(c, v), I2(c, v), . . .

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 39 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Invariant Preservation (2)

- We are given an event with before-after predicate v ′ = E(c, v)

- The following sequent expresses preservation of invariant Ii(c, v):

A(c), I(c, v) ` Ii(c, E(c, v)) INV

- It says: Ii(c, E(c, v)) provable under hypotheses A(c) and I(c, v)

- We have given the name INV to this proof obligation

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 40 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Explanation of the Proof Obligation

A(c), I(c, v) ` Ii(c, E(c, v)) INV

- We assume that A(c) as well as I(c, v) hold just before the
occurrence of the event represented by v ′ = E(c, v)

- Just after the occurrence, invariant Ii(c, v) becomes Ii(c, v ′),
that is, Ii(c, E(c, v))

- The predicate Ii(c, E(c, v)) must then hold for Ii(c, v) to be
an invariant

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 41 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Vertical Layout of Proof Obligations

- The proof obligation

A(c), I(c, v) ` Ii(c, E(c, v)) INV

can be re-written vertically as follows:

Axioms
Invariants
`
Modified Invariant

A(c)
I(c, v) INV
`
Ii(c, E(c, v))

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 42 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Back to our Example

- We have two events

ML_out
n := n + 1

ML_in
n := n − 1

- And two invariants

inv0_1: n ∈ N inv0_2: n ≤ d

- Thus, we need to prove four proof obligations

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 43 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof obligation for ML_out and inv0_1

ML_out
n := n + 1 (n′ = n + 1)

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
`
Modified Invariant inv0_1

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

- This proof obligation is named: ML_out / inv0_1 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 44 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof obligation for ML_out and inv0_2

ML_out
n := n + 1 (n′ = n + 1)

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
`
Modified Invariant inv0_2

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

- This proof obligation is named: ML_out / inv0_2 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 45 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof obligation for ML_in and inv0_1

ML_in
n := n − 1 (n′ = n − 1)

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
`
Modified Invariant inv0_1

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ∈ N

- This proof obligation is named: ML_in / inv0_1 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 46 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof obligation for ML_in and inv0_2

ML_in
n := n − 1 (n′ = n − 1)

Axiom axm0_1
Invariant inv0_1
Invariant inv0_2
`
Modified Invariant inv0_2

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ≤ d

- This proof obligation is named: ML_in / inv0_2 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 47 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Proof Obligations

ML_out / inv0_1 / INV ML_out / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

ML_in / inv0_1 / INV ML_in / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ≤ d

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 48 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Informal Proof of ML_out / inv0_1 / INV

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

remove
−→

hypotheses

n ∈ N
`
n + 1 ∈ N

obvious

- In the first step, we remove some irrelevant hypotheses

- In the second and final step, we accept the sequent as it is

- We have implicitly applied inference rules

- For rigorous reasoning we will make these rules explicit

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 49 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Inference Rules

H1 ` G1 · · · Hn ` Gn

H ` G
RULE_NAME

- Above horizontal line: n sequents called antecedents (n ≥ 0)

- Below horizontal line: exactly one sequent called consequent

- To prove the consequent, it is sufficient to prove the antecedents

- A rule with no antecedent (n = 0) is called an axiom

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 50 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Inference Rule: Monotonicity of Hypotheses

- The rule that removes hypotheses can be stated as follows:

H ` G

H, H’ ` G
MON

- It expresses the monotonicity of the hypotheses

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 51 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Some Arithmetic Rules of Inference

- The Second Peano Axiom

n ∈ N ` n + 1 ∈ N
P2

0 < n ` n− 1 ∈ N
P2′

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 52 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

More Arithmetic Rules of Inference

- Axioms about ordering relations on the integers

n < m ` n + 1 ≤ m
INC

n ≤ m ` n− 1 ≤ m
DEC

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 53 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Application of Inference Rules

- Consider again the 2nd Peano axiom:

n ∈ N ` n + 1 ∈ N
P2

- It is a rule schema where n is called a meta-variable

- It can be applied to following sequent by matching a + b with n:

a + b ∈ N ` a + b + 1 ∈ N

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 54 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proofs

- A proof is a tree of sequents with axioms at the leaves.

- The rules applied to the leaves are axioms.

- Each sequent is labeled with (name of) proof rule applied to it.

- The sequent at the root of the tree is called the root sequent.

- The purpose of a proof is to establish the truth of its root sequent.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 55 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_out / inv0_1 / INV

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

MON
n ∈ N
`
n + 1 ∈ N

P2

- Proof requires only application of two rules: MON and P2

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 56 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Failed Proof Attempt: ML_out / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

MON
n ≤ d
`
n + 1 ≤ d

?

- We put a ? to indicate that we have no rule to apply

- The proof fails: we cannot conclude with rule INC (n < d needed)

n < m ` n + 1 ≤ m
INC

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 57 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Failed Proof Attempt: ML_in / inv0_1 / INV

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ∈ N

MON
n ∈ N
`
n − 1 ∈ N

?

- The proof fails: we cannot conclude with rule P2′ (0 < n needed)

0 < n ` n− 1 ∈ N
P2′

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 58 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_in / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n − 1 ≤ d

MON
n ≤ d
`
n − 1 ≤ d

DEC

n ≤ m ` n− 1 ≤ m
DEC

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 59 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Reasons for Proof Failure

- We needed hypothesis n < d to prove ML_out / inv0_2 / INV

- We needed hypothesis 0 < n to prove ML_in / inv0_1 / INV

ML_out
n := n + 1

ML_in
n := n − 1

- We are going to add n < d as a guard to event ML_out

- We are going to add 0 < n as a guard to event ML_in

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 60 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Improving the Events: Introducing Guards

ML_out
when

n < d
then

n := n + 1
end

ML_in
when

0 < n
then

n := n − 1
end

- We are adding guards to the events

- The guard is the necessary condition for an event to “occur”

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 61 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: General Invariant Preservation

- Given c with axioms A(c) and v with invariants I(c, v)

- Given an event with guard G(c, v) and b-a predicate v ′ = E(c, v)

- We modify the Invariant Preservation PO as follows:

Axioms
Invariants
Guard of the event
`
Modified Invariant

A(c)
I(c, v)
G(c, v) INV
`
Ii(c, E(c, v))

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 62 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_out / inv0_1 / INV

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ∈ N

MON
n ∈ N
`
n + 1 ∈ N

P2

- Adding new assumptions to a sequent does not affect its provability

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 63 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_out / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ≤ d

MON
n < d
`
n + 1 ≤ d

INC

- Now we can conclude the proof using rule INC

n < m ` n + 1 ≤ m
INC

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 64 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_in / inv0_1 / INV

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n − 1 ∈ N

MON
0 < n
`
n − 1 ∈ N

P2’

- Now we can conclude the proof using rule P2′

0 < n ` n− 1 ∈ N
P2′

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 65 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Formal Proof of: ML_in / inv0_2 / INV

d ∈ N
n ∈ N
n ≤ d
n < d
`
n − 1 ≤ d

MON
n ≤ d
`
n − 1 ≤ d

DEC

- Again, the proof still works after the addition of a new assumption

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 66 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Re-proving the Events: No Proofs Fail

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ≤ d

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n − 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n − 1 ≤ d

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 67 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Initialization

- Our system must be initialized (with no car in the island-bridge)

- The initialization event is never guarded

- It does not mention any variable on the right hand side of :=

-Its before-after predicate is just an after predicate

init
n := 0 After predicate n′ = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 68 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Invariant Establishment

- Given c with axioms A(c) and v with invariants I(c, v)

- Given an init event with after predicate v ′ = K (c)

- The Invariant Establishment PO is the following:

Axioms
`
Modified Invariant

A(c)
` INV
Ii(c, K (c))

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 69 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying the Invariant Establishment PO

axm0_1
`
Modified inv0_1

d ∈ N
`
0 ∈ N

inv0_1 / INV

axm0_1
`
Modified inv0_2

d ∈ N
`
0 ≤ d

inv0_2 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 70 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

More Arithmetic Inference Rules

- First Peano Axiom

` 0 ∈ N
P1

- Third Peano Axiom (slightly modified)

n ∈ N ` 0 ≤ n
P3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 71 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proofs of Invariant Establishment

d ∈ N
`
0 ∈ N

MON `
0 ∈ N

P1

d ∈ N
`
0 ≤ d

P3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 72 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

A Missing Requirement

- It is possible for the system to be blocked if both guards are false

- We do not want this to happen

- We figure out that one important requirement was missing

Once started, the system should work for ever FUN-4

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 73 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Deadlock Freedom

- Given c with axioms A(c) and v with invariants I(c, v)

- Given the guards G1(c, v), . . . , Gm(c, v) of the events

- We have to prove the following:

A(c)
I(c, v)
` DLF
G1(c, v) ∨ . . . ∨ Gm(c, v)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 74 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying the Deadlock Freedom PO

axm0_1
inv0_1
inv0_2
`
Disjunction of guards

d ∈ N
n ∈ N
n ≤ d
`
n < d ∨ 0 < n

- This cannot be proved with the inference rules we have so far

- n ≤ d can be replaced by n = d ∨ n < d

- We continue our proof by a case analysis:
- case 1: n = d
- case 2: n < d

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 75 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Inference Rules for Disjunction

- Proof by case analysis

H, P ` R H, Q ` R

H, P ∨Q ` R
OR_L

- Choice for proving a disjunctive goal

H ` P

H ` P ∨Q
OR_R1

H ` Q

H ` P ∨Q
OR_R2

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 76 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of Deadlock Freedom

d ∈ N
n ∈ N
n ≤ d
`
n < d ∨ 0 < n

MON
n ≤ d
`
n < d ∨ 0 < n

. . .

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 77 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of Deadlock Freedom (cont’d)

n ≤ d
`
n < d ∨ 0 < n

OR_L



n < d
`
n < d ∨ 0 < n

. . .

n = d
`
n < d ∨ 0 < n

. . .

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 78 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of Deadlock Freedom (cont’d)



n < d
`
n < d ∨ 0 < n

OR_R1 n < d ` n < d ?

n = d
`
n < d ∨ 0 < n

?

- The first ? seems to be obvious
- The second ? can be (partially) solved by applying the equality

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 79 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

More Inference Rules: Identity and Equality

- The identity axiom (conclusion holds by hypothesis)

P ` P
HYP

- Rewriting an equality (EQ_LR) and reflexivity of equality (EQL)

H(F), E = F ` P(F)

H(E), E = F ` P(E)
EQ_LR

` E = E
EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 80 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of Deadlock Freedom (end)

n < d
`
n < d ∨ 0 < n

OR_R1 n < d ` n < d HYP

n = d
`
n < d ∨ 0 < n

EQ_LR ` d < d ∨ 0 < d OR_R2

OR_R2 ` 0 < d ?

- We still have a problem: d must be positive!

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 81 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Adding the Forgotten Axiom

- If d is equal to 0, then no car can ever enter the Island-Bridge

axm0_2: 0 < d

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 82 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Initial Model: Conclusion

- Thanks to the proofs, we discovered 3 errors

- They were corrected by:

- adding guards to both events

- adding an axiom

- The interaction of modeling and proving is an essential element
of Formal Methods with Proofs

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 83 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Initial Model

- We have seen three kinds of proof obligations:

- The Invariant Establishment PO: INV

- The Invariant Preservation PO: INV

- The Deadlock Freedom PO (optional): DLF

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 84 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Initial Model (cont’d)

Axioms
` INV
Modified Invariant

Axioms
Invariants
Guard of the event INV
`
Modified Invariant

Axiom
Invariants DLF
`
Disjunction of the guards

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 85 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Initial Model

constant: d

variable: n

axm0_1: d ∈ N

axm0_2: d > 0

inv0_1: n ∈ N

inv0_2: n ≤ d

init
n := 0

ML_out
when

n < d
then

n := n + 1
end

ML_in
when

0 < n
then

n := n − 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 86 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 87 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 88 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

First Refinement: Introducing a One-Way Bridge

- We go down with our parachute

- Our view of the system gets more accurate

- We introduce the bridge and separate it from the island

- We refine the state and the events

- We also add two new events: IL_in and IL_out

- We are focusing on FUN-3: one-way bridge

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 89 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

First Refinement: Introducing a one Way Bridge

IL_in

I s l a n d

I s l a n d

One Way
Bridge

ML_out

IL_out ML_in

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 90 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Introducing Three New Variables: a, b, and c

b

a

c

- a denotes the number of cars on bridge going to island
- b denotes the number of cars on island
- c denotes the number of cars on bridge going to mainland
- a, b, and c are the concrete variables
- They replace the abstract variable n

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 91 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining the State: Formalizing Variables a, b,and c

- Variables a, b, and c denote natural numbers

a ∈ N

b ∈ N

c ∈ N

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 92 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining the State: Introducing New Invariants

- Relating the concrete state (a, b, c) to the abstract state (n)

a + b + c = n

- Formalizing the new invariant: one way bridge (this is FUN-3)

a = 0 ∨ c = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 93 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining the State: Summary

constants: d

variables: a, b, c

inv1_1: a ∈ N

inv1_2: b ∈ N

inv1_3: c ∈ N

inv1_4: a + b + c = n

inv1_5: a = 0 ∨ c = 0

- Invariants inv1_1 to inv1_5 are called the concrete invariants

- inv1_4 glues the abstract state, n, to the concrete state, a, b, c

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 94 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proposal for Refining Event ML_out

ML_out

a

ML_out
when

a + b < d
c = 0

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 95 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proposal for Refining Event ML_in

ML_in

c

ML_in
when

0 < c
then

c := c − 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 96 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

B-A Predicates: Preserved Variables

ML_out
when

a + b < d
c = 0

then
a := a + 1

end

ML_in
when

0 < c
then

c := c − 1
end

Before-after predicates showing the unmodified variables:

a′ = a + 1 ∧ b′ = b ∧ c′ = c

a′ = a ∧ b′ = b ∧ c′ = c − 1

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 97 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuition about Refinement

The concrete model behaves as specified by the abstract model
(i.e., concrete model does not exhibit any new behaviors)

To show this we have to prove that

1. every concrete event is simulated by its abstract counterpart
(event refinement: following slides)

2. to every concrete initial state corresponds an abstract one
(initial state refinement: later)

We will make these two conditions more precise and formalize
them as proof obligations.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 98 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuition about refinement (1)

(abstract_)ML_out
when

n < d
then

n := n + 1
end

(concrete_)ML_out
when

a + b < d
c = 0

then
a := a + 1

end

- The concrete version is not contradictory with the abstract one

- When the concrete version is enabled then so is the abstract one

- Executions seem to be compatible

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 99 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuition about refinement (2)

(abstract_)ML_in
when

0 < n
then

n := n − 1
end

(concrete_)ML_in
when

0 < c
then

c := c − 1
end

- Same remarks as in the previous slide

- But this has to be confirmed by well-defined proof obligations

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 100 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Refinement

- The concrete guard is stronger than the abstract one

- Each concrete action is compatible with its abstract counterpart

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 101 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Correct Refinement: the Situation

Constants c with axioms A(c)

Abstract variables v with abstract invariant I(c, v)

Concrete variables w with concrete invariant J(c, v , w)

Abstract event with guards G(c, v): G1(c, v), G2(c, v), . . .
Abstract event with before-after predicate v ′ = E(c, v)

Concrete event with guards H(c, w) and b-a predicate w ′ = F (c, w)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 102 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Correctness of Event Refinement

v

w

Abstract Event

Concrete Event

J(c,v,w)

I(v) I(v’)

J(c,v’,w’)

v’=E(c,v)

w’=F(c,w)H(c,w)

G(c,v)

1. The concrete guard is stronger than the abstract one
(Guard Strengthening, following slides)
2. Each concrete action is simulated by its abstract counterpart
(Concrete Invariant Preservation, later)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 103 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Guard Strengthening

Axioms
Abstract Invariant
Concrete Invariant
Concrete Guard
`
Abstract Guard

A(c)
I(c, v)
J(c, v , w) GRD
H(c, w)
`
Gi(c, v)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 104 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Guard Strengthening

- ML_out / GRD

- ML_in / GRD

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 105 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Guard Strengthening to Event ML_out

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_out

`
Abstract guard of ML_out

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`

n < d

ML_out / GRD

(abstract-)ML_out
when

n < d
then

n := n + 1
end

(concrete-)ML_out
when

a + b < d
c = 0

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 106 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_out / GRD

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N

a + b + c = n
a = 0 ∨ c = 0

a + b < d

c = 0
`

n < d

MON

a + b + c = n
a + b < d

c = 0
`

n < d

EQ_LR

a + b + 0 = n
a + b < d
`

n < d

ARITH . . .

. . .

a + b = n
a + b < d
`

n < d

EQ_LR
n < d
`

n < d
HYP

The "rule" name ARITH stands for
simple arithmetic simplifications.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 107 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Guard Strengthening to Event ML_in

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guard of ML_in
`

Abstract guard of ML_in

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`

0 < n

ML_in / GRD

(abstract-)ML_in
when

0 < n
then

n := n − 1
end

(concrete-)ML_in
when

0 < c
then

c := c − 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 108 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_in / GRD

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N

b ∈ N
c ∈ N

a + b + c = n

a = 0 ∨ c = 0

0 < c
`

0 < n

MON

b ∈ N
a + b + c = n

a = 0 ∨ c = 0
0 < c
`

0 < n

OR_L

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

b ∈ N
a + b + c = n

a = 0
0 < c
`

0 < n

EQ_LR . . .

b ∈ N
a + b + c = n

c = 0
0 < c
`

0 < n

EQ_LR . . .

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 109 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_in / GRD

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

. . .

b ∈ N
0 + b + c = n
0 < c
`

0 < n

ARITH

b ∈ N

b + c = n
0 < c
`

0 < n

ARITH

c ≤ n

0 < c
`

0 < n

ARITH
0 < n
`

0 < n
HYP

. . .

b ∈ N
a + b + 0 = n
0 < 0
`

0 < n

ARITH

b ∈ N
a + b = n

0 < 0
`

0 < n

MON
0 < 0
`

0 < n

ARITH
⊥
`

0 < n
CNTR

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 110 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

An Additional Rule: the Contradiction Rule

- In the previous proof, we have used and additional inference rule

- It says that a false hypothesis entails any goal

⊥ ` P
CNTR

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 111 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Correctness of Invariant Refinement

v

w

Abstract Event

Concrete Event

J(c,v,w)

I(v) I(v’)

J(c,v’,w’)

v’=E(c,v)

w’=F(c,w)H(c,w)

G(c,v)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 112 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Invariant Refinement

Axioms
Abstract Invariants
Concrete Invariants
Concrete Guards
`
Modified Concrete Invariant

A(c)
I(c, v)
J(c, v , w)
H(c, w) INV
`
Jj (c, E(c, v), F (c, w))

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 113 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Overview of Proof Obligations

- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV
- ML_out / inv1_5 / INV
- ML_in / inv1_4 / INV
- ML_in / inv1_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 114 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Invariant Refinement to Event ML_out

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_out

`
Modified Invariant inv1_4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`

a + 1 + b + c = n + 1

ML_out / inv1_4 / INV

(abstract-)ML_out
when

n < d
then

n := n + 1
end

(concrete-)ML_out
when

a + b < d
c = 0

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 115 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_out / inv1_4 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N

a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`

a + 1 + b + c = n + 1

MON
a + b + c = n
`
a + 1 + b + c = n + 1

ARITH . . .

. . .
a + b + c = n
`

a + b + c + 1 = n + 1
EQ_LR ` n + 1 = n + 1 EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 116 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Invariant Refinement to Event ML_out

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_out

`
Modified Invariant inv1_5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`

a + 1 = 0 ∨ c = 0

ML_out / inv1_5 / INV

(abstract-)ML_out
when

n < d
then

n := n + 1
end

(concrete-)ML_out
when

a + b < d
c = 0

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 117 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_out / inv1_5 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d

c = 0
`

a + 1 = 0 ∨ c = 0

MON
c = 0
`

a + 1 = 0 ∨ c = 0
OR_R2

c = 0
`

c = 0
HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 118 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Invariant Refinement to Event ML_in

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_in
`

Modified Invariant inv1_4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`

a + b + c − 1 = n − 1

ML_in / inv1_4 / INV

(abstract-)ML_in
when

0 < n
then

n := n − 1
end

(concrte-)ML_in
when

0 < c
then

c := c − 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 119 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_in / inv1_4 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N

a + b + c = n
a = 0 ∨ c = 0
0 < c
`

a + b + c − 1 = n − 1

MON
a + b + c = n
`

a + b + c − 1 = n − 1
EQ_LR

` n − 1 = n − 1 EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 120 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying Invariant Refinement to Event ML_in

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of ML_in
`

Modified Invariant inv1_5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`

a = 0 ∨ c − 1 = 0

ML_in / inv1_5 / INV

(abstract-)ML_in
when

0 < n
then

n := n − 1
end

(concrete-)ML_in
when

0 < c
then

c := c − 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 121 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_in / inv1_5 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`

a = 0 ∨ c − 1 = 0

MON

a = 0 ∨ c = 0
0 < c
`

a = 0 ∨ c − 1 = 0

OR_L

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

a = 0
0 < c
`

a = 0 ∨ c − 1 = 0

MON · · ·

c = 0
0 < c
`

a = 0 ∨ c − 1 = 0

EQ_LR · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 122 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of ML_in / inv1_5 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`

a = 0 ∨ c − 1 = 0

MON

a = 0 ∨ c = 0
0 < c
`

a = 0 ∨ c − 1 = 0

OR_L

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

a = 0
0 < c
`

a = 0 ∨ c − 1 = 0

MON · · ·

c = 0
0 < c
`

a = 0 ∨ c − 1 = 0

EQ_LR · · ·

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

· · ·
a = 0
`
a = 0 ∨ c − 1 = 0

OR_R1 a = 0 ` a = 0 HYP

· · · 0 < 0 ` a = 0 ∨ −1 = 0 ARITH ⊥ ` a = 0 ∨ −1 = 0 CNTR

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 123 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining the Initialization Event init

- Concrete initialization

init
a := 0
b := 0
c := 0

- Corresponding after predicate

a′ = 0 ∧ b′ = 0 ∧ c′ = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 124 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Initialization Refinement

Constants c with axioms A(c)

Concrete invariant J(c, v , w)

Abstract initialization with after predicate v ′ = K (c)

Concrete initialization with after predicate w ′ = L(c)

Axioms
`
Modified concrete invariants

A(c)
` INV
Jj(c, K (c), L(c))

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 125 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Overview of Proof Obligations

- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV done
- ML_out / inv1_5 / INV done
- ML_in / inv1_4 / INV done
- ML_in / inv1_5 / INV done
- inv1_4 / INV
- inv1_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 126 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying the Initialization Refinement PO

axm0_1
axm0_2
`
Modified concrete invariant inv1_4

(a + b + c = n)

d ∈ N
d > 0
`
0 + 0 + 0 = 0

axm0_1
axm0_2
`
Modified concrete invariant inv1_5

(a = 0 ∨ c = 0)

d ∈ N
d > 0
`
0 = 0 ∨ 0 = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 127 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Adding New Events

- new events add transitions that have no abstract counterpart

- can be seen as a kind of internal steps (w.r.t. abstract model)

- can only be seen by an observer who is “zooming in”

- temporal refinement: refined model has a finer time granularity

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 128 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

New Event IL_in

IL_in

ab

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 129 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

New Event IL_out

IL_out

b c

IL_out
when

0 < b
a = 0

then
b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 130 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Several Actions Done Together

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

IL_out
when

0 < b
a = 0

then
b := b − 1
c := c + 1

end

Before-after predicates

a′ = a + 1 ∧ b′ = b + 1 ∧ c′ = c

a′ = a ∧ b′ = b − 1 ∧ c′ = c + 1

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 131 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

The empty assignment: skip

The before-after predicate of skip in the initial model

n′ = n

The before-after predicate of skip in the first refinement

a′ = a ∧ b′ = b ∧ c′ = c

The guard of the skip event is true.

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 132 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Proof Obligations for New Events

(1) A new event must refine an implicit event, made of a skip action
- Guard strengthening is trivial
- Need to prove invariant refinement

(2) The new events must not diverge
- To prove this we have to exhibit a variant
- The variant yields a natural number (could be more complex)
- Each new event must decrease this variant

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 133 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Overview of Proof Obligations
- ML_out / GRD done
- ML_in / GRD done
- ML_out / inv1_4 / INV done
- ML_out / inv1_5 / INV done
- ML_in / inv1_4 / INV done
- ML_in / inv1_5 / INV done
- inv1_4 / INV done
- inv1_5 / INV done
- IL_in / inv1_4 / INV
- IL_in / inv1_5 / INV
- IL_out / inv1_4 / INV
- IL_out / inv1_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 134 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Event IL_in Refines skip (1)

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_in
`

Modified Invariant inv1_4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`

a− 1 + b + 1 + c = n

IL_in / inv1_4 / INV

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 135 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of IL_in / inv1_4 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`

a− 1 + b + 1 + c = n

MON
a + b + c = n
`
a− 1 + b + 1 + c = n

ARITH

a + b + c = n
`

a + b + c = n
HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 136 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Event IL_in Refines skip (2)

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_in
`

Modified Invariant inv1_5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`

a− 1 = 0 ∨ c = 0

IL_in / inv1_5 / INV

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 137 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of IL_in / inv1_5 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < a
`

a − 1 = 0 ∨ c = 0

MON

a = 0 ∨ c = 0
0 < a
`

a − 1 = 0 ∨ c = 0

OR_L · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 138 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of IL_in / inv1_5 / INV

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < a
`

a − 1 = 0 ∨ c = 0

MON

a = 0 ∨ c = 0
0 < a
`

a − 1 = 0 ∨ c = 0

OR_L · · ·

· · ·

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

a = 0
0 < a
`

a − 1 = 0 ∨ c = 0

EQ_LR
0 < 0
`
−1 = 0 ∨ c = 0

ARITH
⊥
`
−1 = 0 ∨ c = 0

CNTR

c = 0
0 < a
`

a − 1 = 0 ∨ c = 0

MON

c = 0
`

a − 1 = 0 ∨ c = 0
OR_R2 c = 0 ` c = 0 HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 139 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Convergence of New Events (1)

Axioms A(c), invariants I(c, v), concrete invariant J(c, v , w)
New event with guard H(c, w)
Variant V (c, w)

Axioms
Abstract invariants
Concrete invariants
Concrete guard of a new event
`
Variant ∈ N

A(c)
I(c, v)
J(c, v , w)
H(c, w) NAT
`
V (c, w) ∈ N

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 140 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Convergence of New Events (2)

Axioms A(c), invariants I(c, v), concrete invariant J(c, v , w)
New event with guard H(c, w) and b-a predicate w ′ = F (c, w)
Variant V (c, w)

Axioms
Abstract invariants
Concrete invariants
Concrete guard
`
Modified Var. < Var.

A(c)
I(c, v)
J(c, v , w)
H(c, w) VAR
`
V (c, F (c, w)) < V (c, w)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 141 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proposed Variant

variant_1: 2 ∗ a + b

- Weighted sum of a and b

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 142 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Overview of Proof Obligations
−ML_out / GRD done −IL_in / NAT

−ML_in / GRD done −IL_out / NAT

−ML_out / inv1_4 / INV done −IL_in / VAR

−ML_out / inv1_5 / INV done −IL_out / VAR

−ML_in / inv1_4 / INV done

−ML_in / inv1_5 / INV done

−inv1_4 / INV done

−inv1_5 / INV done

−IL_in / inv1_4 / INV done

−IL_in / inv1_5 / INV done

−IL_out / inv1_4 / INV done

−IL_out / inv1_5 / INV done

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 143 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Decreasing of the Variant by Event IL_in

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guard of IL_in
`

Modified variant < Variant

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`

2 ∗ (a− 1) + b + 1 < 2 ∗ a + b

IL_in / VAR

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 144 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Decreasing of the Variant by Event IL_out

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Concrete guards of IL_out

`
Modified variant < Variant

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < b
a = 0
`

2 ∗ a + b − 1 < 2 ∗ a + b

IL_out / VAR

IL_out
when

0 < b
a = 0

then
b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 145 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Relative Deadlock Freedom

There a no new deadlocks in the concrete model, that is, all
deadlocks of the concrete model are already present in the abstract
model.

Proof obligation requires that whenever some abstract event is
enabled then so is some concrete event.

This proof obligaiton is optional (depending on system under study).

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 146 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligation: Relative Deadlock Freedom

The Gi(c, v) are the abstract guards
The Hi(c, v) are the concrete guards
If some abstract guard is true then so is some concrete guard:

A(c)
I(c, v)
J(c, v , w)
G1(c, v) ∨ . . . ∨ Gm(c, v) DLF
`
H1(c, w) ∨ . . . ∨ Hn(c, w)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 147 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Applying the Relative Deadlock Freedom PO

axm0_1
axm0_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
Disjunction of abstract guards
`

Disjunction of concrete guards

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < n ∨ n < d
`

(a + b < d ∧ c = 0) ∨
c > 0 ∨ a > 0
(b > 0 ∧ a = 0)

DLF

ML_out
when

a + b < d
c = 0

then
a := a + 1

end

ML_in
when

c > 0
then

c := c − 1
end

IL_in
when

a > 0
then

a := a − 1
b := b + 1

end

IL_out
when

b > 0
a = 0

then
b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 148 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

More Inference Rules: Negation and Conjunction

H,¬P ` Q

H ` P ∨ Q
NEG

H, P, Q ` R

H, P ∧ Q ` R
AND_L

H ` P H ` Q

H ` P ∧ Q
AND_R

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 149 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of DLF

d ∈ N
0 < d
n ∈ N
n ≤ d

a ∈ N
b ∈ N

c ∈ N

a + b + c = n
a = 0 ∨ c = 0

n > 0 ∨ n < d
`

(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

MON

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d
`

(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

NEG

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d

¬ (c > 0)

`
(a + b < d ∧ c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

ARITH

· · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 150 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of DLF

· · ·

a ∈ N
a + b + c = n
n > 0 ∨ n < d

c = 0
`

(a + b < d ∧ c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

EQ_LR

a ∈ N
a + b + 0 = n
n > 0 ∨ n < d
`

(a + b < d ∧ 0 = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

NEG

a ∈ N
a + b + 0 = n
n > 0 ∨ n < d

¬ (a > 0)

`
(a + b < d ∧ 0 = 0) ∨
(b > 0 ∧ a = 0)

ARITH · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 151 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of DLF (cont’d)

· · ·

a + b + 0 = n
n > 0 ∨ n < d

a = 0
`

(a + b < d ∧ 0 = 0) ∨
(b > 0 ∧ a = 0)

EQ_LR

0 + b + 0 = n
n > 0 ∨ n < d
`

(0 + b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

ARITH

b = n
n > 0 ∨ n < d
`

(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

EQ_LR · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 152 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof of DLF (cont’d)

· · ·

n > 0 ∨ n < d
`

(n < d ∧ 0 = 0) ∨
(n > 0 ∧ 0 = 0)

OR_L

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

n > 0
`

(n < d ∧ 0 = 0) ∨

(n > 0 ∧ 0 = 0)

OR_R2

n > 0
`
n > 0 ∧ 0 = 0

AND_R

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

n > 0
`

n > 0
HYP

n > 0
`

0 = 0
EQL

n < d
`

(n < d ∧ 0 = 0) ∨
(n > 0 ∧ 0 = 0)

OR_R1

n < d
`
n < d ∧ 0 = 0

AND_R

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

n < d
`
n < d

HYP

n < d
`
0 = 0

EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 153 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Overview of Proof Obligations
−ML_out / GRD done −IL_in / NAT done

−ML_in / GRD done −IL_out / NAT done

−ML_out / inv1_4 / INV done −IL_in / VAR done

−ML_out / inv1_5 / INV done −IL_out / VAR done

−ML_in / inv1_4 / INV done −DLF done

−ML_in / inv1_5 / INV done

−inv1_4 / INV done

−inv1_5 / INV done

−IL_in / inv1_4 / INV done

−IL_in / inv1_5 / INV done

−IL_out / inv1_4 / INV done

−IL_out / inv1_5 / INV done

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 154 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Refinement POs

- For old events:
- Strengthening of guards: GRD
- Concrete invariant preservation: INV

- For new events:
- Refining the implicit skip event: INV
- Absence of divergence: NAT and VAR

- For all events:
- Relative deadlock freedom: DLF

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 155 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Refinement (1/2)

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards
`

Abstract guard

Axioms
Abstract invariants
Concrete invariants
Concrete guard INV
`

Modified concrete invariant

Axioms
` INV

Modified concrete invariant

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 156 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof Obligations for Refinement (2/2)

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event NAT
`

Variant ∈ N

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event VAR
`

Modified variant < Variant

Axioms
Abstract invariants
Concrete invariants
Disjunction of abstract events guards DLF
`

Disjunction of concrete events guards

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 157 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

State of the First Refinement

constants: d

variables: a, b, c

inv1_1: a ∈ N

inv1_2: b ∈ N

inv1_3: c ∈ N

inv1_4: a + b + c = n

inv1_5: a = 0 ∨ c = 0

variant1: 2 ∗ a + b

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 158 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Events of the First Refinement

init
a := 0
b := 0
c := 0

ML_in
when

0 < c
then

c := c − 1
end

ML_out
when

a + b < d
c = 0

then
a := a + 1

end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

IL_out
when

0 < b
a = 0

then
b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 159 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 160 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Second Refinement: Introducing Traffic Lights

M A I N L A N D

il_tl

ml_tl

I S L A N D

ML_out

IL_out

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 161 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Constants

set: COLOR

constants: red , green

axm2_1: COLOR = {green, red}

axm2_2: green 6= red

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 162 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Variables

il_tl ∈ COLOR ml_tl ∈ COLOR

Remark: Events IL_in and ML_in are not modified in this refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 163 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Invariant (1)

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 164 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Invariant (1)

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

ml_tl = green ⇒ c = 0 ∧ a + b < d

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 165 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Event ML_out

a

ML_out

(abstract_)ML_out
when

c = 0
a + b < d

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 166 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Event ML_out

a

ML_out

(abstract_)ML_out
when

c = 0
a + b < d

then
a := a + 1

end

(concrete_)ML_out
when

ml_tl = green
then

a := a + 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 167 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Invariant (2)

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 168 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Extending the Invariant (2)

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

il_tl = green ⇒ a = 0 ∧ 0 < b

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 169 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Event IL_out

c

IL_out

b

(abstract_)IL_out
when

a = 0
0 < b

then
b, c := b − 1, c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 170 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Event IL_out

c

IL_out

b

(abstract_)IL_out
when

a = 0
0 < b

then
b, c := b − 1, c + 1

end

(concrete_)IL_out
when

il_tl = green
then

b, c := b − 1, c + 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 171 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

New Events ML_tl_green and IL_tl_green

ML_tl_green
when

ml_tl = red
c = 0
a + b < d

then
ml_tl := green

end

IL_tl_green
when

il_tl = red
a = 0
0 < b

then
il_tl := green

end

- Turning lights to green when proper conditions hold

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 172 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of State Refinement (so far)

variables: a, b, c, ml_tl , il_tl

inv2_1: ml_tl ∈ COLOR

inv2_2: il_tl ∈ COLOR

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 173 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Old Events (so far)

ML_out
when

ml_tl = green
then

a := a + 1
end

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

Events ML_in and IL_ in are unchanged

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 174 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Superposition

variables: a, b, c, ml_tl , il_tl

- Variables a, b, and c were present in the previous refinement

- Variables ml_tl and il_tl are superposed to a, b, and c

- We have thus to extend rule INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 175 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Superposition: Introduction of a new Rule

Abstract_Event
when

G(c, u, v)
then

u := E(c, u, v)
v := M(c, u, v)

end

Concrete_Event
when

H(c, v , w)
then

v := N(c, v , w)
w := F (c, v , w)

end

Axioms
Abstract invariants
Concrete invariants
Concrete guards
⇒

Same actions on
common variables

A(c)
I(c, u, v)
J(c, u, v , w)
H(c, v , w) SIM
⇒
M(c, u, v) = N(c, v , w)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 176 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving the Refinement of the Four Old Events

- We have to apply 3 Proof Obligations:
- GRD,
- SIM,
- INV

- On 4 events: ML_out, IL_out, ML_in, IL_in

- And 2 main invariants:

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 177 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving the Refinement of the Four Old Events

ML_out
when

c = 0
a + b < d

then
a := a + 1

end

IL_out
when

a = 0
0 < b

then
b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

ML_out
when

ml_tl = green
then

a := a + 1
end

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

- SIM is completely trivial since the actions are the same

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 178 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving the Refinement of the Four Old Events

ML_out
when

c = 0
a + b < d

then
a := a + 1

end

IL_out
when

a = 0
0 < b

then
b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

ML_out
when

ml_tl = green
then

a := a + 1
end

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

- GRD is also trivial

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 179 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving the Refinement of the Four Old Events

ML_out
when

c = 0
a + b < d

then
a := a + 1

end

IL_out
when

a = 0
0 < b

then
b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

ML_out
when

ml_tl = green
then

a := a + 1
end

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

- INV applied to ML_in and IL_in holds trivially

inv2_3: ml_tl = green ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = green ⇒ 0 < b ∧ a = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 180 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving the Refinement of the Four Old Events

ML_out
when

c = 0
a + b < d

then
a := a + 1

end

IL_out
when

a = 0
0 < b

then
b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

ML_out
when

ml_tl = green
then

a := a + 1
end

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

- INV applied to ML_out and IL_out raise some difficulties

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 181 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

What we Have to Prove

- ML_out / inv2_4 / INV

- IL_out / inv2_3 / INV

- ML_out / inv2_3 / INV

- IL_out / inv2_4 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 182 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

More Logical Rules of Inferences

- Rules about implication

H, P, Q ` R

H, P, P⇒ Q ` R
IMP_L

H, P ` Q

H ` P⇒ Q
IMP_R

- Rules about negation

H ` P

H, ¬P ` Q
NOT_L

H, P ` Q H, P ` ¬Q

H ` ¬P
NOT_R

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 183 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_4 by Event ML_out

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of event ML_out
`
Modified invariant inv2_4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`
il_tl = green ⇒ 0 < b ∧ a + 1 = 0

ML_out / inv2_4 / INV

ML_out
when

ml_tl = green
then

a := a + 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 184 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`
il_tl = green ⇒ 0 < b ∧ a + 1 = 0

MON

green 6= red
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`

il_tl = green ⇒ 0 < b ∧ a + 1 = 0

IMP_R · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 185 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`
il_tl = green ⇒ 0 < b ∧ a + 1 = 0

MON

green 6= red
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`

il_tl = green ⇒ 0 < b ∧ a + 1 = 0

IMP_R · · ·

· · ·

green 6= red
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
il_tl = green
`

0 < b ∧ a + 1 = 0

IMP_L

green 6= red
0 < b ∧ a = 0
ml_tl = green
il_tl = green
`

0 < b ∧ a + 1 = 0

AND_L · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 186 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof (cont’d)

· · ·

green 6= red
0 < b
a = 0
ml_tl = green
il_tl = green
`

0 < b ∧ a + 1 = 0

AND_R

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

green 6= red
0 < b
a = 0
ml_tl = green
il_tl = green
`

0 < b

MON 0 < b ` 0 < b HYP

green 6= red
0 < b
a = 0
ml_tl = green
il_tl = green
`

a + 1 = 0

EQ_LR

green 6= red
ml_tl = green
il_tl = green
`

0 + 1 = 0

ARITH

green 6= red
ml_tl = green
il_tl = green
`

1 = 0

?

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 187 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_3 by Event IL_out

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of IL_out
`
Modified inv2_3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`

ml_tl = green ⇒ a + b − 1 < d ∧ c + 1 = 0

IL_out / inv2_3 / INV

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 188 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`

ml_tl = green ⇒ a + b − 1 < d ∧ c + 1 = 0

MON

green 6= red
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green
`

ml_tl = green ⇒ a + b − 1 < d ∧
c + 1 = 0

IMP_R · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 189 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`

ml_tl = green ⇒ a + b − 1 < d ∧ c + 1 = 0

MON

green 6= red
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green
`

ml_tl = green ⇒ a + b − 1 < d ∧
c + 1 = 0

IMP_R · · ·

· · ·

green 6= red
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green
ml_tl = green
`

a + b − 1 < d ∧ c + 1 = 0

IMP_L

green 6= red
a + b < d ∧ c = 0
il_tl = green
ml_tl = green
`

a + b − 1 < d ∧
c + 1 = 0

AND_L · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 190 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof (cont’d)

· · ·

green 6= red
a + b < d
c = 0
il_tl = green
ml_tl = green
`

a + b − 1 < d ∧
c + 1 = 0

AND_R

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

green 6= red
a + b < d
c = 0
il_tl = green
ml_tl = green
`

a + b − 1 < d

MON a + b < d ` a + b − 1 < d DEC

green 6= red
c = 0
il_tl = green
ml_tl = green
`

c + 1 = 0

EQ_LR

green 6= red
il_tl = green
ml_tl = green
`

0 + 1 = 0

ARITH

green 6= red
il_tl = green
ml_tl = green
`

1 = 0

?

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 191 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

The Solution

- In both cases, we were stopped by attempting to prove the following

green 6= red
il_tl = green
ml_tl = green
`
1 = 0

Both traffic lights are
assumed to be green!

- This indicates that an "obvious" invariant was missing
- In fact, at least one of the two traffic lights must be red

inv2_5: ml_tl = red ∨ il_tl = red

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 192 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Completing the Proof

green 6= red
ml_tl = red ∨ il_tl = red
il_tl = green
ml_tl = green
`

1 = 0

OR_L

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

green 6= red
ml_tl = red
il_tl = green
ml_tl = green
`

1 = 0

EQ_LR

green 6= red
green = red
il_tl = green
`

1 = 0

NOT_L · · ·

green 6= red
il_tl = red
il_tl = green
ml_tl = green
`

1 = 0

EQ_LR

green 6= red
green = red
ml_tl = green
`

1 = 0

NOT_L · · ·

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

· · ·

green = red
il_tl = green
`

green = red

MON green = red ` green = red HYP

· · ·

green = red
ml_tl = green
`

green = red

MON green = red ` green = red HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 193 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Going back to the Requirements Document

inv2_5: ml_tl = red ∨ il_tl = red

This could have been deduced from these requirements

The bridge is one way or the other, not both at the
same time FUN-3

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 194 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

What we Have to Prove

- ML_out / inv2_4 / INV done

- IL_out / inv2_3 / INV done

- ML_out / inv2_3 / INV

- IL_out / inv2_4 / INV

- ML_tl_green / inv2_5 / INV

- IL_tl_green / inv2_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 195 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_3 by Event ML_out

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of ML_out
`
Modified inv2_3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

ML_out / inv2_3 / INV

ML_out
when

ml_tl = green
then

a := a + 1
end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 196 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`

ml_tl = green ⇒ a + 1 + b < d ∧
c = 0

MON
ml_tl = green ⇒ a + b < d ∧ c = 0
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0
IMP_R · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 197 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
`

ml_tl = green ⇒ a + 1 + b < d ∧
c = 0

MON
ml_tl = green ⇒ a + b < d ∧ c = 0
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0
IMP_R · · ·

· · ·

ml_tl = green ⇒ a + b < d ∧ c = 0
ml_tl = green
`

a + 1 + b < d ∧ c = 0

IMP_L

a + b < d ∧ c = 0
ml_tl = green
`

a + 1 + b < d ∧ c = 0

AND_L · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 198 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof (cont’d)

· · ·

a + b < d
c = 0
ml_tl = green
`

a + 1 + b < d ∧ c = 0

AND_R

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

a + b < d
c = 0
ml_tl = green
`

a + 1 + b < d

MON

a + b < d
ml_tl = green
`

a + 1 + b < d

?

a + b < d
c = 0
ml_tl = green
`

c = 0

MON c = 0 ` c = 0 HYP

- This requires splitting the ML_out in two separate events ML_out_1 and ML_out_2

ML_out_1
when

ml_tl = green
a + 1 + b < d

then
a := a + 1

end

ML_out_2
when

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 199 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuitive Explanation

ML_out_1
when

ml_tl = green
a + 1 + b < d

then
a := a + 1

end

ML_out_2
when

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red

end

- When a + 1 + b = d then only one more car can enter the island

- Consequently, the traffic light ml_tl must be turned red
(while the car enters the bridge)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 200 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_3 by Event ML_out_1

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of ML_out_1

`
Modified inv2_3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b < d
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

ML_out_1 / inv2_3 / INV

ML_out_1
when

ml_tl = green
a + 1 + b < d

then
a := a + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 201 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b < d
`

ml_tl = green ⇒ a + 1 + b < d ∧
c = 0

MON

ml_tl = green ⇒ a + b < d ∧ c = 0
a + 1 + b < d
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP_R · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 202 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b < d
`

ml_tl = green ⇒ a + 1 + b < d ∧
c = 0

MON

ml_tl = green ⇒ a + b < d ∧ c = 0
a + 1 + b < d
`

ml_tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP_R · · ·

· · ·

ml_tl = green ⇒ a + b < d ∧ c = 0
ml_tl = green
a + 1 + b < d
`

a + 1 + b < d ∧ c = 0

IMP_L

a + b < d ∧ c = 0
ml_tl = green
a + 1 + b < d
`

a + 1 + b < d ∧ c = 0

AND_L · · ·

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 203 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof (cont’d)

· · ·

a + b < d
c = 0
ml_tl = green
a + 1 + b < d
`

a + 1 + b < d ∧ c = 0

AND_R

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

a + b < d
c = 0
ml_tl = green
a + 1 + b < d
`

a + 1 + b < d

MON
a + 1 + b < d
`

a + 1 + b < d
HYP

a + b < d
c = 0
ml_tl = green
a + 1 + b < d
`

c = 0

MON c = 0 ` c = 0 HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 204 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_3 by Event ML_out_2

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of ML_out_2

`
Modified inv2_3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b = d
`

red = green ⇒ a + 1 + b < d ∧ c = 0

ML_out_2 / inv2_3 / INV

ML_out_2
when

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 205 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b = d
`

red = green ⇒ a + 1 + b < d ∧
c = 0

MON
green 6= red
`

red = green ⇒ a + 1 + b < d ∧ c = 0
IMP_R

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 206 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
ml_tl = green
a + 1 + b = d
`

red = green ⇒ a + 1 + b < d ∧
c = 0

MON
green 6= red
`

red = green ⇒ a + 1 + b < d ∧ c = 0
IMP_R

· · ·

green 6= red
red = green
`

a + 1 + b < d ∧ c = 0

EQ_LR
green 6= green
`

a + 1 + b < d ∧ c = 0
NOT_L `

green = green
EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 207 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

What we Have to Prove

- ML_out / inv2_4 / INV done

- IL_out / inv2_3 / INV done

- ML_out / inv2_3 / INV done

- IL_out / inv2_4 / INV

- ML_tl_green / inv2_5 / INV

- IL_tl_green / inv2_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 208 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_4 by Event IL_out

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of event IL_out
`
Modified invariant inv2_4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`
il_tl = green ⇒ 0 < b − 1 ∧ a = 0

IL_out / inv2_4 / INV

IL_out
when

il_tl = green
then

b := b − 1
c := c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 209 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`
il_tl = green ⇒ 0 < b − 1 ∧ a = 0

MON

il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`

il_tl = green ⇒ 0 < b − 1 ∧
a = 0

IMP_R

. . .

il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
`

0 < b − 1 ∧ a = 0

IMP_L
0 < b ∧ a = 0
`
0 < b − 1 ∧ a = 0

AND_L

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 210 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Tentative Proof (cont’d)

. . .

0 < b
a = 0
`

0 < b − 1 ∧ a = 0

AND_R

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0 < b
a = 0
`

0 < b − 1

MON
0 < b
`

0 < b − 1
?

0 < b
a = 0
`
a = 0

MON
a = 0
`
a = 0

HYP

- This requires splitting the concrete IL_out in two separate events IL_out_1 and IL_out_2

IL_out_1
when

il_tl = green
b 6= 1

then
b, c := b − 1, c + 1

end

IL_out_2
when

il_tl = green
b = 1

then
b, c := b − 1, c + 1
il_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 211 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Intuitive Explanation

IL_out_1
when

il_tl = green
b 6= 1

then
b, c := b − 1, c + 1

end

IL_out_2
when

il_tl = green
b = 1

then
b, c := b − 1, c + 1
il_tl := red

end

- When b=1, then only one car remains in the island

- Consequently, the traffic light il_tl can be turned red
(after this car has left)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 212 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_4 by Event IL_out_1

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of event IL_out_1

`
Modified invariant inv2_4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
b 6= 1
`
il_tl = green ⇒ 0 < b − 1 ∧ a = 0

IL_out_1 / inv2_4 / INV

IL_out_1
when

il_tl = green
b 6= 1

then
b, c := b − 1, c + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 213 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
b 6= 1
`
il_tl = green ⇒ 0 < b − 1 ∧ a = 0

MON

il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green

b 6= 1
`
il_tl = green ⇒ 0 < b − 1 ∧

a = 0

IMP_R

. . .

il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
b 6= 1
`
0 < b − 1 ∧ a = 0

IMP_L

0 < b ∧ a = 0
b 6= 1
`
0 < b − 1 ∧ a = 0

AND_L

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 214 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof (cont’d)

. . .

0 < b
a = 0
b 6= 1
`

0 < b − 1 ∧ a = 0

AND_R

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

0 < b
a = 0
b 6= 1
`

0 < b − 1

MON

0 < b
b 6= 1
`
0 < b − 1

ARITH
0 < b − 1
`
0 < b − 1

HYP

0 < b
a = 0
b 6= 1 `
a = 0

MON
a = 0
`
a = 0

HYP

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 215 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Preservation of inv2_4 by Event IL_out_2

axm0_1
axm0_2
axm2_1
axm2_2
inv0_1
inv0_2
inv1_1
inv1_2
inv1_3
inv1_4
inv1_5
inv2_1
inv2_2
inv2_3
inv2_4
Guard of event IL_out_2

`
Modified invariant inv2_4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
b = 1
`
red = green ⇒ 0 < b − 1 ∧ a = 0

IL_out_1 / inv2_4 / INV

IL_out_2
when

il_tl = green
b = 1

then
b, c, il_tl := b − 1, c + 1, red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 216 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proof

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml_tl ∈ COLOR
il_tl ∈ COLOR
ml_tl = green ⇒ a + b < d ∧ c = 0
il_tl = green ⇒ 0 < b ∧ a = 0
il_tl = green
b = 1
`
red = green ⇒ 0 < b − 1 ∧ a = 0

MON

green 6= red
`
red = green ⇒ 0 < b − 1 ∧

a = 0

IMP_R

. . .

green 6= red
red = green
`
0 < b − 1 ∧ a = 0

EQ_LR

green 6= green
`
0 < b − 1 ∧
a = 0

NOT_L `
green = green

EQL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 217 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

What we Have to Prove

- ML_out / inv2_4 / INV done

- IL_out / inv2_3 / INV done

- ML_out / inv2_3 / INV done

- IL_out / inv2_4 / INV done

- ML_tl_green / inv2_5 / INV

- IL_tl_green / inv2_5 / INV

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 218 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Correcting the New Events

But the new invariant inv2_5 is not preserved by the new events

inv2_5: ml_tl = red ∨ il_tl = red

Unless we correct them as follows:

ML_tl_green
when

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

IL_tl_green
when

il_tl = red
0 < b
a = 0

then
il_tl := green
ml_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 219 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of the Proof Situation

- Correct event refinement: OK

- Absence of divergence of new events: FAILURE

- Absence of deadlock: ?

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 220 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Divergence of the New Events

ML_tl_green
when

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

IL_tl_green
when

il_tl = red
0 < b
a = 0

then
il_tl := green
ml_tl := red

end

When a and c are both equal to 0 and b is positive, then both events
are always alternatively enabled

The lights can change colors very rapidly

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 221 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 222 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 223 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 224 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 225 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 226 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

ML_tl_green and IL_tl_green can run for ever

IL ML

ml_tl

il_tl

a=0

c=0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 227 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Solution

- Allowing each light to turn green only when at least one car
has passed in the other direction

- For this, we introduce two additional variables:

inv2_6: ml_pass ∈ {0, 1}

inv2_7: il_pass ∈ {0, 1}

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 228 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Modifying Events ML_out_1 and ML_out_2

ML_out_1
when

ml_tl = green
a + 1 + b < d

then
a := a + 1
ml_pass := 1

end

ML_out_2
when

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red
ml_pass := 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 229 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Modifying Events ML_out_1 and ML_out_2

IL_out_1
when

il_tl = green
b 6= 1

then
b := b − 1
c := c + 1
il_pass := 1

end

IL_out_2
when

il_tl = green
b = 1

then
b := b − 1
c := c + 1
il_tl := red
il_pass := 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 230 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Modifying Events ML_tl_gree and IL_tl_green

ML_tl_green
when

ml_tl = red
a + b < d
c = 0
il_pass = 1

then
ml_tl := green
il_tl := red
ml_pass := 0

end

IL_tl_green
when

il_tl = red
0 < b
a = 0
ml_pass = 1

then
il_tl := green
ml_tl := red
il_pass := 0

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 231 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Proving Absence of Divergence

We exhibit the following variant

variant_2: ml_pass + il_pass

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 232 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

To be Proved

ml_tl = red
a + b < d
c = 0
il_pass = 1
⇒
il_pass + 0 <
ml_pass + il_pass

il_tl = red
b > 0
a = 0
ml_pass = 1
⇒
ml_pass + 0 <
ml_pass + il_pass

This cannot be proved. This suggests the following invariants:

inv2_8: ml_tl = red ⇒ ml_pass = 1

inv2_9: il_tl = red ⇒ il_pass = 1

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 233 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

No Deadlock (1)

0 < d
ml_tl ∈ {red, green}
il_tl ∈ {red, green}
ml_pass ∈ {0, 1}
il_pass ∈ {0, 1}
a ∈ N
b ∈ N
c ∈ N
ml_tl = red ⇒ ml_pass = 1
il_tl = red ⇒ il_pass = 1
⇒
(ml_tl = red ∧ a + b < d ∧ c = 0 ∧ il_pass = 1) ∨
(il_tl = red ∧ a = 0 ∧ b > 0 ∧ ml_pass = 1) ∨
ml_tl = green ∨ il_tl = green ∨ a > 0 ∨ c > 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 234 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

No Deadlock (2)

The previous statement reduces to the following, which is true

0 < d
a ∈ N
b ∈ N
c ∈ N
⇒
(a + b < d ∧ c = 0) ∨
(a = 0 ∧ b > 0) ∨
a > 0 ∨
c > 0

;

0 < d
b ∈ N
⇒
b < d ∨ b > 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 235 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Second Refinement: Conclusion

- Thanks to the proofs:

- We discovered 4 errors

- We introduced several additional invariants

- We corrected 4 events

- We introduced 2 more variables

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 236 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Conclusion: we Introduced the Superposition Rule

Axioms
Abstract invariants
Concrete invariants SIM
Concrete guards
`
Same actions on common variables

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 237 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the State (1)

variables: a, b, c,
ml_tl , il_tl , ml_pass, il_pass

inv2_1: ml_tl ∈ {red, green}

inv2_2: il_tl ∈ {red, green}

inv2_3: ml_tl = 1 ⇒ a + b < d ∧ c = 0

inv2_4: il_tl = 1 ⇒ 0 < b ∧ a = 0

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 238 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the State (2)

inv2_5: ml_tl = red ∨ il_tl = red

inv2_6: ml_pass ∈ {0, 1}

inv2_7: il_pass ∈ {0, 1}

inv2_8: ml_tl = red ⇒ ml_pass = 1

inv2_9: il_tl = red ⇒ il_pass = 1

variant2: ml_pass + il_pass

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 239 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the Event (1)

ML_out_1
when

ml_tl = green
a + 1 + b < d

then
a := a + 1
ml_pass := 1

end

ML_out_2
when

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_pass := 1
ml_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 240 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the Event (2)

IL_out_1
when

il_tl = green
b 6= 1

then
b := b − 1
c := c + 1
il_pass := 1

end

IL_out_2
when

il_tl = green
b = 1

then
b := b − 1
c := c + 1
il_pass := 1
il_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 241 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the Event (3)

ML_tl_green
when

ml_tl = red
a + b < d
c = 0
il_pass = 1

then
ml_tl := green
il_tl := red
ml_pass := 0

end

IL_tl_green
when

il_tl = red
0 < b
a = 0
ml_pass = 1

then
il_tl := green
ml_tl := red
il_pass := 0

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 242 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Second Refinement: the Event (4)

- These events are identical to their abstract versions

ML_in
when

0 < c
then

c := c − 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 243 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Outline

1 Overview

2 The Requirement Document

3 Formal Models
Initial Model
First Refinement
Second Refinement
Third Refinement

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 244 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Third Refinement: Adding Car Sensors

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 245 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Closed Model

-We want to clearly identify in our model:
- The controller
- The environment
- The communication channels between the two

CONTROLLER

software

ENVIRONMENT

traffic lights sensors

cars

  sensor

      light

from  the

to  the  traffic

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 246 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Controller Variables

Contoller variables: a,

b,

c,

ml_pass,

il_pass

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 247 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Environment Variables

These new variables denote physical objects
Environment variables: A,

B,

C,

ML_OUT_SR,

ML_IN_SR,

IL_OUT _SR,

IL_IN_SR

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 248 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Output Channel Variables

Output channels: ml_tl ,

il_tl

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 249 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Output Channel Variables

Input channels: ml_out_10,

ml_in_10,

il_in_10,

il_out_10

A message is sent when a sensor moves from "on" to "off":

off

on

off

sending  a  message 
to  the  controller

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 250 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary

ml_pass   il_pass
a   b   c

ENVIRONMENT
A   B   C

ml_in_10

il_out_10
il_in_10

ml_tl

il_tl

ml_out_10

ML_OUT_SR    ML_IN_SR

IL_OUT_SR    IL_IN_SR

CONTROLLER

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 251 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Constants

carrier sets: . . . , SENSOR

constants: . . . , on, off

axm3_1: SENSOR = {on, off}

axm3_2: on 6= off

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 252 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Variables (1)

inv3_1 : ML_OUT _SR ∈ SENSOR

inv3_2 : ML_IN_SR ∈ SENSOR

inv3_3 : IL_OUT_SR ∈ SENSOR

inv3_4 : IL_IN_SR ∈ SENSOR

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 253 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Variables (2)

inv3_5 : A ∈ N

inv3_6 : B ∈ N

inv3_7 : C ∈ N

inv3_8 : ml_out_10 ∈ BOOL

inv3_9 : ml_in_10 ∈ BOOL

inv3_10 : il_out_10 ∈ BOOL

inv3_11 : il_in_10 ∈ BOOL

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 254 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (1)

When sensors are on, there are cars on them

inv3_12 : IL_IN_SR = on ⇒ A > 0

inv3_13 : IL_OUT _SR = on ⇒ B > 0

inv3_14 : ML_IN_SR = on ⇒ C > 0

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 255 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (2)

Drivers obey the traffic lights

inv3_15 : ml_out_10 = TRUE ⇒ ml_tl = green

inv3_16 : il_out_10 = TRUE ⇒ il_tl = green

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 256 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (3)

When a sensor is "on", the previous information is treated

inv3_17 : IL_IN_SR = on ⇒ il_in_10 = FALSE

inv3_18 : IL_OUT _SR = on ⇒ il_out_10 = FALSE

inv3_19 : ML_IN_SR = on ⇒ ml_in_10 = FALSE

inv3_20 : ML_OUT_SR = on ⇒ ml_out_10 = FALSE

The controller must be fast enough so as to be able to FUN-5
treat all the information coming from the environment

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 257 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (4)

Linking the physical and logical cars (1)

inv3_21 : il_in_10 = TRUE ∧ ml_out_10 = TRUE ⇒ A = a

inv3_22 : il_in_10 = FALSE ∧ ml_out_10 = TRUE ⇒ A = a + 1

inv3_23 : il_in_10 = TRUE ∧ ml_out_10 = FALSE ⇒ A = a− 1

inv3_24 : il_in_10 = FALSE ∧ ml_out_10 = FALSE ⇒ A = a

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 258 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (5)

Linking the physical and logical cars (2)

inv3_25 : il_in_10 = TRUE ∧ il_out_10 = TRUE ⇒ B = b

inv3_26 : il_in_10 = TRUE ∧ il_out_10 = FALSE ⇒ B = b + 1

inv3_27 : il_in_10 = FALSE ∧ il_out_10 = TRUE ⇒ B = b − 1

inv3_28 : il_in_10 = FALSE ∧ il_out_10 = FALSE ⇒ B = b

inv3_29 : il_out_10 = TRUE ∧ ml_out_10 = TRUE ⇒ C = c

inv3_30 : il_out_10 = TRUE ∧ ml_out_10 = FALSE ⇒ C = c + 1

inv3_31 : il_out_10 = FALSE ∧ ml_out_10 = TRUE ⇒ C = c − 1

inv3_32 : il_out_10 = FALSE ∧ ml_out_10 = FALSE ⇒ C = c

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 259 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariants (6)

The basic properties hold for the physical cars

inv3_33 : A = 0 ∨ C = 0

inv3_34 : A + B + C ≤ d

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 260 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Abstract Events (1)

ML_out_1
when

ml_out_10 = TRUE
a + b + 1 6= d

then
a := a + 1
ml_pass := 1
ml_out_10 := FALSE

end

ML_out_2
when

ml_out_10 = TRUE
a + b + 1 = d

then
a := a + 1
ml_tl := red
ml_pass := 1
ml_out_10 := FALSE

end

(abstract-)ML_out_1
when

ml_tl = green
a + b + 1 6= d

then
a := a + 1
ml_pass := 1

end

(abstract-)ML_out_2
when

ml_tl = green
a + b + 1 = d

then
a := a + 1
ml_pass := 1
ml_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 261 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Abstract Events (2)

IL_out_1
when

il_out_10 = TRUE
b 6= 1

then
b := b − 1
c := c + 1
il_pass := 1
il_out_10 := FALSE

end

IL_out_2
when

il_out_10 = TRUE
b = 1

then
b := b − 1
c := c + 1
il_tl := red
il_pass := 1
il_out_10 := FALSE

end

(abstract-)IL_out_1
when

il_tl = green
b 6= 1

then
b := b − 1
c := c + 1
il_pass := 1

end

(abstract-)IL_out_2
when

il_tl = green
b = 1

then
b := b − 1
c := c + 1
il_pass := 1
il_tl := red

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 262 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Abstract Events (3)

ML_in
when

ml_in_10 = TRUE
0 < c

then
c := c − 1
ml_in_10 := FALSE

end

IL_in
when

il_in_10 = TRUE
0 < a

then
a := a− 1
b := b + 1
il_in_10 := FALSE

end

(abstract-)ML_in
when

0 < c
then

c := c − 1
end

(abstract-)IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 263 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refining Abstract Events (4)

ML_tl_green
when

ml_tl = red
a + b < d
c = 0
il_pass = 1
il_out_10 = FALSE

then
ml_tl := green
il_tl := red
ml_pass := FALSE

end

IL_tl_green
when

il_tl = red
a = 0
ml_pass = 1
ml_out_10 = FALSE

then
il_tl := green
ml_tl := red
il_pass := FALSE

end

(abstract-)ML_tl_green
when

ml_tl = red
a + b < d
c = 0
il_pass = 1

then
ml_tl := green
il_tl := red
ml_pass := 0

end

(abstract-)IL_tl_green
when

il_tl = red
0 < b
a = 0
ml_pass = 1

then
il_tl := green
ml_tl := red
il_pass := 0

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 264 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Adding New PHYSICAL Events (1)

ML_out_arr
when

ML_OUT_SR = off
ml_out_10 = FALSE

then
ML_OUT_SR := on

end

ML_in_arr
when

ML_IN_SR = off
ml_in_10 = FALSE
C > 0

then
ML_IN_SR := on

end

IL_in_arr
when

IL_IN_SR = off
il_in_10 = FALSE
A > 0

then
IL_IN_SR := on

end

IL_out_arr
when

IL_OUT_SR = off
il_out_10 = FALSE
B > 0

then
IL_OUT_SR := on

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 265 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Adding New PHYSICAL Events (2)

ML_out_dep
when

ML_OUT_SR = on
ml_tl = green

then
ML_OUT_SR := off
ml_out_10 := TRUE

end

ML_in_dep
when

ML_IN_SR = on
then

ML_IN_SR := off
ml_in_10 := TRUE
C = C − 1

end

IL_in_dep
when

IL_IN_SR = on
then

IL_IN_SR := off
il_in_10 := TRUE
A = A− 1
B = B + 1

end

IL_out_dep
when

IL_OUT_SR = on
il_tl = green

then
IL_OUT_SR := off
il_out_10 := TRUE
B = B − 1
C = C + 1

end

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 266 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Final Structure of the Controller

Constant:  d
Variables:  a, b, c,

il_pass, ml_pass

ml_in_10

ml_out_10

il_in_10

il_out_10
IL_OUT_SR

IL_IN_SR

ML_IN_SR

ML_OUT_SR

A,B,C

8 physical Events

8 logical Events

il_tl ml_tl

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 267 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Questions on Proving

- What is to be systematically proved?
- Invariant preservation
- Correct refinements of transitions
- No divergence of new transitions
- No deadlock introduced in refinements

- When are these proofs done?

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 268 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Questions on Proving (cont’d)

- Who states what is to be proved?
- An automatic tool: the Proof Obligation Generator

- Who is going to perform these proofs?
- An automatic tool: the Prover
- Sometimes helped by the Engineer (interactive proving)

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 269 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

About Tools

- Three basic tools:
- Proof Obligation Generator
- Prover
- Model translators into Hardware or Software languages

- These tools are embedded into a Development Data Base

- Such tools already exist in the Rodin Platform

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 270 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Proofs on Example

- This development required 253 proofs
- Initial model: 7 (1)
- 1st refinement: 27 (1)
- 2nd refinement: 81 (1)
- 3rd refinement: 138 (5)

- All proved automatically (except 8) by the Rodin Platform

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 271 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Mathematical Notations (1)

P ∧ Q conjunction

P ∨ Q disjunction

P ⇒ Q implication

¬P negation

x ∈ S set membership operator

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 272 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Mathematical Notations (2)

N set of Natural Numbers: {0, 1, 2, 3, . . .}

Z set of Integers: {0, 1,−1, 2,−2, . . .}

{a, b, . . .} set defined in extension

a + b addition of a and b

a− b subtraction of a and b

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 273 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Summary of Mathematical Notations (3)

a ∗ b product of a and b

a = b equality relation

a ≤ b smaller than or equal relation

a < b smaller than relation

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 274 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariant Establishment Proof Rule

- For the init event in the initial model

Axioms of the constants
⇒ INV
Modified Invariants

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 275 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Invariant Preservation Proof Rule

- For other events in the initial model

Axioms of the constants
Invariants
Guard of the event INV
⇒
Modified Invariants

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 276 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Deadlock Freeness Rule

- This rule is not mandatory

Axiom of the constant
Invariants DLF
⇒
Disjunction of the guards

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 277 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (1): Guard Strengthening

- For old events only

Axioms of the constants
Abstract invariants
Concrete invariants GRD
Concrete guards
⇒
Abstract guards

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 278 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (2): Invariant Establishment

- For init event only

Axioms of the constants
⇒ INV
Modified concrete invariants

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 279 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (3): Invariant Preservation

- For all events (except init)

- New events refine an implicit non-guarded event with skip action

Axioms of the constants
Abstract invariant
Concrete invariant
Concrete guard INV
⇒
Modified concrete invariant

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 280 / 284



Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (4): Non-divergence of New Events

- For new events only

Axioms of the constants
Abstract invariants
Concrete invariants
Concrete guard of a new event NAT
⇒
Variant ∈ N

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 281 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (5): Non-divergence of New Events

- For new events only

Axioms of the constants
Abstract invariants
Concrete invariants
Concrete guard of a new event VAR
⇒
Modiied variant < Variant

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 282 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (6): Relative Deadlock Freeness

- Global proof rule

Axioms of the constants
Abstract invariants
Concrete invariants
Disjunction of abstract guards DLF
⇒
Disjunction of concrete guards

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 283 / 284

Overview
The Requirement Document

Formal Models

Initial Model
First Refinement
Second Refinement
Third Refinement

Refinement Rules (7)

- For old events (in case of superposition)

Axioms of constants
Abstract invariants
Concrete invariants SIM
Concrete guards
⇒
Same actions on common variables

J-R. Abrial (ETH-Zürich) Cars on a Bridge Bucharest, 14-16/07/10 284 / 284


	Overview
	The Requirement Document
	Formal Models
	Initial Model
	First Refinement
	Second Refinement
	Third Refinement


