
A Concise Summary of the Event B mathematical toolkit 1

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form
that is used for input to Rodin.

In the following: P , Q and R denote predicates;
x and y denote single variables;
z denotes a list of comma-separated variables;
p denotes a pattern of variables, possibly including 7→ and parentheses;
S and T denote set expressions;
U denotes a set of sets;
m and n denote integer expressions;
f and g denote functions;
r denotes a relation;
E and F denote expressions;
E,F is a recursive pattern, ie it matches e1, e2 and also e1, e2, e3 . . . ; similarly for x, y;

Freeness: The meta-predicate ¬free(z, E) means that none of the variables in z occur free in E. This meta-
predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases
are: ¬free(z,∀z · P ⇒Q), ¬free(z,∃z · P ∧Q), ¬free(z, {z · P | F}), ¬free(z, λz · P |E), and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from
P .

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is
no confusion.

1 Predicates

A predicate is a function from some set X to Boolean
(bool)

1. False: ⊥ false

2. True: > true

Boolean cannot be used as a type for constants and vari-
ables. Instead EventB provides a set BOOL defined as
an enumeration

BOOL = {FALSE,TRUE},

which can be used for concrete representations of false
and true.

There is also a function bool that maps predicates into
values in BOOL: bool(⊥) = FALSE and bool(>) =
TRUE.

1. Conjunction: P ∧Q P & Q
Left associative.

2. Disjunction: P ∨Q P or Q
Left associative.

3. Implication: P ⇒Q P => Q
Non-associative: this means that P⇒Q⇒R must
be parenthesised or an error will be diagnosed.

4. Equivalence: P ⇔Q P <=> Q .
P ⇐⇒ Q = P ⇒Q ∧Q⇒ P
Non-associative: this means that P⇔Q⇔R must
be parenthesised or an error will be diagnosed.

5. Negation: ¬P not P

6. Universal quantification:
(∀z ·P ⇒Q) (!z.P => Q)

For all values of z satisfying P , Q (is true)
The types of z must be inferrable from the predi-
cate P .

7. Existential quantification:
(∃z ·P ∧Q) (#z.P & Q)
The predicate P must constrain z.

8. Equality: E = F E = F

9. Inequality: E 6= F E /= F

2 Sets

1. Singleton set: {E} {E}

2. Set enumeration: {E,F} {E, F}
See note on the pattern E,F at top of summary.

3. Empty set: ∅ {}

4. Set comprehension: { z ·P | F } { z . P | F }
General form: the set of all values of F for all
values of z that satisfy the predicate P . P must
constrain the variables in z.

5. Set comprehension: { F | P } { F | P }
Special form: the set of all values of F that sat-
isfy the predicate P . In this case the set of bound
variables z are all the free variables in F .
{ F | P } = { z ·P | F }, where z is all the variables
in F .

6. Set comprehension: { x | P } { x | P }
A special case of item 5: the set of all values of x
that satisfy the predicate P .
{ x | P } = { x·P | x }

7. Union: S ∪ T S \/ T
1Version July 16, 2009 c©1996-2009 Ken Robinson

1

8. Intersection: S ∩ T S /\ T

9. Difference: S \ T S \ T
S\T = {x | x ∈ S ∧ x /∈ T}

10. Ordered pair: E 7→ F E |-> F .
E 7→ F 6= (E,F)
Left associative.
In all places where an ordered pair is required,
E 7→ F must be used. E,F will not be ac-
cepted as an ordered pair, it is always a list.
{x, y ·P | x 7→ y} illustrates the different usage.

11. Cartesian product: S × T S ** T
S × T = {x 7→ y | x ∈ S ∧ y ∈ T}
Left-associative.

12. Powerset: P(S) POW(S)
P(S) = {s | s ⊆ S}

13. Non-empty subsets: P1(S) POW1(S)
P1(S) = P(S)\{∅}

14. Cardinality: card(S) card(S)
Defined only for finite(S).

15. Partition: partition(S, x, y) partition(S,x,y)

x and y partitiion the set S, ie S = x∪y∧x∩y = ∅
Specialised use for enumerated sets:
partition(S, {A}, {B}, {C}).
S = {A,B,C} ∧A 6= B ∧B 6= C ∧ C 6= A

16. Generalized union: union(U) union(U)
The union of all the elements of U .
∀U ·U ∈ P(P(S))⇒
union(U) = {x | x ∈ S ∧ ∃s·s ∈ U ∧ x ∈ s}
where ¬free(x, s, U)

17. Generalized intersection: inter(U) inter(U)
The intersection of all the elements of U .
U 6= ∅,
∀U ·U ∈ P(P(S))⇒
inter(U) = {x | x ∈ S ∧ ∀s·s ∈ U ⇒ x ∈ s}
where ¬free(x, s, U)

18. Quantified union:
∪z ·P | S UNION z.P | S
P must constrain the variables in z.
∀z ·P ⇒ S ⊆ T ⇒
∪(z ·P | E) = {x | x ∈ T ∧ ∃z ·P ∧ x ∈ S}
where ¬free(x, z, T), ¬free(x, P), ¬free(x, S),
¬free(x, z)

19. Quantified intersection:
∩z ·P | S INTER z.P | S
P must constrain the variables in z,
{z | P} 6= ∅,
(∀z ·(P ⇒ S ⊆ T))⇒
∩z ·P | S = {x | x ∈ T ∧ (∀z ·P ⇒ x ∈ S)}
where ¬free(x, z), ¬free(x, T), ¬free(x, P),
¬free(x, S).

2.1 Set predicates

1. Set membership: E ∈ S E : S

2. Set non-membership: E /∈ S E /: S

3. Subset: S ⊆ T S <: T

4. Not a subset: S 6⊆ T S /<: T

5. Proper subset: S ⊂ T S <<: T

6. Not a proper subset: s 6⊂ t S /<<: T

7. Finite set: finite(S) finite(S)
finite(S)⇔ S is finite.

3 Numbers

The following is based on the set of integers, the set of
natural numbers (non-negative integers), and the set of
positive (non-zero) natural numbers.

1. The set of integer numbers: Z INT

2. The set of natural numbers: N NAT

3. The set of positive natural numbers: N1 NAT1
N1 = N\{0}

4. Minimum: min(S) min(S)
S ⊂ Z and finite(S) or S must have a lower bound.

5. Maximum: max(S) max(S)
S ⊂ Z and finite(S) or S must have an upper
bound.

6. Sum: m+ n m + n

7. Difference: m− n m - n
n ≤ m

8. Product: m× n m * n

9. Quotient: m/n m / n
n 6= 0

10. Remainder: mmod n m mod n
n 6= 0

11. Interval: m .. n m .. n
m .. n = { i | m ≤ i ∧ i ≤ n }

3.1 Number predicates

1. Greater: m > n m > n

2. Less: m < n m < n

3. Greater or equal: m ≥ n m >= n

4. Less or equal: m ≤ n m <= n

2

4 Relations

A relation is a set of ordered pairs; a many to many
mapping.

1. Relations: S↔ T S <-> T
S↔ T = P(S × T)
Associativity: relations are right associative:
r ∈ X ↔ Y ↔ Z = r ∈ X ↔ (Y ↔ Z).

2. Domain: dom(r) dom(r)
∀r·r ∈ S↔ T ⇒
dom(r) = {x·(∃y ·x 7→ y ∈ r)}

3. Range: ran(r) ran(r)
∀r·r ∈ S↔ T ⇒
ran(r) = {y ·(∃x·x 7→ y ∈ r)}

4. Total relation:S←↔ T S <<-> T
if r ∈ S←↔ T then dom(r) = S

5. Surjective relation:S↔→ T S <->> T
if r ∈ S↔→ T then ran(r) = T

6. Total surjective relation:S↔↔ T S <<->> T
if r ∈ S←↔ T then dom(r) = S and ran(r) = T

7. Forward composition: p ; q p ; q

∀p, q ·p ∈ S↔ T ∧ q ∈ T ↔ U ⇒
p ; q = {x 7→ y | (∃z ·x 7→ z ∈ p ∧ z 7→ y ∈ q)}

8. Backward composition: p ◦ q p circ q
p ◦ q = q ; p

9. Identity: id id
S � id = {x 7→ x | x ∈ S}.
id is generic and the set S is inferred from the
context.

10. Domain restriction: S � r S <| r
S � r = {x 7→ y | x 7→ y ∈ r ∧ x ∈ S}.

11. Domain subtraction: S �− r S <<| r
S �− r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S}.

12. Range restriction: r � T r |> T
r � T = {x 7→ y | x 7→ y ∈ r ∧ y ∈ T}.

13. Range subtraction: r �− T r |>> T
r �− T = {x 7→ y | y ∈ r ∧ y /∈ T}.

14. Inverse: r−1 r~
r−1 = {y 7→ x | x 7→ y ∈ r}.

15. Relational image: r[S] r[S]
r[S] = {y | ∃x·x ∈ S ∧ x 7→ y ∈ r}.

16. Overriding: r1 �− r2 r1 <+ r2
r1 �− r2 = r2 ∪ (dom(r2) �− r1).

17. Direct product: p⊗ q p >< q

p⊗ q = {x 7→ (y 7→ z) | x 7→ y ∈ p ∧ x 7→ z ∈ q)}.

18. Parallel product: p ‖ q p || q

p ‖ q = {x, y,m, n·x 7→ m ∈ p ∧ y 7→ n ∈ q | (x 7→
y) 7→ (m 7→ n)}.

19. Projection: prj1 prj1

prj1 is generic.
(S × T) � prj1 = {(x 7→ y) 7→ x | x 7→ y ∈ S × T}.

20. Projection: prj2 prj2

prj2 is generic.
(S × T) � prj2 = {(x 7→ y) 7→ y | x 7→ y ∈ S × T}.

4.1 Iteration and Closure

Iteration and closure are important functions on rela-
tions that are not currently part of the kernel EventB
language. They can be defined in a Context, but not
polymorphically.

Note: iteration and irreflexive closure will be imple-
mented in a proposed extension of the mathematical
language. The operators will be non-associative.

1. Iteration: rn

r ∈ S↔ S⇒ r0 = S � id∧rn+1 = r ; rn.
Note: to avoid inconsistency S should be the fi-
nite base set for r, ie the smallest set for which all
r ∈ S↔ S.
Could be defined as a function iterate(r 7→ n).

2. Reflexive Closure: r∗

r∗ = ∪n·(n ∈ N | rn).
Could be defined as a function rclosure(r).
Note: r0 ⊆ r∗.

3. Irreflexive Closure: r+

r+ = ∪n·(n ∈ N1 | rn).
Could be defined as a function iclosure(r).
Note: r0 6⊆ r+ by default, but may be present
depending on r.

4.2 Functions

A function is a relation with the restriction that each
element of the domain is related to a unique element in
the range; a many to one mapping.

1. Partial functions: S 7→ T S +-> T
S 7→ T = {r·r ∈ S↔ T ∧ r−1 ; r ⊂ eqT � id}.

2. Total functions: S→ T S --> T
S→ T = {f ·f ∈ S 7→ T ∧ dom(f) = S}.

3. Partial injections: S 7� T S >+> T
S 7� T = {f ·f ∈ S 7→ T ∧ f−1 ∈ T 7→ S}.
One-to-one relations.

4. Total injections: S � T S >-> T
S � T = S 7� T ∩ S→ T .

5. Partial surjections: S 7� T S +->> T
S 7� T = {f ·f ∈ S 7→ T ∧ ran(f) = T}.
Onto relations.

6. Total surjections: S � T S -->> T
S � T = S 7� T ∩ S→ T .

7. Bijections: S �� T S >->> T
S �� T = S � T ∩ S � T .
One-to-one and onto relations.

3

8. Lambda abstraction:
(λp·P | E) (%p.P|E)

P must constrain the variables in p.
(λp·P | E) = {z ·P | p 7→ E}, where z is a list of
variables that appear in the pattern p.

9. Function application: f(E) f(E)
E 7→ y ∈ f ⇒ E ∈ dom(f) ∧ f ∈ X 7→ Y , where
type(f) = P(X × Y .
Note: in EventB, relations and functions only
ever have one argument, but that argument may
be a pair or tuple, hence f(E 7→ F) f(E |-> F)
f(E,F) is never valid.

5 Models

1. Contexts: contain sets and constants used by
other contexts or machines.

CONTEXT Identifier
EXTENDS Machine Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates
THEOREMS Predicates
END

2. Machines: contain events.
MACHINE Identifier
REFINES Machine Identifiers
SEES Context Identifiers
VARIABLES Identifiers
INVARIANT Predicates
THEOREMS Predicates
VARIANT Expression
EVENTS Events
END

5.1 Events

Event name
REFINES Event identifiers
ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions
END

There is one distinguished event named INITIALISA-
TION used to initialise the variables of a machine, thus
establishing the invariant.

5.2 Actions

Actions are used to change the state of a machine. There
may be multiple actions, but they take effect concur-
rently, that is, in parallel. The semantics of events are
defined in terms of substitutions. The substitution [G]P
defines a predicate obtained by replacing the values of
the variables in P according to the action G. General
substitutions are not available in the EventB language.

Note on concurrency: any single variable can be mod-
ified in at most one action, otherwise the effect of the
actions would, in general, be inconsistent.

1. skip, the null action:
skip denotes the empty set of actions for an event.

2. Simple assignment action: x := E x := E
:= = “becomes equal to”: replace free occurrences
of x by E.

3. Choice from set: x :∈ S x :: S
:∈ = “becomes in”: arbitrarily choose a value from
the set S.

4. Choice by predicate: z :| P z :| P
:| = “becomes such that”: arbitrarily choose val-
ues for the variable in z that satisfy the predicate
P . Within P , x refers to the value of the variable
x before the action and x′ refers to the value of
the variable after the action.

5. Functional override: f(x) := E f(x) := E
Substitute the value E for the expression f at
point x.
This is a shorthand for f(x) := E = f :=
f �− {x 7→ E}.

6. Multiple action:
x, y := E,F x,y := E,F

Concurrent assignment of the values E and F to
the variables x and y, respectively. This is equiv-
alent mulitple single actions.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and
corrections at various stages of the evolution of this summary.

4

