A Concise Summary of the Event B mathematical toolkit !

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the | ASCII form

that is used for input to Rodin.

In the following: P, @ and R denote predicates;
x and y denote single variables;
z denotes a list of comma-separated variables;

p denotes a pattern of variables, possibly including — and parentheses;

S and T denote set expressions;

U denotes a set of sets;

m and n denote integer expressions;
f and g denote functions;

r denotes a relation;

FE and F denote expressions;

FE, I is a recursive pattern, ie it matches e, e5 and also e, e, e3 ... ; similarly for x,y;

Freeness: The meta-predicate —free(z, E) means that none of the variables in z occur free in E. This meta-
predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases
are: —free(z,Vz- P=Q), ~free(z,3z- P A Q), —free(z,{z- P | F}), =free(z,\z - P|E), and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from

P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is

no confusion.

1 Predicates

A predicate is a function from some set X to Boolean
(bool)

1. False: L false

2. True: T true

Boolean cannot be used as a type for constants and vari-
ables. Instead EventB provides a set BOOL defined as
an enumeration

BOOL = {FALSE, TRUE},
which can be used for concrete representations of false

and true.

There is also a function bool that maps predicates into
values in BOOL: bool(L) = FALSE and bool(T) =
TRUE.

1. Conjunction: P A Q
Left associative.

av]

av]
o
H &
o o

2. Disjunction: PV Q
Left associative.

Il
v

3. Implication: P = Q P Q
Non-associative: this means that P=(Q = R must
be parenthesised or an error will be diagnosed.

4. Equivalence: P < @ P <=> Q|
P Q=P=QNQ=P
Non-associative: this means that P< Q< R must
be parenthesised or an error will be diagnosed.

5. Negation: - P not P

6. Universal quantification:
(Vz:P=Q) ('z.P => Q)
Version July 16, 2009©1996-2009 Ken Robinson

. Empty set: @

. Set comprehension: { z-P | F }’{ z .

. Set comprehension: { F'| P }

. Set comprehension: { z | P }

. Union: SUT

For all values of z satisfying P, @ (is true)
The types of z must be inferrable from the predi-
cate P.

. Existential quantification:

(Fz-P A Q) (#z.P & Q)
The predicate P must constrain z.
. Equality: £ =F E=F
. Inequality: E # F E/=F
Sets
. Singleton set: {E'} {E}
. Set enumeration: {F, F'} {E, F}

See note on the pattern E, F' at top of summary.

{

P|F}
General form: the set of all values of F for all
values of z that satisfy the predicate P. P must
constrain the variables in z.

Special form: the set of all values of F' that sat-
isfy the predicate P. In this case the set of bound
variables z are all the free variables in F'.
{F|P}={zP|F} where z is all the variables
in F.

{x1P}

A special case of item 5: the set of all values of x
that satisfy the predicate P.
{z[P}={aPlz}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

2.1

1.

Intersection: SNT

Difference: S\ T
S\I' ={z|zeSAx¢T}

S\T 3

Ordered pair: E — F
E— F+#(EF)

In all places where an ordered pair is required,
E — F must be used. E,F will not be ac- 6
cepted as an ordered pair, it is always a list.
{z,y-P | & — y} illustrates the different usage.

Cartesian product: S x T S *x T
SxT={x—ylzeSAyeT}

Left-associative.

Powerset: P(S5) 3

B(S) = {s| s C S}

POW(S)

Non-empty subsets: Py (.5) POW1(8)

P1(S) = P(S)\{o}

Cardinality: card(S)
Defined only for finite(.S).

Partition: partition(S,x,y) ’partition(S,x,y)‘

x and y partitiion the set S, ie S = xUyAxzNy = &

Specialised use for enumerated sets:

partition(S, {A}, {B}, {C}).
S={A,B,C}NA#4BAB#CANC+#A
Generalized union: union(U)
The union of all the elements of U.

YU-U € P(P(S)) = 5.

union(U) ={zx |z € SAIs-:seU Az € s}
where —free(x,s,U)

Generalized intersection: inter(U)

The intersection of all the elements of U.

U#a, 7.

VU-U € P(P(S)) =
inter(U) ={x |z € SAVs-se U=z € s}
where —free(z,s,U) 8

Quantified union:

Uz-P|S |UNION z.P | S|
P must constrain the variables in z.
Vz2:P=SCT=

U(z-P|E)={z|xz€eTAN3z-PNz €S} 10.

where —free(x,z,T), —free(x,P), -free(x,S),
free(x, z) "

Quantified intersection:

Nz-P|S |INTER z.P | S|

P must constrain the variables in z,

{z | P} # o, 3.1

Vz-(P=SCT))=

Nz-P|S={z|xeTANzP=x€b9)} 1.

where —free(x,2), —free(x,T), —free(x,P),

—free(x, S). 2.

3.

Set predicates

Set membership: E € S

S/N\NT 2.

Left associative. 5.

card(8S) 1.

>

. Product: m x n

9.

. Less or equal: m <n

Set non-membership: E ¢ S
. Subset: SCT
Not a subset: S T
Proper subset: S C T S <<: T
. Not a proper subset: s ¢ t : T

wn
~
A
N

Finite set: finite(S)
finite(S) & S is finite.

finite(S)

Numbers

The following is based on the set of integers, the set of
natural numbers (non-negative integers), and the set of
positive (non-zero) natural numbers.

The set of integer numbers: Z INT

The set of natural numbers: N NAT

The set of positive natural numbers: N; | NAT1

N; = N\{0}

Minimum: min(.5) min(8)
S C Z and finite(S) or S must have a lower bound.

Maximum: max(.5) max (8)
S C Z and finite(S) or S must have an upper
bound.

Sum: m+n

Difference: m —n
n<<m

Quotient: m/n

n#0

Remainder: m modn

n#0

Interval: m..n
m.n={i|lm<ini<n}

B
E
i 5 B B | |[s
. Q. ~ * I +
B B B B B| |8

Number predicates

Greater: m >n m>n

II

Less: m<n m<n
Greater or equal: m > n m>=n

<=n

8

4 Relations

A relation is a set of ordered pairs; a many to many
mapping.

1. Relations: S < T
ST =P xT)
Associativity: relations are right associative:
reX—YoZ=reXY<2).

wn
A
|
\2
]

2. Domain: dom(r) dom(r)
VroreSeT=
dom(r) = {z-(Jy-z—yer)}
3. Range: ran(r) ran(r)
VrreSeT=

ran(r) = {y-(Fr-xa —y €r)}

4. Total relation:S «— T
if r € S« T then dom(r) =5

S <> T

5. Surjective relation:S «» T
ifre S« T thenran(r)=T

n
A
|
N4
\4
—

6. Total surjective relation:S «» T S <<->> T
if r € S «> T then dom(r) = S and ran(r) =T

7. Forward composition: p;q
Vp,qpeS—TNqgeT U=
pig={z—y|(Fza—zeprz—ycqg)}

8. Backward composition: po ¢
bpoq=4qg;p
9. Identity: id

S<id={z—z |z e S}
id is generic and the set S is inferred from the
context.

10. Domain restriction: S < r S <l r

S<ar={z—ylz—yernzeS}
11. Domain subtraction: S < r S «<| r
Sar={z—ylz—yernz ¢S}
12. Range restriction: r > T r [>T
r>T={r—ylz—yernyeT}

13. Range subtraction: r & T
reT={z—ylyerny¢T}.
14. Inverse: 7!
rli={y—z|lz—yer}
15. Relational image: 7[S] r(s
riSl={y|IrzeSAz—yer}
16. Overriding: r1 < o rl <+ r2
r1 <& 19 = ro U (dom(re) 4 rq).

17. Direct product: p® q p ><

~

v

<1 |V
!!lell

pRq={r— (y—2)|r—ycpAz—z€q)}

18. Parallel product: p || ¢

pllg={z,ymnz—mecpAy—necq|(z—
y) = (m—n)}.

19. Projection: prj;

prj; is generic.

(SxT)<prj;, ={(x—y)—ax|z—yecSxT}

prjs is generic.

(SxT)<prjy={(z—y)—y|lz—yeSxT}

20. Projection: prj,

4.1 Iteration and Closure

Iteration and closure are important functions on rela-
tions that are not currently part of the kernel EventB
language. They can be defined in a Context, but not
polymorphically.

Note: iteration and irreflexive closure will be imple-
mented in a proposed extension of the mathematical
language. The operators will be non-associative.

1. Tteration: r™
reSe8S=r"=8qidAr"tt =r;rm.
Note: to avoid inconsistency S should be the fi-
nite base set for r, ie the smallest set for which all
reS«_S.

Could be defined as a function iterate(r — n).

O

2. Reflexive Closure: r*

U
r*=Un-(neN|r").
Could be defined as a function rclosure(r).
Note: 70 C r*.
3. Irreflexive Closure: r* 0

rt =Un-(n €Ny |r™).

Could be defined as a function iclosure(r).

Note: % ¢ r* by default, but may be present
depending on 7.

4.2 Functions

A function is a relation with the restriction that each
element of the domain is related to a unique element in
the range; a many to one mapping.

1. Partial functions: S + T S +>T
S+w»T={rreS—TArt;rCeqT <id}.

2. Total functions: S — T
S—T={f-feS+TAdom(f) =S}

S -—>T

3. Partial injections: S~ T S>> T
ST={ffeS-TANfleT+S

One-to-one relations.

—

4. Total injections: S — T S >>T

S—T=5+TnNS—T.

5. Partial surjections: S - T S +->> T
S»T={f-feS-+TAran(f)=T}.

Onto relations.

6. Total surjections: S — T S -->>T

S—»T=8S»TnNS—T.

7. Bijections: ST S >
S—»T=85—-TNS—»T.

One-to-one and onto relations.

>> T

8. Lambda abstraction:
(Ap-P | E)
P must constrain the variables in p.
(Mp-P | E) ={z-P | p— E}, where z is a list of

variables that appear in the pattern p.

9. Function application: f(FE)
E—ye f=Fecdom(f)Afe X +Y, where
type(f) =P(X x Y.

Note: in EventB, relations and functions only
ever have one argument, but that argument may

be a pair or tuple, hence f(E — F)

f(E,F) is never valid.

(%p-PIE)

5 Models

1. Contexts: contain sets and constants used by
other contexts or machines.

CONTEXT Identifier
EXTENDS Machine_Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates
THEOREMS Predicates
END

2. Machines: contain events.
MACHINE Identifier
REFINES Machine_Identifiers
SEES Context_Identifiers
VARIABLES Identifiers
INVARIANT Predicates
THEOREMS Predicates
VARIANT Expression
EVENTS Events
END

5.1 Events

Event_name

REFINES Event_identifiers
ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions

END

There is one distinguished event named INITIALISA-
TION used to initialise the variables of a machine, thus
establishing the invariant.

5.2 Actions

Actions are used to change the state of a machine. There
may be multiple actions, but they take effect concur-
rently, that is, in parallel. The semantics of events are
defined in terms of substitutions. The substitution [G]P
defines a predicate obtained by replacing the values of
the variables in P according to the action G. General
substitutions are not available in the EventB language.

Note on concurrency: any single variable can be mod-
ified in at most one action, otherwise the effect of the
actions would, in general, be inconsistent.

1. skip, the null action:
skip denotes the empty set of actions for an event.

2. Simple assignment action: z := F x := E
:= = “becomes equal to”: replace free occurrences
of x by E.

3. Choice from set: z :€ S

1€ = “becomes in”: arbitrarily choose a value from
the set S.

4. Choice by predicate: z:| P

| = “becomes such that”: arbitrarily choose val-
ues for the variable in z that satisfy the predicate
P. Within P, x refers to the value of the variable
x before the action and z’ refers to the value of
the variable after the action.

5. Functional override: f(z):=F
Substitute the value E for the expression f at
point x.

This is a shorthand for f(z) := F = f :=
f<{x— E}.

6. Multiple action:
x,y:=FEF x,y := E,F
Concurrent assignment of the values £ and F to
the variables z and vy, respectively. This is equiv-
alent mulitple single actions.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and
corrections at various stages of the evolution of this summary.

