Summary of the Mathematical Notation

Jean-Raymond Abrial
(edited by Thai Son Hoang)
Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

Bucharest DEPLOY 2-day course, 14-16/07/10, ETH Zurich

Outline

(1) Foundation for Deductive and Formal Proofs

- Concept of Sequent and Inference Rule
- Backward and Forward Reasoning
- Basic Inference Rules
(2) A Quick Review of Propositional Calculus
(3) A Quick Review of First Order Predicate Calculus
(4) A Refresher on Set Theory
- Basic Constructs
- Extensions

Foundation for Deductive and Formal Proofs

- Reason: We want to understand how proofs can be mechanized.
- Topics:
- Concepts of Sequent and Inference Rule.
- Backward and Forward reasoning
- Basic Inference Rules.

Sequent

- Sequent is the generic name for "something we want to prove"
- We shall be more precise later

Inference Rule

- An inference rule is a tool to perform a formal proof
- It is denoted by:

- A is a (possibly empty) collection of sequents: the antecedents
- C is a sequent: the consequent

The proofs of each sequent of A
—— together give you
a proof of sequent C

Backward and Forward Reasoning

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

- Forward reasoning: $\frac{A}{C} \downarrow$

Proofs of each sequent in A give you a proof of the consequent C

- Backward reasoning: $\frac{A}{C} \uparrow$

In order to get a proof of C, it is sufficient to have proofs of each sequent in A

Proofs are usually done using backward reasoning

"Executing" the Proof of a Sequent S (backward reasoning)

We are given:

- a collection \mathcal{T} of inference rules of the form $\frac{A}{C}$
- a sequent container K, containing S initially
while K is not empty
choose a rule $\frac{A}{C}$ in \mathcal{T} whose consequent C is in K;
replace C in K by the antecedents A (if any)

This proof method is said to be goal oriented.

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of S1

$r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4{ }_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}$
 S1
 ?

- The proof is a tree
- We have shown here a depth-first strategy
xhe Technilsche Hachsactule Zirllch swiss Federal Iratitute of Tohnolagiy Zuith

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

- The proof is a tree
- We have shown here a depth-first strategy

Ishe Te-chnliche Hachsctule ZUilch Swiss Federal Iratitate of Tohnology Zuith

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

S1
r3
S2 S3 S4

- The proof is a tree
- We have shown here a depth-first strategy

Ische Technilsche Hochsactule Zurlch swiss Federal Iratitate of Tohnology Zuith

Foundation for Deductive and Formal Proofs

A Refresher on Set Theory

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}$

S1
r3
S2 S3 S4
r1 r5 ?

S5
S6
?
?

- The proof is a tree
- We have shown here a depth-first strategy

Edgenauss ische Technilsche Hochscathle Zurlsh Swiss Federal Imat tate of Tohnology zuish

Foundation for Deductive and Formal Proofs

A Refresher on Set Theory

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}$

S1
r3

$S 2$	$S 3$	$S 4$
r 1	r 5	$?$

S5 S6
r4 ?

- The proof is a tree
- We have shown here a depth-first strategy

Ische Technilsche Hachsactule Zurlch Swiss Federal Imat tate of Tohnology Zuith

Foundation for Deductive and Formal Proofs

A Refresher on Set Theory

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}$

S1
r3

$S 2$	$S 3$	$S 4$
r 1	r 5	$?$

S5 S6
r4 r6

- The proof is a tree
- We have shown here a depth-first strategy
wsishe Technilsche Hachasctule Zurlith Swiss Federal Imat tate of Tohnology Zuith

Foundation for Deductive and Formal Proofs

A Refresher on Set Theory

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

$S 1$	
	$\swarrow \downarrow$
S2	S3
r1	r5
	$\downarrow \downarrow$
S5	S6
r4	r6

- The proof is a tree
- M/e have shomen here a depth-first strategy

Edgenaoss Ische Technlische Hochscatule Zurlsh swiss Federal insitate of Technology zurich

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

- The proof is a tree
- M/e have shomen here a depth-first strategy

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5 S 6}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

S1r3	
	$\downarrow \downarrow$
S2	S3
r1	r5
	$\swarrow \downarrow$
S5	S6
r4	r6

- The proof is a tree
- We have shown here a depth-first strategy

Alternate Representation of the Proof Tree

A vertical representation of the proof tree:

	$S 1$			$S 1$
	r 3		r 3	
	$\swarrow \downarrow$	\downarrow	r 1	
$S 2$	$S 3$	$S 4$	$S 3$	r 5
r 1	r 5	r 2	$S 5$	r 4
	\swarrow	\downarrow	\downarrow	$S 6$
r 6				
$S 5$	S 6	$S 7$	$S 4$	r 2
r 4	r 6	r 7	$S 7$	r 7

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of S1

$$
r 1_{\overline{S 2}} \quad \mathrm{r} 2 \frac{S 7}{S 4} \quad \mathrm{r} 3 \frac{S 2 S 3}{S 1} \quad \mathrm{r} 44_{\overline{S 5}} \quad \mathrm{r} 5 \frac{S 5 S 6}{S 3} \quad \mathrm{r} 6_{\overline{S 6}} \quad \mathrm{r} 7_{\overline{S 7}}
$$

S1
 ?

ssische Technilsche Hashasctule Zürlch swiss Federal frat tate of Tohnolagiy Zuith

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2 S 3 S 4}{S 1} \quad r 4_{\overline{S 5}} \quad r 5 \frac{S 5}{S 3} \quad r 6_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

S1
r3
S2 ?
S3
?

S4
?

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

S1
r3
r1
S3
?

S4
?

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Proof of $S 1$

$S 1$			r 3
	$S 2$		r 1
	$S 3$		r 5
		$S 5$	$?$
		$S 6$	$?$
		$S 4$	
		$?$	

Technlishe Hachschule Zurich swiss Federal Irsalitate of Tahnolagy zuich

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Proof of $S 1$

S1
r3
$\begin{array}{ll}\text { S2 } & \mathbf{r} 1 \\ \text { S3 } & \mathbf{r} 5\end{array}$

	S5	r4
S4		

Technische Hachschule Zurlch swiss Federal Irsalitate of Tahnolagy zuich

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Proof of $S 1$

$S 1$			r 3
	S2		r 1
	S3		r 5
		$S 5$	r 4
		S6	r 6
		S4	
		$?$	

Technische Hashastule Zurlth swiss Federal Irsalitate of Tahnolagy zuich

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Proof of $S 1$

$$
r 1_{\overline{S 2}} \quad r 2 \frac{S 7}{S 4} \quad r 3 \frac{S 2^{S 3} S 4}{S 1} \quad r 4_{\overline{S 5}} \quad r 5^{S 5} \frac{S 6}{S 3} \quad r 66_{\overline{S 6}} \quad r 7_{\overline{S 7}}
$$

S1
r3
$\begin{array}{ll}\text { S2 } & \mathbf{r} 1 \\ \text { S3 } & \mathbf{r} 5\end{array}$

qe Techniliche Hachsactule ZÜrlch swiss Federal Irsalitate of Tahnolagy zuich

Foundation for Deductive and Formal Proofs

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Proof of $S 1$

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{$S 2$

$S 3$}}

\hline \&

\hline \&

\hline \& S5

\hline \& S6

\hline S4 \& 4

\hline
\end{tabular}

Technische Hashastwie Zurlch Swiss Federal Insititate of Tehnology Zuikh

More on Sequent

- We supposedly have a Predicate Language (not defined yet)
- A sequent is denoted by:

$$
H \vdash G
$$

- H is a (possibly empty) collection of predicates: the hypotheses
- G is a predicate: the goal

Meaning ...

Under the hypotheses of collection H , prove the goal G

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H, then P can be added to the collection H for proving a goal G
dgenöss Ixhe Technilsche Hachsctule Z Zirlch swiss Federal Inalitate of Tehbrology zuich

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H , then P can be added to the collection H for proving a goal G

Edgenössische Technilsche Hochscitule Zörlch swiss Federal Insalitate of Teshrology zuikh

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H , then P can be added to the collection H for proving a goal G.

Foundation for Deductive and Formal Proofs

A Refresher on Set Theory

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Basic Inference Rules

HYP

MON

$H \vdash Q$

CUT

Basic Constructs of Propositional Calculus

Given predicates P and Q, we can construct:

- CONJUNCTION: $P \wedge Q$
- IMPLICATION: $\quad P \Rightarrow Q$
- NEGATION: $\neg P$

Syntax

Predicate $::=$ Predicate \wedge Predicate Predicate \Rightarrow Predicate \neg Predicate

- This syntax is ambiguous.

More on Syntax

- Pairs of matching parentheses can be added freely.
- Operator \wedge is associative.
- Operator \Rightarrow is not associative: $P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitly $(P \Rightarrow Q) \Rightarrow R$ or $P \Rightarrow(Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: $\neg, \wedge, \Rightarrow$.

Extensions: Truth, Falsity, Disjunction and Equivalence

- TRUTH: T
- FALSITY: \perp
- DISJUNCTION: $\quad P \vee Q$
- EQUIVALENCE: $P \Leftrightarrow Q$

Edgenässische Technilsche Hachschtule Zurlich
Swiss Federal Iratitate of Technology Zurich

Syntax

Predicate $::=$ Predicate \wedge Predicate Predicate \Rightarrow Predicate \neg Predicate
 T
 Predicate \vee Predicate Predicate \Leftrightarrow Predicate

More on Syntax

- Pairs of matching parentheses can be added freely.
- Operators \wedge and \vee are associative.
- Operator \Rightarrow and \Leftrightarrow are not associative.
- Precedence decreasing order: \neg, \wedge and \vee, \Rightarrow and \Leftrightarrow.

More on Syntax (cont'd)

- The mixing of \wedge and \vee without parentheses is not allowed.
- You have to write either $\quad P \wedge(Q \vee R)$ or $\quad(P \wedge Q) \vee R$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $P \Rightarrow(Q \Leftrightarrow R) \quad$ or $\quad(P \Rightarrow Q) \Leftrightarrow R$

Propositional Calculus Rules of Inference (1)

- Rules about conjunction

$$
\frac{\mathbf{H}, \mathbf{P}, \mathbf{Q} \vdash \mathbf{R}}{\mathbf{H}, \mathbf{P} \wedge \mathbf{Q} \vdash \mathbf{R}} A \mathrm{SD}_{-} \mathrm{L}
$$

$$
\frac{\mathbf{H} \vdash \mathbf{P} \quad \mathbf{H} \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \wedge \mathbf{Q}} \quad \text { AND_R }
$$

- Rules about implication

$$
\frac{\mathbf{H}, \mathbf{P}, \mathbf{Q} \vdash \mathbf{R}}{\mathbf{H}, \mathbf{P}, \mathbf{P} \Rightarrow \mathbf{Q} \vdash \mathbf{R}} \quad \text { IMP_L }
$$

$$
\xlongequal[\mathbf{H}, \mathbf{P} \vdash \mathbf{Q}]{\mathbf{H} \vdash \mathbf{P} \Rightarrow \mathbf{Q}} \quad \text { IMP_R }
$$

Note

Rules with a double horizontal line can be applied in both directions.

Propositional Calculus Rules of Inference (2)

- Rules about disjunction

$$
\frac{\mathbf{H}, \neg P \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \vee \mathbf{Q}}
$$

Edgenoissische Technilsche Hachschtule Zurlch swiss Federal Inasitate of Technology Zurich

Propositional Calculus Rules of Inference (3)

- Rules about negation

$$
\begin{aligned}
& \mathbf{H}, \neg \mathbf{Q} \vdash \mathbf{P} \\
& \hline \mathbf{H}, \neg \mathbf{P} \vdash \mathbf{Q}
\end{aligned} \quad \text { NOT_L }
$$

$$
\frac{\mathbf{H}, \mathbf{P} \vdash \perp}{\mathbf{H} \vdash \neg \mathbf{P}} \quad \text { NOT_R }
$$

$$
\mathbf{H} \vdash \mathbf{P} \quad \mathbf{H} \vdash \neg \mathbf{P}
$$

$$
\mathbf{H} \vdash \perp
$$

FALSE_R

Propositional Calculus Rules of Inference (4)

- Deriving rules:

Propositional Calculus Rules of Inference (4)

- Rewriting rules:

Predicate	Rewritten
T	$\neg \perp$
$P \Leftrightarrow Q$	$(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

- More derived rules:

CLASSICAL RESULTS (1)

commutativity	$\begin{array}{lll} P \vee Q & \Leftrightarrow & Q \vee P \\ P \wedge Q & \Leftrightarrow & Q \wedge P \\ (P \Leftrightarrow Q) & \Leftrightarrow & (Q \Leftrightarrow P) \end{array}$
associativity	$\begin{array}{lll} (P \vee Q) \vee R & \Leftrightarrow & P \vee(Q \vee R) \\ (P \wedge Q) \wedge R & \Leftrightarrow & P \wedge(Q \wedge R) \\ ((P \Leftrightarrow Q) \Leftrightarrow R) & \Leftrightarrow & (P \Leftrightarrow(Q \Leftrightarrow R)) \end{array}$
distributivity	$\begin{array}{lll} R \wedge(P \vee Q) & \Leftrightarrow & (R \wedge P) \vee(R \wedge Q) \\ R \vee(P \wedge Q) & \Leftrightarrow & (R \vee P) \wedge(R \vee Q) \\ R \Rightarrow(P \wedge Q) & \Leftrightarrow & (R \Rightarrow P) \wedge(R \Rightarrow Q) \\ (P \vee Q) \Rightarrow R & \Leftrightarrow & (P \Rightarrow R) \wedge(Q \Rightarrow R) \end{array}$

CLASSICAL RESULTS (2)

excluded middle	$P \vee \neg P$
idempotence	$P \vee P \Leftrightarrow P$ $P \wedge P \Leftrightarrow P$
absorbtion	$(P \vee Q) \wedge P \Leftrightarrow P$ $(P \wedge Q) \vee P \Leftrightarrow P$
truth	$(P \Leftrightarrow \top) \Leftrightarrow P$

CLASSICAL RESULTS (3)

de Morgan	$\begin{aligned} & \neg(P \vee Q) \\ & \neg(P \wedge Q) \\ & \neg(P \wedge Q) \\ & \neg(P \Rightarrow Q) \end{aligned}$	$\begin{aligned} & (\neg P \wedge \neg Q) \\ & (\neg P \vee \neg Q) \\ & (P \Rightarrow \neg Q) \\ & (P \wedge \neg Q) \end{aligned}$
contraposition	$\begin{aligned} & (P \Rightarrow Q) \\ & (\neg P \Rightarrow Q \\ & (P \Rightarrow \neg Q \end{aligned}$	$\begin{aligned} & (\neg Q \Rightarrow \neg P) \\ & (\neg Q \Rightarrow P) \\ & (Q \Rightarrow \neg P) \end{aligned}$
double negation	$P \Leftrightarrow \neg \neg P$	

CLASSICAL RESULTS (4)

transitivity	$(P \Rightarrow Q) \wedge(Q \Rightarrow R) \Rightarrow(P \Rightarrow R)$
monotonicity	$\begin{aligned} & (P \Rightarrow Q) \Rightarrow((P \wedge R) \Rightarrow(Q \wedge R)) \\ & (P \Rightarrow Q) \Rightarrow((P \vee R) \Rightarrow(Q \vee R)) \\ & (P \Rightarrow Q) \Rightarrow((R \Rightarrow P) \Rightarrow(R \Rightarrow Q)) \\ & (P \Rightarrow Q) \Rightarrow((Q \Rightarrow R) \Rightarrow(P \Rightarrow R)) \\ & (P \Rightarrow Q) \Rightarrow(\neg Q \Rightarrow \neg P) \end{aligned}$
equivalence	$\begin{aligned} & (P \Leftrightarrow Q) \Rightarrow((P \wedge R) \Leftrightarrow(Q \wedge R)) \\ & (P \Leftrightarrow Q) \Rightarrow((P \vee R) \Leftrightarrow(Q \vee R)) \\ & (P \Leftrightarrow Q) \Rightarrow((R \Rightarrow P) \Leftrightarrow(R \Rightarrow Q)) \\ & (P \Leftrightarrow Q) \Rightarrow((P \Rightarrow R) \Leftrightarrow(Q \Rightarrow R)) \\ & (P \Leftrightarrow Q) \Rightarrow(\neg P \Leftrightarrow \neg Q) \end{aligned}$

Syntax of our Predicate Language so far

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \lceil \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \text { predicate } \Leftrightarrow \text { predicate }
\end{aligned}
$$

- The letter P, Q, etc. we have used are generic variables.
- Each of them stands for a predicate.
- All our proofs were thus also generic (able to be instantiated).

Refining our Language: Predicate Calculus

$$
\begin{aligned}
& \text { predicate }::=\frac{\perp}{\top} \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \text { predicate } \Leftrightarrow \text { predicate } \\
& \forall \text { var list • predicate } \\
& \text { [var_list :=exp_list] predicate } \\
& \text { expression }::=\text { variable } \\
& \text { [var_list := exp_list] expression } \\
& \text { expression } \mapsto \text { expression } \\
& \text { variable }::=\text { identifier }
\end{aligned}
$$

On Predicates and Expressions

- A Predicate is a formal text that can be PROVED
- An Expression DENOTES AN OBJECT.
- A Predicate denotes NOTHING.
- An Expression CANNOT BE PROVED
- Predicates and Expressions are INCOMPATIBLE.

Predicate Calculus: Linguistic Concepts.

- Substitution and Universal Quantification.
- Free/Bound Occurrences.
- Inference rules.
- Extension

VARIABLES, PROPOSITIONS AND PREDICATES

- A Proposition: $8 \in \mathbb{N} \Rightarrow 8 \geq 0$
- A Predicate (n is a variable): $n \in \mathbb{N} \Rightarrow n \geq 0$

WHAT CAN WE DO WITH A PREDICATE ?

- Specialize it: Substitution

$$
\begin{gathered}
{[n:=8](n \in \mathbb{N} \Rightarrow n \geq 0)} \\
\downarrow \\
8 \in \mathbb{N} \Rightarrow 8 \geq 0
\end{gathered}
$$

- Generalize it: Universal Quantification

$$
\forall n \cdot(n \in \mathbb{N} \Rightarrow n \geq 0)
$$

SUBSTITUTION

Simple Substitution

$$
[x:=E] P
$$

- x is a VARIABLE,
- E is an EXPRESSION,
- P is a PREDICATE,
- Denotes the predicate obtained by replacing all FREE OCCURRENCES of x by E in P.

UNIVERSAL QUANTIFICATION

Universal Quantification

$$
\forall x \cdot P
$$

- x is said to be the QUANTIFIED VARIABLE
- P forms the SCOPE of x
- To say that such a predicate is proved, is the same as saying that all predicates of the following form are proved:

$$
[x:=E] P
$$

Edgenössische Technilsche Hochscthule Zurlch Edgenoussiche Techinliche Hachactule Zurich
Swiss Federal Imatitate of Tehnology Zurikh

Free and Bound Occurrences

- Occurrences of the variable n are FREE (substitutable) in:

$$
n \in \mathbb{N} \Rightarrow n \geq 0
$$

- Occurrences of the variable n are BOUND (not substitutable) in:

$$
\begin{gathered}
{[n:=8](n \in \mathbb{N} \Rightarrow n \geq 0)} \\
\forall n \cdot(n \in \mathbb{N} \Rightarrow n \geq 0)
\end{gathered}
$$

Inference Rules for Predicate Calculus

$$
\frac{\mathrm{H}, \forall x \cdot P,[x:=E] P \vdash Q}{\mathrm{H}, \forall x \cdot P \vdash Q}
$$

ALL_L

where \mathbf{E} is an expression

$$
\frac{\mathbf{H} \vdash \mathbf{P}}{\mathbf{H} \vdash \forall \mathbf{x} \cdot \mathbf{P}} \quad \text { ALL_R }^{\mathbf{R}}
$$

- In rule $A L L _R$, variable x is not free in H

Extending the language: Existential Quantification

$$
\begin{aligned}
& \text { predicate }::=\frac{\perp}{\top} \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \text { predicate } \Leftrightarrow \text { predicate } \\
& \forall \text { var_list } \cdot \text { predicate } \\
& \exists \text { var_list } \text { predicate } \\
& \text { [var_list }:=\text { exp_list] predicate } \\
& \text { expression }::=\text { variable } \\
& \text { [var_list :=exp_list] expression } \\
& \text { expression } \mapsto \text { expression } \\
& \text { variable }::=\text { identifier }
\end{aligned}
$$

Rules of Inference for Existential Quantification

$$
\frac{\mathrm{H}, P \vdash Q}{\mathrm{H}, \exists x \cdot P \vdash Q} \quad \text { XST_L }
$$

- In rule XST_L, variable \mathbf{x} is not free in \mathbf{H} and \mathbf{Q}

$$
\mathrm{H} \vdash[x:=E] P
$$

$$
\mathrm{H} \vdash \exists x \cdot P
$$

where \mathbf{E} is an expression

Comparing the Quantification Rules

$$
\frac{\mathrm{H}, \forall x \cdot P,[x:=E] P \vdash Q}{\mathrm{H}, \forall x \cdot P \vdash Q} \quad \text { ALL_L }_{-}
$$

$$
\frac{\mathrm{H} \vdash[x:=E] P}{\mathrm{H} \vdash \exists x \cdot P} \quad \text { XST_R }
$$

$$
\frac{\mathbf{H} \vdash \mathrm{P}}{\mathbf{H} \vdash \forall \mathbf{x} \cdot \mathbf{P}} \quad \mathbf{A L L}_{-} \mathrm{R}
$$

$$
\frac{\mathrm{H}, P \vdash Q}{\mathrm{H}, \exists x \cdot P \vdash Q} \quad \text { XST_L }_{-}
$$

CLASSICAL RESULTS (1)

commutativity	$\begin{aligned} & \forall x \cdot \forall y \cdot P \Leftrightarrow \forall y \cdot \forall x \cdot P \\ & \exists x \cdot \exists y \cdot P \Leftrightarrow \exists y \cdot \exists x \cdot P \end{aligned}$
distributivity	$\begin{aligned} & \forall x \cdot(P \wedge Q) \Leftrightarrow \forall x \cdot P \wedge \forall x \cdot Q \\ & \exists x \cdot(P \vee Q) \Leftrightarrow \exists x \cdot P \vee \exists x \cdot Q \end{aligned}$
associativity	if x not free in P

CLASSICAL RESULTS (2)

de Morgan laws	$\neg \forall x \cdot P \Leftrightarrow \exists x \cdot \neg P$
	$\neg \exists x \cdot P \Leftrightarrow \forall x \cdot \neg P$
	$\neg \forall x \cdot(P \Rightarrow Q) \Leftrightarrow \exists x \cdot(P \wedge \neg Q)$
	$\neg \exists x \cdot(P \wedge Q) \Leftrightarrow \forall x \cdot(P \Rightarrow \neg Q)$
monotonicity	$\forall x \cdot(P \Rightarrow Q) \Rightarrow(\forall x \cdot P \Rightarrow \forall x \cdot Q)$
	$\forall x \cdot(P \Rightarrow Q) \Rightarrow(\exists x \cdot P \Rightarrow \exists x \cdot Q)$
equivalence	$\forall x \cdot(P \Leftrightarrow Q) \Rightarrow(\forall x \cdot P \Leftrightarrow \forall x \cdot Q)$
	$\forall x \cdot(P \Leftrightarrow Q) \Rightarrow(\exists x \cdot P \Leftrightarrow \exists x \cdot Q)$

Foundation for Deductive and Formal Proofs

Summary of Logical Operators

$P \wedge Q$	$\neg P$
$P \vee Q$	$\forall x \cdot P$
$P \Rightarrow Q$	$\exists x \cdot P$

Refining our Language: Equality

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \\
& \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \\
& \text { predicate } \Leftrightarrow \text { predicate } \\
& \forall \text { variable } \cdot \text { predicate } \\
& \exists \text { variable } \cdot \text { predicate } \\
& \\
& \\
& \\
& \text { expriable }:=\text { expression }=\text { expression }
\end{aligned}
$$

Equality Rules of Inference

$$
\begin{array}{lll}
{[x:=F] H, E=F} & \vdash[x:=F] P & \\
\hline[x:=E] H, E=F & \vdash & {[x:=E] P}
\end{array} \quad \text { EQ_LR }
$$

$$
\begin{array}{lll}
{[x:=E] \mathrm{H}, E=F} & \vdash[x:=E] P \\
\hline[x:=F] \mathrm{H}, E=F & \vdash[x:=F] P & \text { EQ_RL }
\end{array}
$$

- Rewriting rules:

Operator	Predicate	Rewritten
Equality	$E=E$	T
Equality of pairs	$E \mapsto F=G \mapsto H$	$E=G \wedge F=H$

Classical Results for Equality

symmetry	$E=F \Leftrightarrow F=E$
transitivity	$E=F \wedge F=G \Rightarrow E=G$
	 One-point rules
$\forall x \cdot(x=E \Rightarrow P) \Leftrightarrow[x:=E] P$	
	$\exists x \cdot(x=E \wedge P) \Leftrightarrow[x:=E] P$

Refining our Language: Set Theory (1)

$$
\begin{aligned}
\text { predicate }::= & \perp \\
& \neg \text { predicate } \\
& \text { predicate } \wedge \text { predicate } \\
& \text { predicate } \vee \text { predicate } \\
& \text { predicate } \Rightarrow \text { predicate } \\
& \text { predicate } \Leftrightarrow \text { predicate } \\
& \forall \text { var_list } \cdot \text { predicate } \\
& \exists \text { var_list } \cdot \text { predicate } \\
& {[\text { var_list }:=\text { exp_list }] \text { predicate } } \\
& \text { expression }=\text { expression } \\
& \text { expression } \in \text { set }
\end{aligned}
$$

Refining our Language: Set Theory (2)

```
expression \(::=\) variable
    [var_list \(:=\) exp_list] expression
    expression \(\mapsto\) expression
    set
variable \(::=\) identifier
set \(\quad::=\) set \(\times\) set
    \(\mathbb{P}(\) set \()\)
    \{var_list • predicate | expression \}
```

- When expression is the same as var _list, the last construct can be written \{ var_list|predicate \}

Set Theory

© Basis

- Basic operators
(3) Extensions
- Elementary operators
- Generalization of elementary operators
- Binary relation operators
- Function operators

Set Theory: Membership

- Set theory deals with a new predicate: the membership predicate

$$
E \in S
$$

where E is an expression and S is a set

Edgenössische Technilsche Hochscthule Zurlch

Set Theory: Basic Constructs

There are three basic constructs in set theory:

Cartesian product	$S \times T$
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x \cdot P \mid F\}$
Comprehension 2	$\{x \mid P\}$

where S and T are sets, x is a variable and P is a predicate.

Cartesian Product

Sdgenöassixche Technilsche Hachsctuule Zurlch Swiss Federal Irait tate of Tehnology Zurikh

Foundation for Deductive and Formal Proofs

Power Set

Set Comprehension

Basic Set Operator Memberships (Axioms)

These axioms are defined by equivalences.

Left Part	Right Part
$E \mapsto F \in S \times T$	$E \in S \wedge F \in T$
$S \in \mathbb{P}(T)$	$\forall x \cdot(x \in S \Rightarrow x \in T)$ (x is not free in S and T$)$
$E \in\{x \cdot P \mid F\}$	$\exists x \cdot P \wedge E=F$ $(\mathrm{x}$ is not free in E$)$
$E \in\{x \mid P\}$	$[x:=E] P$ $(\mathrm{x}$ is not free in E$)$

Set Inclusion and Extensionality Axiom

Left Part	Right Part
$S \subseteq T$	$S \in \mathbb{P}(T)$
$S=T$	$S \subseteq T \wedge T \subseteq S$

The first rule is just a syntactic extension
The second rule is the Extensionality Axiom

Elementary Set Operators

Union	$S \cup T$
Intersection	$S \cap T$
Difference	$S \backslash T$
Extension	$\{a, \ldots, b\}$
Empty set	\varnothing

Union, Difference, Intersection

Elementary Set Operator Memberships

$E \in S \cup T$	$E \in S \vee E \in T$
$E \in S \cap T$	$E \in S \wedge E \in T$
$E \in S \backslash T$	$E \in S \wedge E \notin T$
$E \in\{a, \ldots, b\}$	$E=a \vee \ldots \vee E=b$
$E \in \varnothing$	\perp

Summary of Basic and Elementary Operators

$S \times T$	$S \cup T$
$\mathbb{P}(S)$	$S \cap T$
$\{\times \cdot P \mid F\}$	$S \backslash T$
$S \subseteq T$	$\{a, \ldots, b\}$
$S=T$	\varnothing

Generalizations of Elementary Operators

Generalized Union	union (S)
Union Quantifier	$\cup x \cdot(P \mid T)$
Generalized Intersection	inter (S)
Intersection Quantifier	$\cap x \cdot(P \mid T)$

Generalized Union

Generalized Intersection

Generalizations of Elementary Operator Memberships

$E \in$ union (S)	$\exists s \cdot s \in S \wedge E \in s$ $(\mathrm{~s}$ is not free in S and E$)$
$E \in(\bigcup x \cdot P \mid T)$	$\exists x \cdot P \wedge E \in T$ (x is not free in E$)$
$E \in \operatorname{inter}(S)$	$\forall s \cdot s \in S \Rightarrow E \in s$ (s is not free in S and E$)$
$E \in(\bigcap x \cdot P \mid T)$	$\forall x \cdot P \Rightarrow E \in T$ $(\mathrm{x}$ is not free in E$)$

Well-definedness condition for case 3: $S \neq \varnothing$
Well-definedness condition for case 4: $\exists x \cdot P$

Summary of Generalizations of Elementary Operators

union (S)
$U x \cdot P \mid T$
$\operatorname{inter}(S)$
$\cap x \cdot P \mid T$

Binary Relation Operators (1)

Binary relations	$S \leftrightarrow T$
Domain	$\operatorname{dom}(r)$
Range	$\operatorname{ran}(r)$
Converse	r^{-1}

Foundation for Deductive and Formal Proofs

A Binary Relation r from a Set A to a Set B

 Swiss Federal Irait tate of Tehnology Zurikh

Domain of Binary Relation r

$$
\operatorname{dom}(r)=\{a 1, a 3, a 5, a 7\}
$$

Edgenässische Technilsche Hochschule Zurich Swiss Federal Iratitate of Technology Zurich

Foundation for Deductive and Formal Proofs

Range of Binary Relation r

$$
\operatorname{ran}(r)=\{b 1, b 2, b 4, b 6\}
$$

Edgenass ische Technlische Hochactule Turlch Swiss Federal Irait tate of Tehnology Zurikh

Converse of Binary Relation r

 swiss Fedideral Inatitate of Tohnolagiy Zuith

Binary Relation Operator Memberships (1)

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E \in \operatorname{dom}(r)$	$\exists y \cdot E \mapsto y \in r$ $(y$ is not free in E and r$)$
$F \in \operatorname{ran}(r)$	$\exists x \cdot x \mapsto F \in r$ $(\mathrm{x}$ is not free in F and r$)$
$E \mapsto F \in r^{-1}$	$F \mapsto E \in r$

Binary Relation Operators (2)

Partial surjective binary relations	$S \leftrightarrow T$
Total binary relations	$S \leftrightarrow T$
Total surjective binary relations	$S \leftrightarrow T$

A Partial Surjective Relation

A Total Relation

A Total Surjective Relation

Binary Relation Operator Memberships (2)

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{ran}(r)=T$
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{dom}(r)=S$
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge r \in S \leftrightarrow T$

Binary Relation Operators (3)

Domain restriction	$S \triangleleft r$
Range restriction	$r \triangleright T$
Domain subtraction	$S \nleftarrow r$
Range subtraction	$r \triangleright T$

The Domain Restriction Operator

genousishe Technilache Hachschule Zurlch Swiss Federal Irait tate of Tehnology Zurikh

The Range Restriction Operator

$$
F \triangleright\{b 2, b 4\}
$$

dgen iss ische Technilsche Hochschule Zurlch swiss Federal insitate of Technology zurich

The Domain Substraction Operator

$\{a 3, a 7\} \notin F$
dgenouss Iche Technische Hachschule ZUrich Swiss Federal Insititate of Tehnology Zuikh

Foundation for Deductive and Formal Proofs

The Range Substraction Operator

dgenässische Techrilishe Hachsctule Zurlch Swiss Federal Irait tate of Tehnology Zurikh

Binary Relation Operator Memberships (3)

Left Part	Right Part
$E \mapsto F \in S \triangleleft r$	$E \in S \wedge E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \wedge F \in T$
$E \mapsto F \in S \notin r$	$E \notin S \wedge E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \wedge F \notin T$

Binary Relation Operators (4)

Image	$r[w]$
Composition	$p ; q$
Overriding	$p \nleftarrow q$
Identity	id (S)

Foundation for Deductive and Formal Proofs

Image of $\{a 5, a 7\}$ under r

Forward Composition

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

The Overriding Operator

Foundation for Deductive and Formal Proofs

The Overriding Operator

Special Case

Technilsche Hochscthule Zurich swiss Federal insitate of Technology zurich

Basic Constructs
Extensions

Special Case

Technilsche Hachsactule Zurlch Swiss Federal Inat tate of Techrology Zuich

The Identity Relation

Binary Relation Operator Memberships (4)

$F \in r[w]$	$\exists x \cdot x \in w \wedge \wedge$ (x is not free in F, r and w)
$E \mapsto F \in(p ; q)$	$\exists x \cdot E \mapsto x \in p \wedge \quad x \mapsto F \in q$ $(\mathrm{x}$ is not free in $\mathrm{E}, \mathrm{F}, \mathrm{p}$ and q$)$
$E \mapsto F \in p \nrightarrow q$	$E \mapsto F \in(\operatorname{dom}(q) \triangleleft p) \cup q$
$E \mapsto F \in \operatorname{id}(S)$	$E \in S \wedge F=E$

Binary Relation Operators (5)

Direct Product	$p \otimes q$	
First Projection	$p j_{1}(S, T)$	
Second Projection	$\operatorname{prj}_{2}(S, T)$	
Parallel Product	$p \\| q$	

Binary Relation Operator Memberships (5)

$E \mapsto(F \mapsto G) \in p \otimes q$	$E \mapsto F \in p \wedge E \mapsto G \in q$	
$(E \mapsto F) \mapsto G \in \operatorname{prj}_{1}(S, T)$	$E \in S \wedge F \in T \wedge G=E$	
$(E \mapsto F) \mapsto G \in \operatorname{prj}_{2}(S, T)$	$E \in S \wedge F \in T \wedge G=F$	
$(E \mapsto G) \mapsto(F \mapsto H) \in p \\| q$	$E \mapsto F \in p \wedge G \mapsto H \in q$	

Summary of Binary Relation Operators

$S \leftrightarrow T$	$S \triangleleft r$	$r[w]$	$\operatorname{prj}_{1}(S, T)$	
$\operatorname{dom}(r)$	$r \triangleright T$	$p ; q$	$\operatorname{prj}_{2}(S, T)$	
$\operatorname{ran}(r)$	$S \nleftarrow r$	$p \not q q$	$\operatorname{id}(S)$	
r^{-1}	$r \triangleright T$	$p \otimes q$	$p \\| q$	

Classical Results with Relation Operators

$$
\begin{aligned}
& r^{-1-1}=r \\
& \operatorname{dom}\left(r^{-1}\right)=\operatorname{ran}(r) \\
& (S \triangleleft r)^{-1}=r^{-1} \triangleright S \\
& (p ; q)^{-1}=q^{-1} ; p^{-1} \\
& (p ; q) ; r=q ;(p ; r) \\
& (p ; q)[w]=q[p[w]] \\
& p ;(q \cup r)=(p ; q) \cup(p ; r) \\
& r[a \cup b]=r[a] \cup r[b]
\end{aligned}
$$

More classical Results

Given a relation r such that $r \in S \leftrightarrow S$

$$
\begin{array}{ll}
r=r^{-1} & r \text { is symmetric } \\
r \cap r^{-1}=\varnothing & r \text { is asymmetric } \\
r \cap r^{-1} \subseteq \operatorname{id}(S) & r \text { is antisymmetric } \\
\operatorname{id}(S) \subseteq r & r \text { is reflexive } \\
r \cap \operatorname{id}(S)=\varnothing & r \text { is irreflexive } \\
r ; r \subseteq r & r \text { is transitive }
\end{array}
$$

sche Technluch Ha bastule Zurlch swiss Federal insitate of Technology zurich

Translations into First Order Predicates

Given a relation r such that $r \in S \leftrightarrow S$

$$
\begin{array}{ll}
r=r^{-1} & \forall x, y \cdot x \in S \wedge y \in S \Rightarrow(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r) \\
r \cap r^{-1}=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\
r \cap r^{-1} \subseteq \operatorname{id}(S) & \forall x, y \cdot x \mapsto y \in r \wedge y \mapsto x \in r \Rightarrow x=y \\
\operatorname{id}(S) \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\
r \cap \operatorname{id}(S)=\varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\
r ; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \wedge y \mapsto z \in r \Rightarrow x \mapsto z \in r
\end{array}
$$

Set-theoretic statements are far more readable than predicate calculus statements swiss Federal Iratitate of Tehtriology Zuish

Function Operators (1)

Partial functions	$S \rightarrow T$
Total functions	$S \rightarrow T$
Partial injections	$S \nrightarrow T$
Total injections	$S \multimap T$

A Partial Function F from a Set A to a Set B

A Total Function F from a Set A to a Set B

A Partial Injection F from a Set A to a Set B

$$
F \in A \leftrightarrows B
$$

A Total Injection F from a Set A to a Set B

$$
F \in A \mapsto B
$$

che Technilsche Hachsachule Zurlch Swiss Federal insiltate of Tehhnology Zurich

Function Operator Memberships (1)

Left Part	Right Part
$f \in S \rightarrow T$	$f \in S \leftrightarrow T \wedge\left(f^{-1} ; f\right)=\operatorname{id}(\operatorname{ran}(f))$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge s=\operatorname{dom}(f)$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge f^{-1} \in T \rightarrow S$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge f^{-1} \in T \rightarrow S$

Function Operators (2)

Partial surjections	$S \rightarrow T$
Total surjections	$S \rightarrow T$
Bijections	$S \leftrightarrows T$

A Partial Surjection F from a Set A to a Set B

Edgenässische Technilsche Hochscactule Zurlch Swiss Federal Insititate of Tehnology Zurich

A Total Surjection F from a Set A to a Set B

$$
F \in A \rightarrow B
$$

ws ishe Technilishe Hashastule Zürlch swiss Federal insitate of Technology zurich

A Bijection F from a Set A to a Set B

Function Operator Memberships (2)

Left Part	Right Part
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \rightarrow T$	$f \in S \rightarrow T \wedge T=\operatorname{ran}(f)$
$f \in S \rightarrow T$	$f \in S \mapsto T \wedge f \in S \rightarrow T$

Edgenasslishe Technilsche Hochschtule Zurlch swiss Federal Inatitate of Tochrology Zuich

Summary of Function Operators

$S \rightarrow T$	$S \rightarrow T$
$S \rightarrow T$	$S \rightarrow T$
$S \rightarrow T$	$S \hookrightarrow T$
$S \hookrightarrow T$	

mmary of all Set-theoretic Operators (40)

$S \times T$	$S \backslash T$	r^{-1}	$r[w]$	id (S)	$\{x \mid x \in S \wedge P\}$
$\mathbb{P}(S)$	$\begin{aligned} & S \leftrightarrow T \\ & S \leftrightarrow T \end{aligned}$	$\begin{aligned} & S \triangleleft r \\ & S \& r \end{aligned}$	$p ; q$	$\begin{aligned} & S \rightarrow T \\ & S \rightarrow T \end{aligned}$	$\{x \cdot x \in S \wedge P \mid E\}$
$S \subseteq T$	$\begin{aligned} & S \leftrightarrow T \\ & S \leftrightarrow T \end{aligned}$	$\begin{aligned} & r \triangleright T \\ & r \triangleright T \end{aligned}$	$p \& q$	$\begin{aligned} & S \mapsto T \\ & S \mapsto T \end{aligned}$	$\{a, b, \ldots, n\}$
$S \cup T$	$\begin{aligned} & \operatorname{dom}(r) \\ & \operatorname{ran}(r) \end{aligned}$	prj ${ }_{1}$	$p \otimes q$	$\begin{aligned} & S \rightarrow T \\ & S \rightarrow T \end{aligned}$	union \cup
$S \cap T$	\varnothing	prj2	$p \\| q$	$S \hookrightarrow T$	inter \bigcap

Applying a Function

Given a partial function f, we have

Left Part	Right Part
$F=f(E)$	$E \mapsto F \in f$

Well-definedness condition: $\quad E \in \operatorname{dom}(f)$

Example: a Very Strict Society

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

Edgenouss|sche Technilsche Hochschule Zurich

Formal Representation

```
men \(\subseteq\) PERSON
women \(=P E R S O N \backslash\) men
husband \(\in\) women \(\mapsto\) men
mother \(\in P E R S O N \rightarrow\) dom(husband)
```

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

Formal Representation

```
men \subseteq PERSON
women = PERSON\men
husband \in women }\mapsto\mathrm{ men
mother }\inPPERSON -> dom(husband
```

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

Formal Representation

```
men \subseteq PERSON
women = PERSON \men
husband \in women ↔men
mother }\in\mathrm{ PERSON }->\mathrm{ dom(husband)
```

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women↔men
mother }\in\mathrm{ PERSON }->\mathrm{ dom(husband)
```

wife $=$ husband $^{-1}$
spouse $=$ husband \cup wife
father $=$ mother ; husband

Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women↔men
mother }\in\mathrm{ PERSON }->\mathrm{ dom(husband)
```

wife $=$ husband $^{-1}$
spouse $=$ husband \cup wife
father $=$ mother ; husband

Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women↔men
mother }\in\mathrm{ PERSON }->\mathrm{ dom(husband)
```

$$
\begin{aligned}
& \text { wife }=\text { husband }^{-1} \\
& \text { spouse }=\text { husband } \cup \text { wife } \\
& \text { father }=\text { mother ; husband }
\end{aligned}
$$

Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women }\leftrightarrows\mathrm{ men
mother }\in\mathrm{ PERSON }->\mathrm{ dom(husband)
```

$$
\text { wife }=\text { husband }^{-1}
$$

$$
\text { spouse }=\text { husband } \cup \text { wife }
$$

$$
\text { father }=\text { mother } ; \text { husband }
$$

Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women }\rightsquigarrow\mathrm{ men
mother }\inPERSON -> dom(husband
```

```
father \(=\) mother \(;\) husband
children \(=(\text { mother } \cup \text { father })^{-1}\)
daughter \(=\) children \(>\) women
sibling \(=\left(\right.\) children \(^{-1} ;\) children \() \backslash i d(\) PERSON \()\)
```


Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women }\rightsquigarrow\mathrm{ men
mother }\inPERSON -> dom(husband
```

```
father \(=\) mother \(;\) husband
children \(=(\text { mother } \cup \text { father })^{-1}\)
daughter \(=\) children \(>\) women
sibling \(=\left(\right.\) children \(^{-1} ;\) children \() \backslash i d(\) PERSON \()\)
```


Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women }\rightsquigarrow\mathrm{ men
mother }\inPERSON -> dom(husband
```

```
father \(=\) mother \(;\) husband
children \(=(\text { mother } \cup \text { father })^{-1}\)
daughter \(=\) children \(\triangleright\) women
sibling \(=\left(\right.\) children \(^{-1} ;\) children \() \backslash i d(\) PERSON \()\)
```


Defining New Concepts

```
men \subseteq PERSON
women = PERSON \men
husband \in women }\rightsquigarrow\mathrm{ men
mother }\inPERSON -> dom(husband
```

```
father \(=\) mother \(;\) husband
children \(=(\text { mother } \cup \text { father })^{-1}\)
daughter \(=\) children \(\triangleright\) women
sibling \(=\left(\right.\) children \(^{-1} ;\) children \() \backslash \operatorname{id}(\) PERSON \()\)
```


Exercises. To be defined

$$
\begin{aligned}
& \text { brother }=? \\
& \text { sibling }- \text { in }- \text { law }=? \\
& \text { nephew }- \text { or }- \text { niece }=? \\
& \text { uncle }- \text { or }- \text { aunt }=? \\
& \text { cousin }=?
\end{aligned}
$$

Exercises. To be proved

$$
\begin{aligned}
& \text { mother }=\text { father } ; \text { wife }^{\text {spouse }=\text { spouse }^{-1}} \\
& \text { sibling }=\text { sibling }^{-1} \\
& \text { cousin }=\text { cousin }^{-1} \\
& \text { father ; father } \\
& \text {-1 }=\text { mother ; mother } \\
& \text { father ; mother } \\
& \text {-1 }=\varnothing \\
& \text { mother ; father } \\
& \text {-1 }=\varnothing \\
& \text { father ; children }=\text { mother ; children }
\end{aligned}
$$

For Further Reading I

© J-R. Abrial.
Modeling in Event-B: System and Software Engineering, Chapter 9 - Mathematical Language.

CUP, 2010.

