Purpose of this Presentation

Summary of Event-B Modeling Notation

Jean-Raymond Abrial (edited by Thai Son Hoang)

Swiss Federal Institute of Technology Zürich (ETH Zürich)
Bucharest DEPLOY 2-day Course, 14th-16th July, 2010

Model Developments with Event-B

- Event- B is not a programming language (even very abstract)
- Event-B is a notation used for developing mathematical models of discrete transition systems
- Event-B is to be used together with the Rodin Platform
- Showing the structure of the Event-B modeling notation
- Machines, contexts, and events
- Presenting a small example
J.R. Abrial (EIH-Zürch)

Model Developments with Event-B (cont'd)

- Such models, once finished, can be used to eventually construct:
- sequential programs,
- distributed programs,
- concurrent programs,
- electronic circuits,
- large systems involving a possibly fragile environment,
- etc.
- The underlined statement is an important case.
- In this presentation, we shall construct a small sequential program.

Machines and Contexts

- A model is made of several components
- A component is either a machine or a context:

Machine
variables invariants events variant

- Machines and contexts have names
- Such names must be distinct in a given model
ETH

J-R. Abrial (ETH-Zürich)

Relationship Between Machines and Contexts

Machines and Contexts (cont'd)

- Contexts contain the static structure of a discrete system (constants and axioms)
- Machines contain the dynamic structure of a discrete system (variables, invariants, and events)
- Machines see contexts
- Contexts can be extended
- Machines can be refined

Visibility Rules (can be Skipped at First Reading)

- A machine can see several contexts (or no context at all).
- A context may extend several contexts (or no context at all).
- A machine implicitly sees all contexts extended by a seen context.
- A machine only sees a context either explicitly or implicitly.
- A machine only refines at most one other machine.
- No cycle in the "refines" or "extends" relationships.

- $\mathbf{M}_{\mathbf{0}}$ sees \mathbf{C}_{01} and \mathbf{C}_{02} explicitly.
- \mathbf{M}_{1} sees $\mathbf{C}_{\mathbf{1}}$ explicitly.
- \mathbf{M}_{1} sees \mathbf{C}_{01} and \mathbf{C}_{02} implicitly.

ETH

J-R. Abrial (ETH-Zürich)

Explaining Context Sections

- "sets" lists various carrier sets, which define pairwise disjoint types
- The only property we can assume about a set is that it is not empty
- "constants" lists the different constants introduced in the context
- "axioms" defines the main properties of the constants
- axioms can be marked as "theorems" denotes derived properties (to be proved) from previously declared the axioms

$$
\begin{aligned}
& \text { context } \\
& \quad<\text { context_identifier > } \\
& \text { extends } \star \\
& <\text { context_identifier }> \\
& \ldots \\
& \text { sets } \star \\
& <\text { set_identifier } \gg \\
& \text { constants } \star \\
& \quad<\text { constant_identifier }> \\
& \ldots \\
& \text { axioms } \star \\
& \quad<\text { label > : < predicate > } \\
& \ldots \\
& \text { end }
\end{aligned}
$$

- Sections with " \star " might be empty
- All keyword sections are predefined in the Rodin Platform

- All labels are generated automatically by the Rodin Platform (but can be modified)

Context Example

context
ctx_0

sets
D
constants
n
f
v
axioms
axm1 $: n \in \mathbb{N}$
axm2 $: f \in 1 . . n \rightarrow D$
axm3 $: v \in \operatorname{ran}(f)$
thm1 $: n \in \mathbb{N}_{1}$
end

- A set D is defined in context ctx
- Moreover, three constants, n, f, and v, are defined in this context:
- n is a natural number (axm1)
- f is a total function from the interval $1 . . n$ to the set D (axm2)
- v is supposed to belong to the range of f (axm3)

A theorem is proposed: n is a positive number (thm1)

Pictorial Representation of the Context

Machine Structure

Explaining Machine Sections

- "variables" lists the state variables of the machine
- "invariants" states the properties of the variables
- Invariants are defined in terms the seen sets and constants
- invariants can be marked as "theorems" which are derivable from previously declared invariants and seen axioms
- "events" defines the dynamics of the transition system (slide 17)
- "variant" is explained later (slide 29)

Event Structure

Explaining Event Sections

- Notice that keyword "where" becomes "when" in the Rodin Platform Pretty Print when there is no "any".
- Notice that keyword "then" becomes "begin" in the Rodin Platoform Pretty Print when there are no "any" and no "where/when".
- Again, all keyword sections are predefined in the Rodin Platform
- All labels are generated automatically by the Rodin Platform (but can be modified)

Explaining Event Sections (cont'd)

- "status" is either:
- ordinary,
- convergent: it has to decrease the variant (slide 29),
- anticipated: to be convergent later in a refinement.
- "any" contains the parameters of the event (might be empty)
- "where" (or "when") contains the various guards of the event
- A guard is a necessary condition for an event to be enabled
- Guards can be marked as "theorems" which are derivable from invariants, seen axioms and previously declared guards.
- "actions" see next slide

Deterministic Action (Example)

- Here is the form of some deterministic actions on variables x, y and z :

$$
\begin{array}{ll}
x & :=x+y \\
y & :=y-x-z
\end{array}
$$

- Notice that x and y should be distinct.
- Actions are supposed to be "performed" in parallel
- Variables x and y are assigned to $x+y$ and $y-x-z$ respectively
- Variable z is used but not modified by these actions

Second Form of Non-deterministic Action (Example)

$$
x: \in\{x+1, y-2, z+3\}
$$

- Here x is assigned any value from the set $\{x+1, y-2, z+3\}$

Event-B Modeling Notation
J-R. Abrial (ETH-Zürich)

Event Examples of Machine m_0a

Pictorial Representation of the State after "search"

- This machine is the model specification of a searching program
machine
m_0a
sees
ctx_0
variables
i
invariants
inv1: $i \in 1 \ldots n$
events
\ldots
end
- Event search assigns to i
any value k such that $f(k)=v$,
provided k is in interval 1 .. n

Another Machine m Ob

> initialisation $\widehat{=}$
> status
> ordinary
> begin
> act1 : $\quad i:=1$
> end
m_0
sees
variables
i
invariants
inv1: $i \in 1$.. n
events
end

search

status
ordinary
begin
act1: $\quad i: \mid i^{\prime} \in 1 \ldots n \wedge f\left(i^{\prime}\right)=v$
end

- The only difference between $\mathbf{m} \mathbf{0} \mathbf{a}$ and $\mathbf{m} \mathbf{0} \mathbf{b}$ is in event search
- i is assigned non-deterministically a values i^{\prime} such that $i^{\prime} \in 1 . . n$ and $f\left(i^{\prime}\right)=v$
- Notice that event search has no guard

Variant

Refinement Machine m_1a Refining Machine m_0a

- The variant of a machine is either a natural number expression or a finite set expression
- It has to be present in any machine with convergent events
- A numeric variant must be decreased by all convergent events
- A set variant must be made strictly included in its previous value by all convergent events
machine
m_1a
refines
m_0a
sees
ctx_0
variables
i
j
invariants
inv1: $\quad j \in 0 \ldots n-1$
inv2: $\quad v \notin f[1 . . j]$
thm1: $\quad v \in f \in j+1 \ldots n]$
variant
$n-j$
events
\ldots
end
- A new variable j is introduced

Notice invariant inv2 and theorem thm1
Notice the with section in event search
A new convergent event progress is introduced Notice the numeric variant $n-$

```
initialisation \widehat{=}
    status ordinary
    begin
        act1: i:= 1
    act2: j:=0
    end
```

search $\widehat{=}$
status ordinary
status
refines
search
when
grd1 : $f(j+1)=v$
with $\quad j+1=k$
$k: j+1=k$
act1 : $i:=j+1$
end
progress $\hat{=}$
status convergent
status convergen
when
when
grd
grd1 $: f(j+1) \neq v$
then
act1 : $j:=j+1$ ETH
end
Bucharest, 14-16/07/10 $30 / 34$

Pictorial Representation of the State

Refinement Machine m_1b Refining Machine m_0b

$\begin{aligned} & \text { sees } \\ & \text { ctx_0 } \end{aligned}$	
variables	
i	
invariants	
variant	
j..n	
events	
end	

- The with section in event search is not needed

Notice the finite set variant j... n

- These are the only differences with refining machine m 1a

search $\widehat{=}$ status ordinary refines
searc
when
grd1: $f(j+1)=v$
then
act1: $i:=j+1$
end

Constructing the Final Program

Exercise

- A sequential program can be constructed from m_1a (or m_1b)
- This is done by applying a number of event merging rules (NOT DEFINED HERE)
- The application of these rules yields the following program:

$i, j:=1,0 ;$	initialisation
while $f(j+1) \neq v$ do	progress
$\quad j:=j+1$	
end $;$	search
$i:=j+1$	

- Modify refinement $\mathbf{m} _\mathbf{1 a}$ (or $\mathbf{m} _\mathbf{1 b}$) in order to obtain the following final program from the same specification $\mathbf{m} \mathbf{O} \mathbf{0}$ (or m_Ob):

$i, j:=1, n+1 ;$	initialisation
while $f(j-1) \neq v$ do	progress
$j:=j-1$	search
end $;$ $i:=j-1$ ${ }^{2}+$	

J-R. Abrial (ETH-Zürich)

