
Summary of Event-B Modeling Notation

Jean-Raymond Abrial
(edited by Thai Son Hoang)

Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

Bucharest DEPLOY 2-day Course, 14th-16th July, 2010

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 1 / 34



Purpose of this Presentation

Showing the structure of the Event-B modeling notation

Machines, contexts, and events

Presenting a small example

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 2 / 34



Model Developments with Event-B

Event-B is not a programming language (even very abstract)

Event-B is a notation used for developing mathematical models
of discrete transition systems

Event-B is to be used together with the Rodin Platform

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 3 / 34



Model Developments with Event-B (cont’d)

Such models, once finished, can be used to eventually construct:

sequential programs,

distributed programs,

concurrent programs,

electronic circuits,

large systems involving a possibly fragile environment,

etc.

The underlined statement is an important case.

In this presentation, we shall construct a small sequential
program.

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 4 / 34



Machines and Contexts

A model is made of several components

A component is either a machine or a context:

Machine

variables
invariants

events
variant

Context

sets
constants

axioms

Machines and contexts have names

Such names must be distinct in a given model

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 5 / 34



Machines and Contexts (cont’d)

Contexts contain the static structure of a discrete system
(constants and axioms)

Machines contain the dynamic structure of a discrete system
(variables, invariants, and events)

Machines see contexts

Contexts can be extended

Machines can be refined

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 6 / 34



Relationship Between Machines and Contexts

Machine

Machine

Context

Context

refines

OO

refines

OO

extends

OO

extends

OO

sees //

sees //

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 7 / 34



Visibility Rules (can be Skipped at First Reading)

A machine can see several contexts (or no context at all).

A context may extend several contexts (or no context at all).

A machine implicitly sees all contexts extended by a seen
context.

A machine only sees a context either explicitly or implicitly.

A machine only refines at most one other machine.

No cycle in the “refines” or “extends” relationships.

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 8 / 34



Example (can be Skipped at First Reading)

M0

M1

C01

C02

C1

refines

OO

extends??????

__??????

extends

OO

sees //

seesoooooooooo

77oooooooooo

sees //

M0 sees C01 and C02 explicitly.

M1 sees C1 explicitly.

M1 sees C01 and C02 implicitly.

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 9 / 34



Context Structure

context
< context_identifier >

extends ?
< context_identifier >
. . .

sets ?
< set_identifier >
. . .

constants ?
< constant_identifier >
. . .

axioms ?
< label >: < predicate >
. . .

end

Sections with “?” might be empty

All keyword sections are predefined in the Rodin Platform

All labels are generated automatically by the Rodin Platform (but can be modified)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 10 / 34



Explaining Context Sections

“sets” lists various carrier sets, which define pairwise disjoint
types

The only property we can assume about a set is that it is not
empty

“constants” lists the different constants introduced in the context

“axioms” defines the main properties of the constants

axioms can be marked as “theorems” denotes derived properties
(to be proved) from previously declared the axioms.

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 11 / 34



Context Example

context
ctx_0

sets
D

constants
n
f
v

axioms
axm1 : n ∈ N
axm2 : f ∈ 1..n→ D
axm3 : v ∈ ran(f )
thm1 : n ∈ N1

end

A set D is defined in context ctx_0

Moreover, three constants, n, f , and v , are defined in this context:
n is a natural number (axm1)
f is a total function from the interval 1 .. n to the set D (axm2)
v is supposed to belong to the range of f (axm3)

A theorem is proposed: n is a positive number (thm1)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 12 / 34



Pictorial Representation of the Context

f
1

v is somewhere

n

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 13 / 34



Machine Structure

machine
< machine_identifier >

refines ?
< machine_identifier >

sees ?
< context_identifier >
. . .

variables
< variable_identifier >
. . .

invariants
< label >: < predicate >
. . .

events
initialisation . . .
. . .

variant ?
< variant >

end

Each machine has exactly one initialisation event

All keyword sections are predefined in the Rodin Platform

All labels are generated automatically by the Rodin Platform (but can be modified)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 14 / 34



Explaining Machine Sections

“variables” lists the state variables of the machine

“invariants” states the properties of the variables

Invariants are defined in terms the seen sets and constants

invariants can be marked as “theorems” which are derivable
from previously declared invariants and seen axioms

“events” defines the dynamics of the transition system (slide 17)

“variant” is explained later (slide 29)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 15 / 34



Machine (and Context) Example

machine
m_0a

sees
ctx_0

variables
i

invariants
inv1 : i ∈ 1 .. n

events
. . .

end

context
ctx_0

sets
D

constants
n
f
v

axioms
axm1 : n ∈ N
axm2 : f ∈ 1..n→ D
axm3 : v ∈ ran(f )
thm1 : n ∈ N1

end

Machine m_0a sees the previously defined context ctx_0

A variable i is defined

i is a member of the interval 1 .. n (inv1)

events: next slide

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 16 / 34



Event Structure

< event_identifier > b=
status
{ordinary, convergent, anticipated}

refines ?
< event_identifier >
. . .

any ?
< parameter_identifier >
. . .

where ?
< label >: < predicate >
. . .

with ?
< label >: < witness >
. . .

then ?
< label >: < action >
. . .

end

Notice that keyword “where” becomes “when” in the Rodin Platform Pretty Print
when there is no “any”.
Notice that keyword “then” becomes “begin” in the Rodin Platoform Pretty Print
when there are no “any” and no “where/when”.
Again, all keyword sections are predefined in the Rodin Platform.
All labels are generated automatically by the Rodin Platform (but can be modified)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 17 / 34



Explaining Event Sections

An event is a state transition in a discrete dynamic system.

“refines” contains the name(s) of the refined event(s) (if any)

Can be skipped at first reading:

Several refined events are possible in case of a merging refining
event concentrating more than one refined event

Merged events must have the same actions

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 18 / 34



Explaining Event Sections (cont’d)

“status” is either:

ordinary,

convergent: it has to decrease the variant (slide 29),

anticipated: to be convergent later in a refinement.

“any” contains the parameters of the event (might be empty)

“where” (or “when”) contains the various guards of the event

A guard is a necessary condition for an event to be enabled

Guards can be marked as “theorems” which are derivable from
invariants, seen axioms and previously declared guards.

“actions” see next slide

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 19 / 34



Explaining Action Section

An action describes the ways one or several state variables are
modified by the occurrence of an event

An action might be either deterministic or non-deterministic

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 20 / 34



Deterministic Action (Example)

Here is the form of some deterministic actions on variables x , y
and z:

x := x + y
y := y − x − z

Notice that x and y should be distinct.

Actions are supposed to be “performed” in parallel

Variables x and y are assigned to x + y and y − x − z
respectively

Variable z is used but not modified by these actions

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 21 / 34



First Form of Non-deterministic Action (Example)

x , y :| x ′ > x ∧ y ′ < x ′

On the LHS of operator :|, we have two distinct variables

On the RHS, we have a, so-called, before-after predicate

The RHS contains occurrences of x and y (before values) and
primed occurrences x ′ and y ′ (after values)

As a result (in this example):

x is assigned a value greater than its previous value

y is assigned a value smaller than that, x ′, assigned to x

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 22 / 34



Second Form of Non-deterministic Action (Example)

x :∈ {x + 1, y − 2, z + 3}

Here x is assigned any value from the set {x + 1, y − 2, z + 3}

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 23 / 34



The Most General Form of an Action

The second form of non-deterministic action is equivalent to the
following first form:

x :| x ′ ∈ {x + 1, y − 2, z + 3}

Likewise, a deterministic action has an equivalent
non-deterministic form:

x , y :| x ′ = x + y ∧ y ′ = y − x − z

The non-det. first form can thus always be assumed (by the
tools)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 24 / 34



Event Examples of Machine m_0a

This machine is the model specification of a searching program

machine
m_0a

sees
ctx_0

variables
i

invariants
inv1 : i ∈ 1 .. n

events
. . .

end

- Event search assigns to i

- any value k such that f (k) = v ,

- provided k is in interval 1 .. n

initialisation b=
status

ordinary
begin

act1 : i := 1
end

search b=
status

ordinary
any

k
where

grd1 : k ∈ 1 .. n
grd2 : f (k) = v

then
act1 : i := k

end

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 25 / 34



Pictorial Representation of the State after “search”

f
1

i v

n

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 26 / 34



Another Machine m_0b

machine
m_0b

sees
ctx_0

variables
i

invariants
inv1 : i ∈ 1 .. n

events
. . .

end

initialisation b=
status

ordinary
begin

act1 : i := 1
end

search b=
status

ordinary
begin

act1 : i :| i ′ ∈ 1 .. n ∧ f (i ′) = v
end

The only difference between m_0a and m_0b is in event search

i is assigned non-deterministically a values i ′ such that i ′ ∈ 1 .. n and f (i ′) = v

Notice that event search has no guard

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 27 / 34



Explaining Event Sections (cont’d)

“with” contains the witnesses of a refining event.

A witness has to be provided in a refining event

for each disappearing parameter of the refined event (see m_1a)

after value of each disappearing variable.

The witness for parameter a is defined as follows a : P(a)
where P(a) is a predicate involving a

The witness for after value of variable b is defined as follows
b′ : P(b′) where P(b′) is a predicate involving b′

For a deterministic witness P(x) is x = E (with E free of x)

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 28 / 34



Variant

The variant of a machine is either a natural number expression
or a finite set expression

It has to be present in any machine with convergent events

A numeric variant must be decreased by all convergent events

A set variant must be made strictly included in its previous
value by all convergent events

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 29 / 34



Refinement Machine m_1a Refining Machine m_0a

machine
m_1a

refines
m_0a

sees
ctx_0

variables
i
j

invariants
inv1 : j ∈ 0 .. n − 1
inv2 : v /∈ f [1 .. j]
thm1 : v ∈ f [j + 1 .. n]

variant
n − j

events
. . .

end

- A new variable j is introduced

- Notice invariant inv2 and theorem thm1

- Notice the with section in event search

- A new convergent event progress is introduced

- Notice the numeric variant n − j

initialisation b=
status ordinary
begin

act1 : i := 1
act2 : j := 0

end

search b=
status ordinary
refines

search
when

grd1 : f (j + 1) = v
with

k : j + 1 = k
then

act1 : i := j + 1
end

progress b=
status convergent
when

grd1 : f (j + 1) 6= v
then

act1 : j := j + 1
end

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 30 / 34



Pictorial Representation of the State

f
1

v not found
j

j + 1

v is somewhere

n

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 31 / 34



Refinement Machine m_1b Refining Machine m_0b

machine
m_1b

refines
m_0b

sees
ctx_0

variables
i
j

invariants
inv1 : j ∈ 0 .. n − 1
inv2 : v /∈ f [i .. j]
thm1 : v ∈ f [j + 1 .. n]

variant
j .. n

events
. . .

end

- The with section in event search is not needed

- Notice the finite set variant j .. n

- These are the only differences with refining machine m_1a

initialisation b=
status ordinary
begin

act1 : i := 1
act2 : j := 0

end

search b=
status ordinary
refines

search
when

grd1 : f (j + 1) = v
then

act1 : i := j + 1
end

progress b=
status convergent
when

grd1 : f (j + 1) 6= v
then

act1 : j := j + 1
end

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 32 / 34



Constructing the Final Program

A sequential program can be constructed from m_1a (or m_1b)

This is done by applying a number of event merging rules
(NOT DEFINED HERE)

The application of these rules yields the following program:

i , j := 1, 0 ; initialisation
while f (j + 1) 6= v do

j := j + 1 progress
end ;
i := j + 1 search

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 33 / 34



Exercise

Modify refinement m_1a (or m_1b) in order to obtain the
following final program from the same specification m_0a (or
m_0b):

i , j := 1, n + 1 ; initialisation
while f (j − 1) 6= v do

j := j − 1 progress
end ;
i := j − 1 search

J-R. Abrial (ETH-Zürich) Event-B Modeling Notation Bucharest, 14-16/07/10 34 / 34


