Summary of the Mathematical Notation

Jean-Raymond Abrial (edited by Thai Son Hoang)

Department of Computer Science Swiss Federal Institute of Technology Zürich (ETH Zürich)

Bucharest DEPLOY 2-day course, 14-16/07/10, ETH Zurich

ETH Edgenöstische Technische Hochschule Zürk Swins Federal Institute of Technology Zurich

ean-Raymond Abrial (ETH-Zürich

ımmary of the Mathematical Notatior

Bucharest, 14-16/07/10

1 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Concept of Sequent and Inference Rule Backward and Forward Reasoning

Foundation for Deductive and Formal Proofs

- Reason: We want to understand how proofs can be mechanized.
- Topics:
 - Concepts of Sequent and Inference Rule.
 - Backward and Forward reasoning
 - Basic Inference Rules.

Outline

- 1 Foundation for Deductive and Formal Proofs
 - Concept of Sequent and Inference Rule
 - Backward and Forward Reasoning
 - Basic Inference Rules
- 2 A Quick Review of Propositional Calculus
- 3 A Quick Review of First Order Predicate Calculus
- 4 A Refresher on Set Theory
 - Basic Constructs
 - Extensions

ETH Eidgendssluche Technische Hochschule Zürich Swins Teuleral Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich

mmary of the Mathematical Notation

Bucharest, 14-16/07/10

10 2 / 120

Foundation for Deductive and Formal Proof
A Quick Review of Propositional Calculu
A Quick Review of First Order Predicate Calculu

Concept of Sequent and Inference Rule Backward and Forward Reasoning

Sequent

- Sequent is the generic name for "something we want to prove"
- We shall be more precise later

Inference Rule

- An inference rule is a tool to perform a formal proof
- It is denoted by:

- A is a (possibly empty) collection of sequents: the antecedents
- C is a sequent: the consequent

The proofs of each sequent of A together give you a proof of sequent C

"Executing" the Proof of a Sequent S (backward reasoning)

We are given:

- a collection \mathcal{T} of inference rules of the form $\frac{A}{C}$
- a sequent container K, containing S initially

while K is not empty

choose a rule $\frac{A}{C}$ in T whose consequent C is in K;

replace C in K by the antecedents A (if any)

This proof method is said to be goal oriented.

Backward and Forward Reasoning

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

- Forward reasoning: $\frac{A}{C} \downarrow$ Proofs of each sequent in A give you a proof of the consequent C
- Backward reasoning: $\frac{A}{C}$ \(\gamma\) In order to get a proof of C, it is sufficient to have proofs of each sequent in A

Proofs are usually done using backward reasoning

Proof of S1

 $r1_{\frac{5}{52}}$ $r2_{\frac{57}{54}}$ $r3_{\frac{52}{51}}$ $r3_{\frac{52}{51}}$ $r3_{\frac{54}{55}}$ $r3_{\frac{55}{53}}$ $r3_{\frac{55}{53}}$ $r3_{\frac{55}{53}}$ $r3_{\frac{57}{57}}$

- The proof is a tree
- We have shown here a depth-first strategy

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Alternate Representation of the Proof Tree

A vertical representation of the proof tree:

	<i>S</i> 1 r3	
-	∠ ↓ \	٠.
<i>S</i> 2	<i>S</i> 3	<i>S</i> 4
r1	r5	r2
	∠ ↓	\downarrow
<i>S</i> 5	<i>S</i> 6	<i>S</i> 7
r4	r6	r7

<i>S</i> 1	r3
<i>S</i> 2	r1
<i>S</i> 3	r5
<i>S</i> 5	r4
<i>S</i> 6	r6
<i>S</i> 4	r2
<i>S</i> 7	r7

EITH Eidgendsstuche Techniuche Hochschule Züric Swiss Federal Institute of Technology Zurich

ean-Raymond Abrial (ETH-Zürich)

immary of the Mathematical Notation

Bucharest, 14-16/07/1

9 / 12

120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Concept of Sequent and Inference Rule Backward and Forward Reasoning

More on Sequent

- We supposedly have a Predicate Language (not defined yet)
- A sequent is denoted by:

- H is a (possibly empty) collection of predicates: the hypotheses
- G is a predicate: the goal

Meaning ...

Under the hypotheses of collection H, prove the goal G

Foundation for Deductive and Formal Pro-A Quick Review of Propositional Calcu A Quick Review of First Order Predicate Calcu Concept of Sequent and Inference Rule Backward and Forward Reasoning

Proof of S1

ETH Edgenöstische Technische Hachschale Zürich Swiss Federal Institute of Technotour Zurich

Jean-Raymond Abrial (ETH-Zürich)

mmary of the Mathematical Notation

Bucharest, 14-16/07/10

10 / 12

Foundation for Deductive and Formal Pro A Quick Review of Propositional Calcul A Quick Review of First Order Predicate Calcul

Concept of Sequent and Inference Rule Backward and Forward Reasoning

Basic Inference Rules of Mathematical Reasoning

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving *P* under H, then *P* can be added to the collection H for proving a goal *G*.

Concept of Sequent and Inference Rule Backward and Forward Reasoning Basic Inference Rules

Basic Inference Rules

 $H, P \vdash P$

HYP

 $H, P \vdash Q$

CUT

MON

A Quick Review of Propositional Calculus

Syntax

Predicate ::= Predicate ∧ Predicate $Predicate \Rightarrow Predicate$ ¬ Predicate

• This syntax is ambiguous.

Basic Constructs of Propositional Calculus

Given predicates P and Q, we can construct:

• CONJUNCTION: $P \wedge Q$

• IMPLICATION: $P \Rightarrow Q$

• NEGATION: $\neg P$

More on Syntax

- Pairs of matching parentheses can be added freely.
- ullet Operator \wedge is associative.
- Operator \Rightarrow is not associative: $P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitly $(P \Rightarrow Q) \Rightarrow R$ or $P \Rightarrow (Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: \neg , \wedge , \Rightarrow .

Extensions: Truth, Falsity, Disjunction and Equivalence

■ TRUTH: T

FALSITY:
 ⊥

• DISJUNCTION: $P \lor Q$

• EQUIVALENCE: $P \Leftrightarrow Q$

Eidgenössische Technische Hochschule Swiss Federal Institute of Technology 2

ean-Raymond Abrial (ETH-Zürich)

ımmary of the Mathematical Notation

Bucharest, 14-16/07/

17 / 120

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

More on Syntax

- Pairs of matching parentheses can be added freely.
- \bullet Operators \wedge and \vee are associative.
- Operator \Rightarrow and \Leftrightarrow are not associative.
- Precedence decreasing order: \neg , \wedge and \vee , \Rightarrow and \Leftrightarrow .

Foundation for Deductive and Formal Pro A Quick Review of Propositional Calcu A Quick Review of First Order Predicate Calcu A Refresher on Set The

Syntax

 $Predicate ::= Predicate \land Predicate \ Predicate \Rightarrow Predicate \ \neg Predicate \ \bot \ \top \ Predicate \lor Predicate \ Predicate \ Predicate \Leftrightarrow Predicate$

ETH Bidgendesische Technische Hochschule Züric Swiss Federal Institute of Technetour Zurich

Jean-Raymond Abrial (ETH-Zürich)

mmary of the Mathematical Notation

Bucharest, 14-16/07/

18 / 120

Foundation for Deductive and Formal Proc A Quick Review of Propositional Calcul A Quick Review of First Order Predicate Calcul

More on Syntax (cont'd)

- \bullet The mixing of \land and \lor without parentheses is not allowed.
- You have to write either $P \wedge (Q \vee R)$ or $(P \wedge Q) \vee R$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $P \Rightarrow (Q \Leftrightarrow R)$ or $(P \Rightarrow Q) \Leftrightarrow R$

Propositional Calculus Rules of Inference (1)

• Rules about conjunction

$$\begin{array}{c|cccc} \textbf{H}, \textbf{P}, \textbf{Q} & \vdash & \textbf{R} \\ \hline \textbf{H}, & \textbf{P} \land \textbf{Q} & \vdash & \textbf{R} \end{array} \quad \textbf{AND_L}$$

Rules about implication

$$\frac{\mathbf{H}, \mathbf{P} \; \vdash \; \mathbf{Q}}{\mathbf{H} \; \vdash \; \mathbf{P} \Rightarrow \mathbf{Q}} \quad \mathsf{IMP}_{\mathsf{R}}$$

Rules with a double horizontal line can be applied in both directions.

stagenossische recherische Hachschule Zün

ean-Raymond Abrial (ETH-Zürich)

Summary of the Mathematical Notation

Bucharest, 14-16/07/

21 / 120

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Propositional Calculus Rules of Inference (3)

• Rules about negation

$$\frac{\mathbf{H},\mathbf{P} \;\vdash\; \bot}{\mathbf{H} \;\vdash\; \neg\,\mathbf{P}} \quad \mathsf{NOT}_{\mathsf{R}}$$

$$H, \bot \vdash P$$
 FALSE_L

ETH EdgenSwitche Technische Hochschale Zürlei Meiss Rederal Institute of Technology Zurich Foundation for Deductive and Formal Proo A Quick Review of Propositional Calcul A Quick Review of First Order Predicate Calcul

Propositional Calculus Rules of Inference (2)

Rules about disjunction

$$\frac{\mathbf{H}, \neg P \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \lor \mathbf{Q}} \quad \mathsf{OR}_{\mathbf{R}}$$

Fildgredestsche Technische Hochschule Zürle Swiss Federal institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich)

ımmary of the Mathematical Notation

Bucharest, 14-16/07/1

22 / 12

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Propositional Calculus Rules of Inference (4)

• Deriving rules:

$$\frac{\mathsf{H},\ Q\ \vdash\ P\qquad \mathsf{H},\ \neg\ Q\ \vdash\ P}{\mathsf{H}\ \vdash\ P}\quad \mathsf{CASE}$$

$$\frac{\mathsf{H.} \neg Q \vdash \neg P}{\mathsf{H.} P \vdash Q} \mathsf{CT_L}$$

$$\frac{H. \neg P \vdash \bot}{H \vdash P} \quad \mathsf{CT}_{\mathsf{R}}$$

$$\frac{\mathsf{H} \; \vdash \; P}{\mathsf{H} \; \vdash \; P \lor Q} \quad \mathsf{OR_R1}$$

$$\frac{\mathsf{H} \vdash \mathsf{Q}}{\mathsf{H} \vdash \mathsf{P} \lor \mathsf{Q}} \quad \mathsf{OR}_{\mathsf{R}}\mathsf{2}$$

Predicate	Rewritten	
Т	¬ L	
$P \Leftrightarrow Q$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$	

More derived rules:

TRUE R $H \vdash T$

$$\begin{array}{c|c} H \vdash P \\ \hline H, \top \vdash P \end{array} \quad \textbf{TRUE_L}$$

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

CLASSICAL RESULTS (2)

excluded middle	$P \vee \neg P$
idempotence	$P \lor P \Leftrightarrow P$ $P \land P \Leftrightarrow P$
absorbtion	$ \begin{array}{ccc} (P \lor Q) \land P \Leftrightarrow P \\ (P \land Q) \lor P \Leftrightarrow P \end{array} $
truth	$(P \Leftrightarrow \top) \Leftrightarrow P$
falsity	$(P \Leftrightarrow \bot) \Leftrightarrow \neg P$

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 27 / 120

CLASSICAL RESULTS (1)

	commutativity	$P \lor Q \Leftrightarrow Q \lor P$ $P \land Q \Leftrightarrow Q \land P$ $(P \Leftrightarrow Q) \Leftrightarrow (Q \Leftrightarrow P)$
	associativity	$ \begin{array}{cccc} (P \lor Q) \lor R & \Leftrightarrow & P \lor (Q \lor R) \\ (P \land Q) \land R & \Leftrightarrow & P \land (Q \land R) \\ ((P \Leftrightarrow Q) \Leftrightarrow R) & \Leftrightarrow & (P \Leftrightarrow (Q \Leftrightarrow R)) \end{array} $
>	distributivity	$\begin{array}{cccc} R \wedge (P \vee Q) & \Leftrightarrow & (R \wedge P) \vee (R \wedge Q) \\ R \vee (P \wedge Q) & \Leftrightarrow & (R \vee P) \wedge (R \vee Q) \\ R \Rightarrow (P \wedge Q) & \Leftrightarrow & (R \Rightarrow P) \wedge (R \Rightarrow Q) \\ (P \vee Q) \Rightarrow R & \Leftrightarrow & (P \Rightarrow R) \wedge (Q \Rightarrow R) \end{array}$

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

CLASSICAL RESULTS (3)

de Morgan	$ \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q) \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q) \neg (P \land Q) \Leftrightarrow (P \Rightarrow \neg Q) \neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q) $
contraposition	$ \begin{array}{cccc} (P \Rightarrow Q) & \Leftrightarrow & (\neg Q \Rightarrow \neg P) \\ (\neg P \Rightarrow Q) & \Leftrightarrow & (\neg Q \Rightarrow P) \\ (P \Rightarrow \neg Q) & \Leftrightarrow & (Q \Rightarrow \neg P) \end{array} $
double negation	$P \Leftrightarrow \neg \neg P$

CLASSICAL RESULTS (4)

transitivity	$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
monotonicity	$(P \Rightarrow Q) \Rightarrow ((P \land R) \Rightarrow (Q \land R))$ $(P \Rightarrow Q) \Rightarrow ((P \lor R) \Rightarrow (Q \lor R))$ $(P \Rightarrow Q) \Rightarrow ((R \Rightarrow P) \Rightarrow (R \Rightarrow Q))$ $(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow R) \Rightarrow (P \Rightarrow R))$ $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
equivalence	$(P \Leftrightarrow Q) \Rightarrow ((P \land R) \Leftrightarrow (Q \land R))$ $(P \Leftrightarrow Q) \Rightarrow ((P \lor R) \Leftrightarrow (Q \lor R))$ $(P \Leftrightarrow Q) \Rightarrow ((R \Rightarrow P) \Leftrightarrow (R \Rightarrow Q))$ $(P \Leftrightarrow Q) \Rightarrow ((P \Rightarrow R) \Leftrightarrow (Q \Rightarrow R))$ $(P \Leftrightarrow Q) \Rightarrow (\neg P \Leftrightarrow \neg Q)$

Summary of the Mathematical Notatio

Bucharest, 14-16/07/

10 :

29 / 120

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus

Refining our Language: Predicate Calculus

predicate ::= ⊥

¬ predicate

predicate ∧ predicate

predicate ∨ predicate

predicate ⇒ predicate

predicate ⇔ predicate

predicate ⇔ predicate

[var_list · predicate

[var_list := exp_list] predicate

[var_list := exp_list] expression

expression → expression

Hochschule Zürlich rechnelogy Zurich Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Syntax of our Predicate Language so far

- The letter P, Q, etc. we have used are generic variables.
- Each of them stands for a *predicate*.
- All our proofs were thus also generic (able to be instantiated).

Eiden Eidgendssluche Techwische Hochschule Zürich Swiss Teuleral Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich

mmary of the Mathematical Notation

Bucharest, 14-16/07

30 / 12

Foundation for Deductive and Formal Pro A Quick Review of Propositional Calcu A Quick Review of First Order Predicate Calcu A Refresher on Set The

On Predicates and Expressions

- A Predicate is a formal text that can be PROVED
- An Expression DENOTES AN OBJECT.
- A Predicate denotes NOTHING.
- An Expression CANNOT BE PROVED
- Predicates and Expressions are INCOMPATIBLE.

Predicate Calculus: Linguistic Concepts.

- Substitution and Universal Quantification.
- Free/Bound Occurrences.
- Inference rules.
- Extension

WHAT CAN WE DO WITH A PREDICATE?

• Specialize it: Substitution

$$[n := 8] (n \in \mathbb{N} \Rightarrow n \ge 0)$$

 $8 \in \mathbb{N} \Rightarrow 8 \ge 0$

Generalize it: Universal Quantification

$$\forall n \cdot (n \in \mathbb{N} \Rightarrow n \geq 0)$$

VARIABLES, PROPOSITIONS AND PREDICATES

• A Proposition: $8 \in \mathbb{N} \Rightarrow 8 \ge 0$

• A Predicate (n is a variable): $n \in \mathbb{N} \implies n \ge 0$

SUBSTITUTION

Simple Substitution

$$[x := E]P$$

- x is a VARIABLE,
- E is an EXPRESSION,
- P is a PREDICATE,
- Denotes the predicate obtained by replacing all FREE OCCURRENCES of x by E in P.

- x is said to be the QUANTIFIED VARIABLE
- P forms the SCOPE of x
- To say that such a predicate is proved, is the same as saying that all predicates of the following form are proved:

$$[x := E]P$$

ETH Eidgenössische Technische Hachschale Zür Swiss Federal Institute of Technology Zuric

ean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notation

Bucharest, 14-16/07/:

37 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Inference Rules for Predicate Calculus

$$\frac{ \text{H, } \forall x \cdot P, \ [x := E]P \ \vdash \ Q }{ \text{H, } \forall x \cdot P \ \vdash \ Q } \quad \text{ALL_L}$$

where **E** is an expression

$$\frac{\mathsf{H} \; \vdash \; \mathsf{P}}{\mathsf{H} \; \vdash \; \forall \mathsf{x} \cdot \mathsf{P}} \quad \mathsf{ALL}_{\mathsf{R}}$$

• In rule ALL R, variable x is not free in H

Eddendesische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Free and Bound Occurrences

• Occurrences of the variable *n* are FREE (substitutable) in:

$$n \in \mathbb{N} \Rightarrow n \geq 0$$

• Occurrences of the variable *n* are BOUND (not substitutable) in:

$$[n := 8] (n \in \mathbb{N} \Rightarrow n \ge 0)$$

$$\forall n \cdot (n \in \mathbb{N} \Rightarrow n \geq 0)$$

EIFH Eidgendsstuche Technische Hachschule Zürf Swins Federal Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich)

mmary of the Mathematical Notation

Bucharest, 14-16/07

10 38 / 12

Foundation for Deductive and Formal Proc A Quick Review of Propositional Calcul A Quick Review of First Order Predicate Calcul

Extending the language: Existential Quantification

 $\textit{expression} \quad ::= \quad \textit{variable}$

 $[\mathit{var}_\mathit{list} := \mathit{exp}_\mathit{list}] \, \mathit{expression}$

 $\textit{expression} \mapsto \textit{expression}$

variable ::= identifier

Hachschule Zü echnelogy Zuri

Rules of Inference for Existential Quantification

 $\frac{\mathsf{H},\; P\;\;\vdash\;\; Q}{\mathsf{H},\;\exists \mathsf{x}\cdot P\;\;\vdash\;\; Q}\qquad \mathsf{XST_L}$

• In rule XST L, variable x is not free in H and Q

$$\frac{\mathsf{H} \vdash [x := E]P}{\mathsf{H} \vdash \exists x \cdot P} \qquad \mathsf{XST_R}$$

where **E** is an expression

ETH

Eidgendesische Technische Hachschule Zürle
Veiles Teileral Institute of Technology Zurleh

ean-Raymond Abrial (ETH-Zürich)

iummary of the Mathematical Notation

Bucharest, 14-16/07/

41 / 120

Foundation for Deductive and Formal Proof: A Quick Review of Propositional Calculu: A Quick Review of First Order Predicate Calculu:

CLASSICAL RESULTS (1)

commutativity	$\forall x \cdot \forall y \cdot P \iff \forall y \cdot \forall x \cdot P$ $\exists x \cdot \exists y \cdot P \iff \exists y \cdot \exists x \cdot P$
distributivity	$\forall x \cdot (P \land Q) \Leftrightarrow \forall x \cdot P \land \forall x \cdot Q$ $\exists x \cdot (P \lor Q) \Leftrightarrow \exists x \cdot P \lor \exists x \cdot Q$
associativity	if x not free in P $P \lor \forall x \cdot Q \Leftrightarrow \forall x \cdot (P \lor Q)$ $P \land \exists x \cdot Q \Leftrightarrow \exists x \cdot (P \land Q)$ $P \Rightarrow \forall x \cdot Q \Leftrightarrow \forall x \cdot (P \Rightarrow Q)$

er Hochschule Zürleh Itate of Technology Zurich Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Comparing the Quantification Rules

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

lean-Raymond Abrial (ETH-Zürich)

immary of the Mathematical Notation

Bucharest, 14-16/07

42 / 12

Foundation for Deductive and Formal Proof
A Quick Review of Propositional Calculu
A Quick Review of First Order Predicate Calculu

CLASSICAL RESULTS (2)

de Morgan laws	$ \neg \forall x \cdot P \Leftrightarrow \exists x \cdot \neg P \neg \exists x \cdot P \Leftrightarrow \forall x \cdot \neg P \neg \forall x \cdot (P \Rightarrow Q) \Leftrightarrow \exists x \cdot (P \land \neg Q) \neg \exists x \cdot (P \land Q) \Leftrightarrow \forall x \cdot (P \Rightarrow \neg Q) $
monotonicity	$\forall x \cdot (P \Rightarrow Q) \Rightarrow (\forall x \cdot P \Rightarrow \forall x \cdot Q)$ $\forall x \cdot (P \Rightarrow Q) \Rightarrow (\exists x \cdot P \Rightarrow \exists x \cdot Q)$
equivalence	$\forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\forall x \cdot P \Leftrightarrow \forall x \cdot Q)$ $\forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\exists x \cdot P \Leftrightarrow \exists x \cdot Q)$

$P \wedge Q$	¬ P
$P \lor Q$	$\forall x \cdot P$
$P \Rightarrow Q$	$\exists x \cdot P$

A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Equality Rules of Inference

$$\frac{[x := F]H, E = F \vdash [x := F]P}{[x := E]H, E = F \vdash [x := E]P}$$
 EQ_LR

$$\frac{[x := E]H, \ E = F \ \vdash \ [x := E]P}{[x := F]H, \ E = F \ \vdash \ [x := F]P} \qquad \text{EQ_RL}$$

Rewriting rules:

Operator	Predicate	Rewritten
Equality	E = E	Т
Equality of pairs	$E \mapsto F = G \mapsto H$	$E = G \wedge F = H$

A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Refining our Language: Equality

 $predicate ::= \bot$ ¬ predicate predicate ∧ predicate predicate ∨ predicate $predicate \Rightarrow predicate$ predicate ⇔ predicate ∀variable · predicate $\exists variable \cdot predicate$ [variable := expression] predicate expression = expressionexpression ::= ··· variable ::= ···

A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Classical Results for Equality

symmetry	$E = F \Leftrightarrow F = E$
transitivity	$E = F \wedge F = G \Rightarrow E = G$
	if x not free in E
One-point rules	$\forall x \cdot (x = E \Rightarrow P) \Leftrightarrow [x := E]P$
	$\exists x \cdot (x = E \land P) \Leftrightarrow [x := E]P$

Refining our Language: Set Theory (1)

```
predicate ::= \bot
                  ¬ predicate
                   predicate ∧ predicate
                  predicate ∨ predicate
                  predicate \Rightarrow predicate
                   predicate ⇔ predicate
                  \forall var list \cdot predicate
                  \exists var list · predicate
                  [var list := exp list] predicate
                   expression = expression
                   expression \in set
```

Set Theory

- Basis
 - Basic operators
- Extensions
 - Elementary operators
 - Generalization of elementary operators
 - Binary relation operators
 - Function operators

Basic Constructs Extensions

Refining our Language: Set Theory (2)

```
expression ::= variable
                            [var list := exp list] expression
                            expression \mapsto expression
        variable
                      ::= identifier
        set
                      := set \times set
                            \mathbb{P}(set)
                            { var list · predicate | expression }
• When expression is the same as var list, the last construct can be
```

written { var list | predicate }

Basic Constructs Extensions

Set Theory: Membership

• Set theory deals with a new predicate: the membership predicate

where E is an expression and S is a set

Set Theory: Basic Constructs

There are three basic constructs in set theory:

Cartesian product	$S \times T$
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x \cdot P \mid F\}$
Comprehension 2	{x P}

where S and T are sets, x is a variable and P is a predicate.

Basic Constructs

Power Set

Basic Constructs Extensions

Cartesian Product

Basic Constructs

Set Comprehension

Basic Constructs Extensions

Basic Set Operator Memberships (Axioms)

These axioms are defined by equivalences.

Left Part	Right Part
$E \mapsto F \in S \times T$	$E \in S \land F \in T$
$S \in \mathbb{P}(T)$	$\forall x \cdot (x \in S \Rightarrow x \in T)$ (x is not free in S and T)
$E \in \{x \cdot P \mid F\}$	$\exists x \cdot P \land E = F$ (x is not free in E)
$E \in \{x \mid P\}$	[x := E]P (x is not free in E)

Basic Constructs Extensions

Elementary Set Operators

Union	$S \cup T$
Intersection	$S\cap T$
Difference	$S \setminus T$
Extension	$\{a,\ldots,b\}$
Empty set	Ø

Basic Constructs Extensions

Set Inclusion and Extensionality Axiom

Left Part	Right Part
$S\subseteq T$	$S\in \mathbb{P}(T)$
S = T	$S \subseteq T \land T \subseteq S$

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

Basic Constructs Extensions

Union, Difference, Intersection

Elementary Set Operator Memberships

$E \in S \cup T$	$E \in S \ \lor \ E \in T$
$E \in S \cap T$	$E \in S \land E \in T$
$E \in S \setminus T$	$E \in S \land E \notin T$
$E \in \{a, \ldots, b\}$	$E = a \lor \ldots \lor E = b$
$E \in \emptyset$	Т

Basic Constructs Extensions

Generalizations of Elementary Operators

Generalized Union	union (S)
Union Quantifier	$\bigcup x \cdot (P \mid T)$
Generalized Intersection	inter(S)
Intersection Quantifier	$\bigcap x \cdot (P \mid T)$

Summary of Basic and Elementary Operators

S × T	$S \cup T$	
$\mathbb{P}(S)$	$S\cap T$	
$\{x \cdot P \mid F\}$	$S \setminus T$	
$S\subseteq T$	$\{a,\ldots,b\}$	
S = T	Ø	

Basic Constructs Extensions

Generalized Union

Generalized Intersection

Basic Constructs Extensions

Summary of Generalizations of Elementary Operators

union (S) $\bigcup x \cdot P \mid T$ inter (S) $\bigcap x \cdot P \mid T$

Generalizations of Elementary Operator Memberships

$E \in \text{union}(S)$	$\exists s \cdot s \in S \land E \in s$ (s is not free in S and E)
$E \in (\bigcup x \cdot P \mid T)$	$\exists x \cdot P \land E \in T$ (x is not free in E)
$E \in inter(S)$	$\forall s \cdot s \in S \Rightarrow E \in s$ (s is not free in S and E)
$E \in (\bigcap x \cdot P \mid T)$	$\forall x \cdot P \Rightarrow E \in T$ (x is not free in E)

Well-definedness condition for case 3: Well-definedness condition for case 4:

Basic Constructs Extensions

Binary Relation Operators (1)

Binary relations	$S \leftrightarrow T$
Domain	dom (r)
Range	ran (r)
Converse	r^{-1}

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Basic Constructs

A Binary Relation r from a Set A to a Set B

ETH Edgenössische Technische Hochschule Zürl

ean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notatio

Bucharest, 14-16/07/10

69 / 12

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus
A Pafrabas on Set Theory

Basic Constructs Extensions

Range of Binary Relation r

Domain of Binary Relation r

ETH Eidgendsstuche Technische Hochschule Zürft Swiss Federal Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich)

ımmary of the Mathematical Notation

Bucharest, 14-16/07/1

70 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus
A Refresher on Set Theon

Basic Constructs Extensions

Converse of Binary Relation r

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Basic Constructs

Binary Relation Operator Memberships (1)

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E \in dom(r)$	$\exists y \cdot E \mapsto y \in r$ (y is not free in E and r)
$F\in ran(r)$	$\exists x \cdot x \mapsto F \in r$ (x is not free in F and r)
$E \mapsto F \in r^{-1}$	$F\mapsto E\in r$

6

ean-Raymond Abrial (ETH-Zürich)

Summary of the Mathematical Notation

Bucharest, 14-16/07/:

73 / 120

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Basic Constructs Extensions

A Partial Surjective Relation

ETH Edgendestache Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Foundation for Deductive and Formal Proo A Quick Review of Propositional Calculi A Quick Review of First Order Predicate Calculi A Refresher on Set Theo

Basic Constructs
Extensions

Binary Relation Operators (2)

Partial surjective binary relations	S ↔ T
Total binary relations	S
Total surjective binary relations	S

Eiden Eidgendssluche Techwische Hochschule Zürich Swiss Teuleral Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich)

immary of the Mathematical Notation

Bucharest, 14-16/07

/10 74 / :

Foundation for Deductive and Formal Proof A Quick Review of Propositional Calculu A Quick Review of First Order Predicate Calculu

Basic Constructs Extensions

A Total Relation

A Total Surjective Relation

Basic Constructs Extensions

Binary Relation Operators (3)

Domain restriction	S⊲r
Range restriction	r⊳T
Domain subtraction	<i>S</i> ⊲ <i>r</i>
Range subtraction	<i>r</i> ⊳ <i>T</i>

Binary Relation Operator Memberships (2)

Left Part	Right Part	
$r \in S \leftrightarrow\!\!\!\!\rightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{ran}(r) = T$	
$r \in S \leftrightarrow T$	$r \in S \leftrightarrow T \wedge \operatorname{dom}(r) = S$	
$r \in S \Leftrightarrow T$	$r \in S \leftrightarrow\!$	

Basic Constructs Extensions

The Domain Restriction Operator

The Range Restriction Operator

SERVICE REPORT OF THE PARTY OF

ETH Eidgendssliche Technische Hachschule Zürich

lean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notation

Bucharest, 14-16/07/10

81 / 12

The Domain Substraction Operator

ETH Eidgenöstische Technische Hochschule Zürich Swiss Teuleral Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Züricl

ımmary of the Mathematical Notation

Bucharest, 14-16/07/:

82 / 120

Foundation for Deductive a

A Quick Review of Prop

Extensions

A Quick Review of First Operation

A Part of P

Basic Constructs Extensions

The Range Substraction Operator

ETTH

Edgendestuche Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Binary Relation Operator Memberships (3)

Left Part	Right Part	
$E \mapsto F \in S \triangleleft r$	$E \in S \land E \mapsto F \in r$	
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \in T$	
$E \mapsto F \in S \triangleleft r$	$E \notin S \land E \mapsto F \in r$	
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \notin T$	

Service Conference of the Conf

: Hachschule Zür of Technology Zuric A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

A Refresher on Set Theory

Basic Constructs

Binary Relation Operators (4)

Imager[w]Compositionp; qOverriding $p \Leftrightarrow q$ Identityid(S)

ETH Eidgenössluche Technische Hachschule Zürf-

lean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notatio

Bucharest, 14-16/07/1

85 / 12

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Basic Constructs Extensions

Forward Composition

Foundation for Deductive and Formal Proo A Quick Review of Propositional Calcul A Quick Review of First Order Predicate Calcul A Refresher on Set Theo

Basic Constructs
Extensions

Image of $\{a5, a7\}$ under r

SET NO FEMALES

Bidgendsulsche Technische Hachsol Swiss Federal Institute of Technolo

Jean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notation

Bucharest, 14-16/07/10

86 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus
A Refresher on Set Theon

Basic Constructs Extensions

The Overriding Operator

The Overriding Operator

Basic Constructs Extensions

Special Case

Special Case

Basic Constructs Extensions

The Identity Relation

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus

Basic Constructs

Binary Relation Operator Memberships (4)

$F \in r[w]$	$\exists x \cdot x \in w \land x \mapsto F \in r$ (x is not free in F, r and w)
$E \mapsto F \in (p;q)$	$\exists x \cdot E \mapsto x \in p \land x \mapsto F \in q$ (x is not free in E, F, p and q)
$E \mapsto F \in p \Leftrightarrow q$	$E \mapsto F \in (dom(q) \triangleleft p) \ \cup \ q$
$E \mapsto F \in id(S)$	$E \in S \land F = E$

ETH Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

ean-Raymond Abrial (ETH-Zürich)

iummary of the Mathematical Notation

Bucharest, 14-16/07/

93 / 12

Basic Constructs Extensions

A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Binary Relation Operator Memberships (5)

$E \mapsto (F \mapsto G) \in p \otimes q$	$E \mapsto F \in p \land E \mapsto G \in q$
$(E \mapsto F) \mapsto G \in \operatorname{prj}_1(S, T)$	$E \in S \land F \in T \land G = E$
$(E \mapsto F) \mapsto G \in \operatorname{prj}_2(S, T)$	$E \in S \land F \in T \land G = F$
$(E \mapsto G) \mapsto (F \mapsto H) \in p \parallel q$	$E \mapsto F \in p \land G \mapsto H \in q$

Foundation for Deductive and Formal Proof A Quick Review of Propositional Calculur A Quick Review of First Order Predicate Calculur A Refresher on Set Theory

Basic Constructs

Binary Relation Operators (5)

Direct Product	p⊗q	
First Projection	$prj_1(S,T)$	
Second Projection	$\operatorname{prj}_2(S,T)$	
Parallel Product	p q	

ETH Bidgendesische Technische Hochschule Züric Swiss Federal Institute of Technetour Zurich

Jean-Raymond Abrial (ETH-Zürich)

immary of the Mathematical Notation

Bucharest, 14-16/07/1

94 / 12

Foundation for Deductive and Formal Proof A Quick Review of Propositional Calculu A Quick Review of First Order Predicate Calculu Set Theory

Basic Constructs Extensions

Summary of Binary Relation Operators

$S \leftrightarrow T$	<i>S</i> ⊲ <i>r</i>	r[w]	$prj_1\left(S,T ight)$
dom (r)	r⊳T	p; q	$prj_2(S,T)$
ran (<i>r</i>)	<i>S</i> ⊲ <i>r</i>	<i>p</i>	id (<i>S</i>)
r^{-1}	r ⊳ T	p⊗q	p q

Classical Results with Relation Operators

$$r^{-1-1} = r$$

$$dom(r^{-1}) = ran(r)$$

$$(S \triangleleft r)^{-1} = r^{-1} \triangleright S$$

$$(p;q)^{-1} = q^{-1}; p^{-1}$$

$$(p;q); r = q; (p;r)$$

$$(p;q)[w] = q[p[w]]$$

$$p;(q \cup r) = (p;q) \cup (p;r)$$

$$r[a \cup b] = r[a] \cup r[b]$$

Basic Constructs Extensions

Translations into First Order Predicates

Given a relation r such that $r \in S \leftrightarrow S$

$$r = r^{-1} \qquad \forall x, y \cdot x \in S \land y \in S \Rightarrow \big(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r \big)$$

$$r\cap r^{-1}=\varnothing \qquad \forall x,y\cdot x\mapsto y\in r \Rightarrow y\mapsto x\notin r$$

$$r \cap r^{-1} \subseteq \operatorname{id}(S) \quad \forall x, y \cdot x \mapsto y \in r \land y \mapsto x \in r \Rightarrow x = y$$

$$id(S) \subseteq r \quad \forall x \cdot x \in S \Rightarrow x \mapsto x \in r$$

$$r \cap id(S) = \emptyset$$
 $\forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y$

$$r; r \subseteq r$$
 $\forall x, y, z \cdot x \mapsto y \in r \land y \mapsto z \in r \Rightarrow x \mapsto z \in r$

Set-theoretic statements are far more readable than predicate calculus statements

More classical Results

Given a relation r such that $r \in S \leftrightarrow S$

$$r = r^{-1}$$

r is symmetric

$$r \cap r^{-1} = \emptyset$$

r is asymmetric

$$r \cap r^{-1} \subseteq \mathrm{id}(S)$$

r is antisymmetric

$$id(S) \subseteq r$$

r is reflexive

$$r \cap \mathrm{id}(S) = \emptyset$$

r is irreflexive

$$r$$
; $r \subseteq r$

r is transitive

Basic Constructs Extensions

Function Operators (1)

Partial functions	$S \leftrightarrow T$
Total functions	S o T
Partial injections	$S \rightarrowtail T$
Total injections	$S \rightarrowtail T$

A Partial Function F from a Set A to a Set B

Basic Constructs Extensions

A Partial Injection F from a Set A to a Set B

A Total Function F from a Set A to a Set B

Basic Constructs Extensions

A Total Injection F from a Set A to a Set B

Function Operator Memberships (1)

Left Part	Right Part		
$f \in S \leftrightarrow T$	$f \in \mathcal{S} \leftrightarrow \mathcal{T} \wedge (f^{-1}; f) = \operatorname{id}(\operatorname{ran}(f))$		
$f \in S \rightarrow T$	$f \in S \rightarrow T \land s = dom(f)$		
$f \in S \rightarrowtail T$	$f \in S \rightarrow T \land f^{-1} \in T \rightarrow S$		
$f \in S \rightarrow T$	$f \in S \to T \land f^{-1} \in T \leftrightarrow S$		

Basic Constructs Extensions

A Partial Surjection F from a Set A to a Set B

Function Operators (2)

Partial surjections	S → * T	
Total surjections	S → T	
Bijections	<i>S</i> → <i>T</i>	

Basic Constructs Extensions

A Total Surjection F from a Set A to a Set B

A Bijection F from a Set A to a Set B

Basic Constructs Extensions

Summary of Function Operators

$S \leftrightarrow T$	S -+-> T
S o T	S → T
$S \rightarrowtail T$	S → T
$S \rightarrowtail T$	

Function Operator Memberships (2)

Left Part	Right Part
$f \in S \twoheadrightarrow T$	$f \in S ightarrow T \wedge T = \operatorname{ran}(f)$
$f \in S \twoheadrightarrow T$	$f \in S \to T \land T = \operatorname{ran}(f)$
$f \in S \rightarrowtail T$	$f \in S \rightarrowtail T \land f \in S \twoheadrightarrow T$

Basic Constructs Extensions

S × T	S\T	r^{-1}	r[w]	id (<i>S</i>)	$\{x \mid x \in S \land P\}$
$\mathbb{P}(S)$	$S \leftrightarrow T$ $S \leftrightarrow T$	S ⊲ r S ⊲ r	p; q	$S \to T \\ S \to T$	$\{x \cdot x \in S \land P \mid E\}$
$S\subseteq T$	$\begin{array}{c} S \longleftrightarrow T \\ S \longleftrightarrow T \end{array}$	r ⊳ T r ∋ T	<i>p</i>	$\begin{array}{c} S \rightarrowtail T \\ S \rightarrowtail T \end{array}$	{ a, b,, n }
$S \cup T$	dom (<i>r</i>) ran (<i>r</i>)	prj ₁	p⊗q	S → T S → T	union U
$S \cap T$	Ø	prj ₂	$p \parallel q$	<i>S</i> → <i>T</i>	inter \(\cap\)

A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Applying a Function

Given a partial function f, we have

Left Part	Right Part
F = f(E)	$E \mapsto F \in f$

Well-definedness condition: $E \in dom(f)$

Eiff Eidgenössische Technische Hochschule Zürk Swiss Federal Institute of Technology Zurich

ean-Raymond Abrial (ETH-Zürich)

ummary of the Mathematical Notation

Bucharest, 14-16/07/1

113 / 120

Foundation for Deductive and Formal Proofs A Quick Review of Propositional Calculus A Quick Review of First Order Predicate Calculus A Refresher on Set Theory

Basic Constructs Extensions

Formal Representation

 $\mathit{men} \subseteq \mathit{PERSON}$

 $women = PERSON \setminus men$

husband ∈ women → men

 $mother \in PERSON \rightarrow dom(husband)$

- Every person is either a man or a woman.
- But no person can be a man and a woman at the same time.
- Only women have husbands, who must be a man.
- Woman have at most one husband.
- Likewise, men have at most one wife.
- Moreover, mother are married women.

lachschule Zürlich chnelogy Zurich

Example: a Very Strict Society

- Every person is either a man or a woman
- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man
- Woman have at most one husband
- Likewise, men have at most one wife
- Moreover, mother are married women

ETTH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Jean-Raymond Abrial (ETH-Zürich)

mmary of the Mathematical Notation

Bucharest, 14-16/07

114 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus
A Quick Review of First Order Predicate Calculus
A Pariesher on Set Theory

Basic Constructs Extensions

Defining New Concepts

men ⊂ PERSON

 $women = PERSON \setminus men$

 $husband \in women \rightarrowtail men$

 $mother \in PERSON \rightarrow dom(husband)$

 $wife = husband^{-1}$

 $spouse = husband \cup wife$

father = mother; husband

Hochschule Zürle echnology Zurich

Jean-Raymond Abrial (ETH-Zürich

Summary of the Mathematical Notation

harest, 14-16/07/10

Defining New Concepts

 $men \subseteq PERSON$

 $women = PERSON \setminus men$

 $husband \in women \rightarrowtail men$

 $mother \in PERSON \rightarrow dom(husband)$

father = mother; husband

 $children = (mother \cup father)^{-1}$

daughter = children ⊳ women

 $sibling = (children^{-1}; children) \setminus id(PERSON)$

Basic Constructs Extensions

Exercises. To be proved

mother = father; wife

 $spouse = spouse^{-1}$

 $sibling = sibling^{-1}$

 $cousin = cousin^{-1}$

father; $father^{-1} = mother$; $mother^{-1}$

 $father ; mother^{-1} = \varnothing$

mother; $father^{-1} = \emptyset$

father; children = mother; children

Exercises. To be defined

brother = ?

sibling - in - law = ?

nephew - or - niece = ?

uncle - or - aunt = ?

cousin = ?

For Further Reading

For Further Reading I

🕒 J-R. Abrial.

Modeling in Event-B: System and Software Engineering, Chapter 9 — Mathematical Language.

CUP, 2010.

