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Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Foundation for Deductive and Formal Proofs

Reason: We want to understand how proofs can be mechanized.

Topics:

Concepts of Sequent and Inference Rule.

Backward and Forward reasoning

Basic Inference Rules.
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Sequent

Sequent is the generic name for “something we want to prove”

We shall be more precise later
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Inference Rule

An inference rule is a tool to perform a formal proof

It is denoted by:
A

____

C

A is a (possibly empty) collection of sequents: the antecedents

C is a sequent: the consequent

The proofs of each sequent of A
———— together give you ———–

a proof of sequent C

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 5 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Concept of Sequent and Inference Rule
Backward and Forward Reasoning
Basic Inference Rules

Backward and Forward Reasoning

Given an inference rule A
C with antecedents A and consequent C

Forward reasoning: A
C ↓

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: A
C ↑

In order to get a proof of C , it is sufficient to have proofs of each
sequent in A

Proofs are usually done using backward reasoning
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“Executing” the Proof of a Sequent S (backward reasoning)

We are given:

a collection T of inference rules of the form A
C

a sequent container K , containing S initially

while K is not empty

choose a rule A
C in T whose consequent C is in K ;

replace C in K by the antecedents A (if any)

This proof method is said to be goal oriented.
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Proof of S1

r1S2 r2S7
S4 r3S2 S3 S4

S1 r4S5 r5S5 S6
S3 r6S6 r7S7

S1
r3

↙ ↓ ↘
S2 S3 S4
r1 r5 r2

↙ ↓ ↓
S5 S6 S7
r4 r6 r7

The proof is a tree
We have shown here a depth-first strategy
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Alternate Representation of the Proof Tree

A vertical representation of the proof tree:

S1
r3

↙ ↓ ↘
S2 S3 S4
r1 r5 r2

↙ ↓ ↓
S5 S6 S7
r4 r6 r7

S1 r3
S2 r1
S3 r5

S5 r4
S6 r6

S4 r2
S7 r7
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More on Sequent

We supposedly have a Predicate Language (not defined yet)

A sequent is denoted by:

H ` G

H is a (possibly empty) collection of predicates: the hypotheses

G is a predicate: the goal

Meaning ...

Under the hypotheses of collection H, prove the goal G
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Basic Inference Rules of Mathematical Reasoning

HYPOTHESIS: If the goal belongs to the hypotheses of a sequent,
then the sequent is proved,

MONOTONICITY: Once a sequent is proved, any sequent with the
same goal and more hypotheses is also proved,

CUT: If you succeed in proving P under H, then P can be added to
the collection H for proving a goal G .
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Basic Inference Rules

H, P ` P
HYP

H ` Q

H, P ` Q
MON

H ` P H, P ` Q

H ` Q
CUT
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Basic Constructs of Propositional Calculus

Given predicates P and Q, we can construct:

CONJUNCTION: P ∧ Q

IMPLICATION: P ⇒ Q

NEGATION: ¬P
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Syntax

Predicate ::= Predicate ∧ Predicate
Predicate ⇒ Predicate
¬ Predicate

This syntax is ambiguous.
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More on Syntax

Pairs of matching parentheses can be added freely.

Operator ∧ is associative.

Operator ⇒ is not associative: P ⇒ Q ⇒ R is not allowed.

Write explicitly (P ⇒ Q) ⇒ R or P ⇒ (Q ⇒ R) .

Operators have precedence in this decreasing order: ¬ , ∧ , ⇒ .
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Extensions: Truth, Falsity, Disjunction and Equivalence

TRUTH: >

FALSITY: ⊥

DISJUNCTION: P ∨ Q

EQUIVALENCE: P ⇔ Q
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Syntax

Predicate ::= Predicate ∧ Predicate
Predicate ⇒ Predicate
¬ Predicate
⊥
>
Predicate ∨ Predicate
Predicate ⇔ Predicate
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More on Syntax

Pairs of matching parentheses can be added freely.

Operators ∧ and ∨ are associative.

Operator ⇒ and ⇔ are not associative.

Precedence decreasing order: ¬ , ∧ and ∨ , ⇒ and ⇔.
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More on Syntax (cont’d)

The mixing of ∧ and ∨ without parentheses is not allowed.

You have to write either P ∧ (Q ∨ R) or (P ∧ Q) ∨ R

The mixing of ⇒ and ⇔ without parentheses is not allowed.

You have to write either P ⇒ (Q⇔ R) or (P ⇒ Q)⇔ R
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Propositional Calculus Rules of Inference (1)

Rules about conjunction

H,P,Q ` R

H, P ∧Q ` R
AND_L

H ` P H ` Q

H ` P ∧Q
AND_R

Rules about implication

H,P,Q ` R

H, P, P⇒Q ` R
IMP_L

H,P ` Q

H ` P⇒Q
IMP_R

Note
Rules with a double horizontal line can be applied in both directions.

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 21 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Propositional Calculus Rules of Inference (2)

Rules about disjunction

H, P ` R H, Q ` R

H, P ∨Q ` R
OR_L

H,¬P ` Q

H ` P ∨Q
OR_R
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Propositional Calculus Rules of Inference (3)

Rules about negation

H, ¬Q ` P

H, ¬P ` Q
NOT_L

H,P ` ⊥

H ` ¬P
NOT_R

H,⊥ ` P
FALSE_L

H ` P H ` ¬P

H ` ⊥
FALSE_R
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Propositional Calculus Rules of Inference (4)

Deriving rules:

H, Q ` P H, ¬Q ` P

H ` P
CASE

H. ¬Q ` ¬P

H, P ` Q
CT_L

H. ¬P ` ⊥

H ` P
CT_R

H ` P

H ` P ∨ Q
OR_R1

H ` Q

H ` P ∨ Q
OR_R2
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Propositional Calculus Rules of Inference (4)

Rewriting rules:

Predicate Rewritten

> ¬ ⊥

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P)

More derived rules:

H ` >
TRUE_R

H ` P

H, > ` P
TRUE_L
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CLASSICAL RESULTS (1)

commutativity
P ∨ Q ⇔ Q ∨ P
P ∧ Q ⇔ Q ∧ P
(P ⇔ Q) ⇔ (Q⇔ P)

associativity
(P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R)
(P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R)
((P ⇔ Q)⇔ R) ⇔ (P ⇔ (Q⇔ R))

distributivity

R ∧ (P ∨ Q) ⇔ (R ∧ P) ∨ (R ∧ Q)
R ∨ (P ∧ Q) ⇔ (R ∨ P) ∧ (R ∨ Q)
R ⇒ (P ∧ Q) ⇔ (R ⇒ P) ∧ (R ⇒ Q)
(P ∨ Q) ⇒ R ⇔ (P ⇒ R) ∧ (Q ⇒ R)
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CLASSICAL RESULTS (2)

excluded middle P ∨ ¬P

idempotence
P ∨ P ⇔ P
P ∧ P ⇔ P

absorbtion
(P ∨ Q) ∧ P ⇔ P
(P ∧ Q) ∨ P ⇔ P

truth (P ⇔ >) ⇔ P

falsity (P ⇔ ⊥) ⇔ ¬P
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CLASSICAL RESULTS (3)

de Morgan

¬ (P ∨ Q) ⇔ (¬P ∧ ¬Q)
¬ (P ∧ Q) ⇔ (¬P ∨ ¬Q)
¬ (P ∧ Q) ⇔ (P ⇒ ¬Q)
¬ (P ⇒ Q) ⇔ (P ∧ ¬Q)

contraposition
(P ⇒ Q) ⇔ (¬Q ⇒ ¬P)
(¬P ⇒ Q) ⇔ (¬Q ⇒ P)
(P ⇒ ¬Q) ⇔ (Q ⇒ ¬P)

double negation P ⇔ ¬¬P
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CLASSICAL RESULTS (4)

transitivity (P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R)

monotonicity

(P ⇒ Q) ⇒ ((P ∧ R) ⇒ (Q ∧ R))
(P ⇒ Q) ⇒ ((P ∨ R) ⇒ (Q ∨ R))
(P ⇒ Q) ⇒ ((R ⇒ P) ⇒ (R ⇒ Q))
(P ⇒ Q) ⇒ ((Q ⇒ R) ⇒ (P ⇒ R))
(P ⇒ Q) ⇒ (¬Q ⇒ ¬P)

equivalence

(P ⇔ Q) ⇒ ((P ∧ R) ⇔ (Q ∧ R))
(P ⇔ Q) ⇒ ((P ∨ R) ⇔ (Q ∨ R))
(P ⇔ Q) ⇒ ((R ⇒ P) ⇔ (R ⇒ Q))
(P ⇔ Q) ⇒ ((P ⇒ R) ⇔ (Q ⇒ R))
(P ⇔ Q) ⇒ (¬P ⇔ ¬Q)
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Syntax of our Predicate Language so far

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate

The letter P, Q, etc. we have used are generic variables.
Each of them stands for a predicate.
All our proofs were thus also generic (able to be instantiated).
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Refining our Language: Predicate Calculus

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier
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On Predicates and Expressions

A Predicate is a formal text that can be PROVED

An Expression DENOTES AN OBJECT.

A Predicate denotes NOTHING.

An Expression CANNOT BE PROVED

Predicates and Expressions are INCOMPATIBLE.

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 32 / 120



Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Predicate Calculus: Linguistic Concepts.

Substitution and Universal Quantification.

Free/Bound Occurrences.

Inference rules.

Extension
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VARIABLES, PROPOSITIONS AND PREDICATES

A Proposition: 8 ∈ N ⇒ 8 ≥ 0

A Predicate (n is a variable): n ∈ N ⇒ n ≥ 0
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WHAT CAN WE DO WITH A PREDICATE ?

Specialize it: Substitution
[n := 8 ] (n ∈ N ⇒ n ≥ 0)

↓

8 ∈ N ⇒ 8 ≥ 0
Generalize it: Universal Quantification

∀n · ( n ∈ N ⇒ n ≥ 0 )
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SUBSTITUTION

Simple Substitution

[ x := E ]P

x is a VARIABLE,

E is an EXPRESSION,

P is a PREDICATE,

Denotes the predicate obtained by replacing all
FREE OCCURRENCES of x by E in P.
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UNIVERSAL QUANTIFICATION

Universal Quantification

∀x · P

x is said to be the QUANTIFIED VARIABLE

P forms the SCOPE of x

To say that such a predicate is proved, is the same as saying that all
predicates of the following form are proved:

[ x := E ]P
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Free and Bound Occurrences

Occurrences of the variable n are FREE (substitutable) in:
n ∈ N ⇒ n ≥ 0

Occurrences of the variable n are BOUND (not substitutable) in:
[n := 8 ] (n ∈ N ⇒ n ≥ 0)

∀n · ( n ∈ N ⇒ n ≥ 0 )
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Inference Rules for Predicate Calculus

H, ∀x · P, [x := E ]P ` Q

H, ∀x · P ` Q
ALL_L

where E is an expression

H ` P

H ` ∀x · P
ALL_R

In rule ALL_R, variable x is not free in H
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Extending the language: Existential Quantification

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate⇒ predicate
predicate⇔ predicate
∀var_list · predicate
∃var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier
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Rules of Inference for Existential Quantification

H, P ` Q

H, ∃x · P ` Q
XST_L

In rule XST_L, variable x is not free in H and Q

H ` [x := E ]P

H ` ∃x · P
XST_R

where E is an expression
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Comparing the Quantification Rules

H, ∀x · P, [x := E ]P ` Q

H, ∀x · P ` Q
ALL_L

H ` [x := E ]P

H ` ∃x · P
XST_R

H ` P

H ` ∀x · P
ALL_R

H, P ` Q

H, ∃x · P ` Q
XST_L
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CLASSICAL RESULTS (1)

commutativity ∀x · ∀y · P ⇔ ∀y · ∀x · P
∃x · ∃y · P ⇔ ∃y · ∃x · P

distributivity ∀x · (P ∧ Q) ⇔ ∀x · P ∧ ∀x · Q
∃x · (P ∨ Q) ⇔ ∃x · P ∨ ∃x · Q

associativity

if x not free in P

P ∨ ∀x · Q ⇔ ∀x · (P ∨ Q)
P ∧ ∃x · Q ⇔ ∃x · (P ∧ Q)
P ⇒ ∀x · Q ⇔ ∀x · (P ⇒ Q)
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CLASSICAL RESULTS (2)

de Morgan laws

¬∀x ·P ⇔ ∃x ·¬P
¬∃x ·P ⇔ ∀x ·¬P
¬∀x ·(P ⇒ Q) ⇔ ∃x ·(P ∧ ¬Q)
¬∃x ·(P ∧ Q) ⇔ ∀x ·(P ⇒¬Q)

monotonicity ∀x ·(P ⇒ Q) ⇒ (∀x ·P ⇒ ∀x ·Q)
∀x ·(P ⇒ Q) ⇒ (∃x ·P ⇒ ∃x ·Q)

equivalence ∀x ·(P ⇔ Q) ⇒ (∀x ·P ⇔ ∀x ·Q)
∀x ·(P ⇔ Q) ⇒ (∃x ·P ⇔ ∃x ·Q)
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Summary of Logical Operators

P ∧ Q ¬P

P ∨ Q ∀x · P

P ⇒ Q ∃x · P
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Refining our Language: Equality

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀variable · predicate
∃variable · predicate
[variable := expression] predicate
expression = expression

expression ::= · · ·

variable ::= · · ·
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Equality Rules of Inference

[x := F ]H, E = F ` [x := F ]P

[x := E ]H, E = F ` [x := E ]P
EQ_LR

[x := E ]H, E = F ` [x := E ]P

[x := F ]H, E = F ` [x := F ]P
EQ_RL

Rewriting rules:

Operator Predicate Rewritten

Equality E = E >

Equality of pairs E 7→ F = G 7→ H E = G ∧ F = H
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Classical Results for Equality

symmetry E = F ⇔ F = E

transitivity E = F ∧ F = G ⇒ E = G

One-point rules

if x not free in E

∀ x · ( x = E ⇒ P ) ⇔ [ x := E ]P

∃ x · ( x = E ∧ P ) ⇔ [ x := E ]P
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Refining our Language: Set Theory (1)

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀ var_list · predicate
∃ var_list · predicate
[var_list := exp_list] predicate
expression = expression
expression ∈ set
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Refining our Language: Set Theory (2)

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression
set

variable ::= identifier

set ::= set × set
P(set)
{ var_list · predicate | expression }

When expression is the same as var_list, the last construct can be
written { var_list | predicate }
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Set Theory

1 Basis

Basic operators

2 Extensions
Elementary operators

Generalization of elementary operators

Binary relation operators

Function operators
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Set Theory: Membership

Set theory deals with a new predicate: the membership predicate
E ∈ S

where E is an expression and S is a set
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Set Theory: Basic Constructs

There are three basic constructs in set theory:

Cartesian product S × T

Power set P(S)

Comprehension 1 { x · P | F}

Comprehension 2 { x | P }

where S and T are sets, x is a variable and P is a predicate.
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Cartesian Product

S T

S x T

a1

a2

b1

b2

b3
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Power Set

a2a1

a1 a2 a3

a1

a2

a3

S

a3a1 a2

a3a1 a3a2

P(S)
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Set Comprehension

a1

a8

a7

a3

a2

a6

a5

a4

S

Subset of S
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Basic Set Operator Memberships (Axioms)

These axioms are defined by equivalences.

Left Part Right Part

E 7→ F ∈ S × T E ∈ S ∧ F ∈ T

S ∈ P(T ) ∀x · ( x ∈ S ⇒ x ∈ T )
(x is not free in S and T)

E ∈ {x · P |F} ∃x · P ∧ E = F
(x is not free in E)

E ∈ {x | P} [x := E ]P
(x is not free in E)
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Set Inclusion and Extensionality Axiom

Left Part Right Part

S ⊆ T S ∈ P(T )

S = T S ⊆ T ∧ T ⊆ S

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom
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Elementary Set Operators

Union S ∪ T

Intersection S ∩ T

Difference S \ T

Extension {a, . . . , b}

Empty set ∅
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Union, Difference, Intersection

Intersection

DifferenceUnion
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Elementary Set Operator Memberships

E ∈ S ∪ T E ∈ S ∨ E ∈ T

E ∈ S ∩ T E ∈ S ∧ E ∈ T

E ∈ S \ T E ∈ S ∧ E /∈ T

E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

E ∈ ∅ ⊥
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Summary of Basic and Elementary Operators

S × T S ∪ T

P(S) S ∩ T

{ x ·P | F } S \ T

S ⊆ T {a, . . . , b}

S = T ∅
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Generalizations of Elementary Operators

Generalized Union union (S)

Union Quantifier
⋃

x · (P | T )

Generalized Intersection inter (S)

Intersection Quantifier
⋂

x · (P | T )
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Generalized Union

a1

a2
a3

a4

a5

a1

a3

a2

a3

a5
a4

a2

a1

S union(S)
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Generalized Intersection

a2

a4

a1

S

a3
a4

a3
a5

a1

a1
a3

a2

a1

a3

inter(S)

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 65 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Basic Constructs
Extensions

Generalizations of Elementary Operator Memberships

E ∈ union (S) ∃s · s ∈ S ∧ E ∈ s
(s is not free in S and E)

E ∈ (
⋃

x · P | T ) ∃x · P ∧ E ∈ T
(x is not free in E)

E ∈ inter (S) ∀s · s ∈ S ⇒ E ∈ s
(s is not free in S and E)

E ∈ (
⋂

x ·P | T ) ∀x · P ⇒ E ∈ T
(x is not free in E)

Well-definedness condition for case 3: S 6= ∅
Well-definedness condition for case 4: ∃ x · P
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Summary of Generalizations of Elementary Operators

union (S)

⋃
x · P | T

inter (S)

⋂
x · P | T
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Binary Relation Operators (1)

Binary relations S ↔ T

Domain dom (r)

Range ran (r)

Converse r−1
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A Binary Relation r from a Set A to a Set B

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔ B
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Domain of Binary Relation r

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5
a4

r
a1

dom(r) = {a1, a3, a5, a7}
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Range of Binary Relation r

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

ran(r) = {b1, b2, b4, b6}
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Converse of Binary Relation r

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r−1 = {b1 7→ a3, b2 7→ a1, b2 7→ a5, b2 7→ a7, b4 7→ a3, b6 7→ a7}
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Binary Relation Operator Memberships (1)

Left Part Right Part

r ∈ S ↔ T r ⊆ S × T

E ∈ dom (r) ∃y · E 7→ y ∈ r
(y is not free in E and r)

F ∈ ran (r) ∃x · x 7→ F ∈ r
(x is not free in F and r)

E 7→ F ∈ r−1 F 7→ E ∈ r
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Binary Relation Operators (2)

Partial surjective binary relations S ↔→ T

Total binary relations S ←↔ T

Total surjective binary relations S ↔↔ T
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A Partial Surjective Relation

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔→ B
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A Total Relation

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A←↔ B
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A Total Surjective Relation

A B

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r

r ∈ A↔↔ B
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Binary Relation Operator Memberships (2)

Left Part Right Part

r ∈ S ↔→ T r ∈ S ↔ T ∧ ran(r) = T

r ∈ S ←↔ T r ∈ S ↔ T ∧ dom(r) = S

r ∈ S ↔↔ T r ∈ S ↔→ T ∧ r ∈ S ←↔ T
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Binary Relation Operators (3)

Domain restriction S C r

Range restriction r B T

Domain subtraction S C− r

Range subtraction r B− T

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 79 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Basic Constructs
Extensions

The Domain Restriction Operator

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7}C F
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The Range Restriction Operator

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F B {b2, b4}
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The Domain Substraction Operator

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7}C− F
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The Range Substraction Operator

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F B− {b2, b4}
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Binary Relation Operator Memberships (3)

Left Part Right Part

E 7→ F ∈ S C r E ∈ S ∧ E 7→ F ∈ r

E 7→ F ∈ r B T E 7→ F ∈ r ∧ F ∈ T

E 7→ F ∈ S C− r E /∈ S ∧ E 7→ F ∈ r

E 7→ F ∈ r B− T E 7→ F ∈ r ∧ F /∈ T
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Binary Relation Operators (4)

Image r [w ]

Composition p ; q

Overriding p C− q

Identity id (S)
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Image of {a5, a7} under r

A B

a3
a2

a7

b1

b3

b4

b5

b6

b2

a1

a4

r

a6

a5

r [{a5, a7}] = {b2, b6}
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Forward Composition

S T U

S U

F G

F ; G
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The Overriding Operator

F               G
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The Overriding Operator

F               G

F <+ G
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Special Case

F               {x |−> y}
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Special Case

F <+ {x |−> y}

F               {x |−> y}
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The Identity Relation

a1

a2

a3

a4

a1

a2

a3

a4

S S
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Binary Relation Operator Memberships (4)

F ∈ r [w ] ∃x · x ∈ w ∧ x 7→ F ∈ r
(x is not free in F, r and w)

E 7→ F ∈ (p ; q) ∃x · E 7→ x ∈ p ∧ x 7→ F ∈ q
(x is not free in E, F, p and q)

E 7→ F ∈ p C− q E 7→ F ∈ (dom (q)C− p) ∪ q

E 7→ F ∈ id (S) E ∈ S ∧ F = E
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Binary Relation Operators (5)

Direct Product p ⊗ q

First Projection prj1(S ,T )

Second Projection prj2(S ,T )

Parallel Product p ‖ q
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Binary Relation Operator Memberships (5)

E 7→ (F 7→ G ) ∈ p ⊗ q E 7→ F ∈ p ∧ E 7→ G ∈ q

(E 7→ F ) 7→ G ∈ prj1(S ,T ) E ∈ S ∧ F ∈ T ∧ G = E

(E 7→ F ) 7→ G ∈ prj2(S ,T ) E ∈ S ∧ F ∈ T ∧ G = F

(E 7→ G ) 7→ (F 7→ H) ∈ p ‖ q E 7→ F ∈ p ∧ G 7→ H ∈ q
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Summary of Binary Relation Operators

S ↔ T S C r r [w ] prj1 (S ,T )

dom (r) r B T p ; q prj2 (S ,T )

ran (r) S C− r p C− q id (S)

r−1 r B− T p ⊗ q p ‖ q
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Classical Results with Relation Operators

r−1−1 = r

dom(r−1) = ran(r)

(S C r)−1 = r−1 B S

(p ; q)−1 = q−1 ; p−1

(p ; q) ; r = q ; (p ; r)

(p ; q)[w ] = q[p[w ]]

p ; (q ∪ r) = (p ; q) ∪ (p ; r)

r [a ∪ b] = r [a] ∪ r [b]

. . .
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More classical Results

Given a relation r such that r ∈ S ↔ S

r = r−1 r is symmetric

r ∩ r−1 = ∅ r is asymmetric

r ∩ r−1 ⊆ id(S) r is antisymmetric

id(S) ⊆ r r is reflexive

r ∩ id(S) = ∅ r is irreflexive

r ; r ⊆ r r is transitive
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Translations into First Order Predicates

Given a relation r such that r ∈ S ↔ S

r = r−1 ∀x , y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)
r ∩ r−1 = ∅ ∀x , y · x 7→ y ∈ r ⇒ y 7→ x /∈ r
r ∩ r−1 ⊆ id(S) ∀x , y · x 7→ y ∈ r ∧ y 7→ x ∈ r ⇒ x = y
id(S) ⊆ r ∀x · x ∈ S ⇒ x 7→ x ∈ r
r ∩ id(S) = ∅ ∀x , y · x 7→ y ∈ r ⇒ x 6= y
r ; r ⊆ r ∀x , y , z · x 7→ y ∈ r ∧ y 7→ z ∈ r ⇒ x 7→ z ∈ r

Set-theoretic statements are far more readable than predicate calculus
statements
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Function Operators (1)

Partial functions S 7→ T

Total functions S → T

Partial injections S 7� T

Total injections S� T
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A Partial Function F from a Set A to a Set B

A B
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F ∈ A 7→ B
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A Total Function F from a Set A to a Set B
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A Partial Injection F from a Set A to a Set B
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A Total Injection F from a Set A to a Set B
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Function Operator Memberships (1)

Left Part Right Part

f ∈ S 7→ T f ∈ S ↔ T ∧ (f −1 ; f ) = id(ran(f ))

f ∈ S → T f ∈ S 7→ T ∧ s = dom(f )

f ∈ S 7� T f ∈ S 7→ T ∧ f −1 ∈ T 7→ S

f ∈ S� T f ∈ S → T ∧ f −1 ∈ T 7→ S
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Function Operators (2)

Partial surjections S 7� T

Total surjections S � T

Bijections S�� T

Jean-Raymond Abrial (ETH-Zürich) Summary of the Mathematical Notation Bucharest, 14-16/07/10 106 / 120

Foundation for Deductive and Formal Proofs
A Quick Review of Propositional Calculus

A Quick Review of First Order Predicate Calculus
A Refresher on Set Theory

Basic Constructs
Extensions

A Partial Surjection F from a Set A to a Set B
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A Total Surjection F from a Set A to a Set B
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A Bijection F from a Set A to a Set B
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Function Operator Memberships (2)

Left Part Right Part

f ∈ S 7� T f ∈ S 7→ T ∧ T = ran(f )

f ∈ S � T f ∈ S → T ∧ T = ran(f )

f ∈ S�� T f ∈ S� T ∧ f ∈ S � T
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Summary of Function Operators

S 7→ T S 7� T

S → T S � T

S 7� T S�� T

S� T
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Summary of all Set-theoretic Operators (40)

S × T S \ T r−1 r [w ] id (S) { x | x ∈ S ∧ P }

P(S)
S ↔ T
S ↔↔ T

S C r
S C− r p ; q S 7→ T

S → T { x · x ∈ S ∧ P | E}

S ⊆ T S ↔→ T
S ←↔ T

r B T
r B− T p C− q S 7� T

S� T { a, b, . . . , n }

S ∪ T dom (r)
ran (r) prj1 p ⊗ q S 7� T

S � T union
S

S ∩ T ∅ prj2 p ‖ q S�� T inter
T
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Applying a Function

Given a partial function f , we have

Left Part Right Part

F = f (E ) E 7→ F ∈ f

Well-definedness condition: E ∈ dom (f )
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Example: a Very Strict Society

Every person is either a man or a woman

But no person can be a man and a woman at the same time

Only women have husbands, who must be a man

Woman have at most one husband

Likewise, men have at most one wife

Moreover, mother are married women
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Formal Representation

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7�men

mother ∈ PERSON → dom(husband)

Every person is either a man or a woman.

But no person can be a man and a woman at the same time.

Only women have husbands, who must be a man.

Woman have at most one husband.

Likewise, men have at most one wife.

Moreover, mother are married women.
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Defining New Concepts

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7�men

mother ∈ PERSON → dom(husband)

wife = husband−1

spouse = husband ∪ wife

father = mother ; husband
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Defining New Concepts

men ⊆ PERSON

women = PERSON \men

husband ∈ women 7�men

mother ∈ PERSON→ dom(husband)

father = mother ; husband

children = (mother ∪ father)−1

daughter = children B women

sibling = (children−1 ; children) \ id(PERSON)
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Exercises. To be defined

brother = ?

sibling − in − law = ?

nephew − or − niece = ?

uncle − or − aunt = ?

cousin = ?
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Exercises. To be proved

mother = father ; wife

spouse = spouse−1

sibling = sibling−1

cousin = cousin−1

father ; father−1 = mother ; mother−1

father ; mother−1 = ∅

mother ; father−1 = ∅

father ; children = mother ; children
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Appendix For Further Reading

For Further Reading I

J-R. Abrial.
Modeling in Event-B: System and Software Engineering, Chapter 9
— Mathematical Language.
CUP, 2010.
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