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Abstract. This paper compares two model-based tool chains support-
ing the design of embedded systems. The first one relies on an archi-
tecture description language called AADL (Architecture Analysis and
Design Language) specially targeting embedded system. The second one
is based on a generic notation for system modelling called Event-B which
is being deployed in the design of embedded systems, e.g. in the trans-
portation sector. A number of tools supporting similar activities are
highlighted as well as the impact of the characteristics of the respec-
tive underlying languages on the global design activity.

1 Introduction

The development of model-driven engineering (MDE) is opening new perspec-
tives in the development of computer-based systems. MDE makes it possible to
define more precisely a number of design artifacts, reason on them at an early
stage, and interconnect them more tightly. It also supports the use of genera-
tive or formally verified approaches. An efficient support of Computer Assisted
Software Engineering (CASE) tool is known to be critical in any development
process [9]. This is even more blatant for MDE were fully integrated tool chains
must support the chain of models and the relations between them.

MDE also applies to embedded systems, where specific issues are to be dealt
with, such as the design of the hardware/software boundary, or and also a number
of well-categorized non-functional requirements such as performance (real-time,
worst-case time, memory/CPU consumption) and RAMS (Reliability, Availabil-
ity, Maintainability and Safety) [10].

The purpose of this paper is to compare two tool chains relying on two
different modelling approaches.

– the first tool chain is based on a domain-specific language for describing ar-
chitecture of embedded systems: the AADL language (Architecture Anal-
ysis and Design Language) which originates from the industry (automo-
tive/aeronautics) [17]. It is supported by a number of tools that have been
integrated on the TOPCASED environment[21].

– the second tool chain is based on a generic system modelling notation called
Event-B which is developed by a mixed consortium of academics and in-
dustrial partner and industrial partners. It shares the same mathematical
grounds as the B language and is supported by the RODIN toolset [7].



This work is more directed towards identifying fundamental nature of some
benefits and limitations rather than implementation related issues. To ease this,
we selected solutions with similar implementations relying on the Eclipse plat-
form and related technologies. There is also a strong research dimension in both.

This paper is structured as follows. Section 1 and 2 respectively presents the
AADL and Event-B languages and related tool chains. A comparative discussion
is then carried out in section 3 and is followed by a conclusion in section 4.

2 Tool Chain based on AADL

2.1 The AADL language

AADL (Architecture and Analysis Design Language) is a standard language for
describing software and hardware components of a system and how they map to
processors on the execution platform [17]. At structural level, an AADL model
is mainly composed of:

– components: also called elements. They are divided into hardware, software
and composite categories (see figure 1). Each component is described at two
levels: the type level represents the functional interface of the component.
The implementation level describes the contents of the component and is
expressed as subcomponents and connectors. Properties can be associated
to components and enable a characterization of the component (e.g period,
deadline for real-time).

– connectors: describe the data and control flows between components. They
rely on the use of ports and connections. A port is an entry or exit point in
a component, where data, events, or associated data and events may transit.
A connection enables the link between two ports, either the ports of two
subcomponents, or the port of a subcomponent and the port of its owner
component.

Fig. 1. Graphical Notations for AADL

The behavioural level was not precisely defined in the first release of AADL
in 1994 but was defined in a recent extension (behavioural annex) [8].

The above shows that the language is rather grown in a bottom-up approach
with progressive extensions and more semantically precise definitions. In addition
to the graphical syntax shown in figure 1, AADL has also a fully textual syntax.



2.2 Tool Chain Description.

Over the time, a number of tools emerged to support activities related to the
AADL model. The SPICES ITEA project produced a first fully integrated pro-
totype of a complete tool chain, based on the TOPCASED platform [20, 21].
These tools are depicted in figure 2 and the most representative are described
below (model editors will not be detailed).

Fig. 2. SPICES AADL Tool Chain

Requirements Engineering. FAUST [16] is a model-based requirements engi-
neering toolbox supporting the formal layer of the KAOS goal-oriented language
[22]. It enables the capture and structure of requirements in goal refinement
graphs and their assignment to responsible software, hardware or environmen-
tal agents. Goals can be formally specified using real-time linear temporal logic
(LTL) [13]. To transition from requirements to AADL, a mapping supporting
both the structural and behavioural dimensions was defined and partly imple-
mented [15].

Model Checking. TINA is a toolbox allowing to model, simulate, perform
model checking of timed systems[4]. In particular, it includes analysis of the
scheduling using model checking techniques. It includes a pivot language, called
Fiacre enabling interface several modelling languages as input. TINA can check
the model against LTL properties identified at the requirements level using Petri
Nets.



Power Consumption. SoftExplorer, now called CAT (Consumption Analysis
Toolbox) [18] allows the estimation of system-level power and energy consump-
tion from models. Methods and models have been developed to permit fast and
accurate estimation of energy and power consumption at different levels in the
AADL refinement process. Power models have been built for many different
hardware components (DSP, FPGA, memories, etc) as well as for software com-
ponents (Ethernet layers, Inter Process Communications, etc).

Animation. ADeS (Architecture Description Simulation) [2] is a tool to sim-
ulate the behaviour of AADL models. Its purpose is to support the AADL
behavioural annex, and to output graphical results of simulations. This tool
makes it possible to evaluate and analyse the behaviour of a system during its
specification with AADL, for instance by helping in the choice of dimensioning
parameters such as scheduling, processor selection, and frequency.

Code Translation. Mappings of AADL to specific component framework and
target languages have been defined, for example the AADS for the SystemC
library [14].

Test Generation and Worst Case Execution Time. Taking as input a C
source code, PathCrawler produces for each function a set of test cases according
to generation criterion like covering all feasible paths or paths with worst case
execution time [5].

3 Tool Chain on Event-B

3.1 The Event-B language

Event-B is a formal modelling method for developing systems via step-wise re-
finement, based on first-order logic [1, 7] Event-B models are organized in terms
of two basic constructs depicted in figure 3:

– Contexts specify the static part of a model. They may contain carrier sets
(similar to types), constants, axioms (contraining carrier sets and constants),
and theorems (expressing properties derivable from axioms).

– Machines specify behavioural properties of the models. They may contain
variables defining the state of a machine, invariants constraining that state,
and events (describing possible state changes). Each event is composed of
a set of guards and a set of actions. Guard state the necessary conditions
under which an event may occur, and actions describe how the state variables
evolve when the event occurs.

Contexts/Machines may be refined from more abstract to more concrete
contexts/machines. Event-B models are systematically structured in refinement
chains.

A key concept in Event-B is proof-obligation (PO) capturing the necessity to
prove some internal property of the model such as typing, invariant preservation



Fig. 3. Event-B Machines and Contexts

by events, and correct refinements. Strong tool support is provided in order to
support this proof process.

Event-B is not specific to embedded systems design but it is currently being
investigated by several industrial from different sectors (automotive, transporta-
tion, space) in the context of the DEPLOY project [6].

3.2 Tool Chain Description

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective
support for refinement and mathematical proofs. The platform is open source
and based on the Eclipse framework. It can be further extended through plug-ins
and most of the Event-B related tools are provided under this form. The global
tool chain is described in figure 4.

Fig. 4. Event-B Tool Chain

Requirements Engineering. Requirements developed with an external tool
like DOORS or RequisitePro can be imported and linked with element models
through a specific plug-in. Besides this basic traceability, a richer requirements
model, based on problem frames, is also being investigated [11].



Graphical Modelling. UML-B [19] is a UML-based graphical front end for
Event-B. It borrows some diagrams from UML and provides Event-B semantics
to them. The class diagram is used to capture machine and contexts, while state
machines are used to capture the event behaviour. An automated round-trip
synchronisation is ensured with the Event-B model.

Proving. The RODIN platform has a build-in automated theorem prover for
helping in the process of proving PO. In order to reach higher degree of auto-
mated proofs, it can be extended by more powerful external provers, especially
those from Atelier-B, the commercial tool for B which relies on the same math-
ematical foundations.

Animation and Model Checking ProB [12] is an animator and model checker
for the B-Method which also supports Event-B. These are two distinct function-
alities are tightly related because they rely on the same underlying constrain
solving engine.

The model-checker can systematically check a specification to detect consis-
tency problems or refinement violations. It can carry out the work of the prover
in a fully automated way provided the number of states is kept under control.

The animator allows fully automatic model animation by initializing the ma-
chine, checking enabled events and computing the outcome of triggered events.
Animation supports the detection of invariant violation and graphical visualisa-
tion.

Code Generation Currently, code generation from Event-B models is mainly
supported by going through a B tool chain using an Event-B to B translator. C
and ADA code generators have been used industrially for years, especially for
the design of automated metro lines [3]. Direct code generator for Event-B are
also being developed.

4 Comparison and Discussion

4.1 Task Support

Unsurprisingly, the two tool chains show a number of similarities in their tool
support related to similar design tasks with some differences that are highlighted

– Requirements Activity. Two approaches can be considered: trying to be more
formal at requirements level or just trace requirements to modelled elements.
The former was applied to AADL and the later to Event-B but this looks
quite independent and should be more related to the gain expected from
extra modelling effort at requirements level. In the case design level errors
(AADL or Event-B) originated from a requirements problem, it is important
to improve them.

– Graphical Syntax. In both cases, a graphical syntax is available to model. For
AADL, it is a domain specific syntax directly reflecting concepts of embedded
systems. For Event-B, it relies on the generic UML language.



– Checks performed on the model. Both tool chains support checks on the
model. There are however more checks defined on the Event-B model and
those are supported by a generic prover and model checker. In AADL, basic
syntactic checks are supported by the modelling tool while more specific
properties relies on a specific tool. However in Event-B such properties (such
as timing, resource consumption) are more difficult to capture as they require
an explicit model. In this case, the performance to proof on those properties
can also be highly dependent of the way it is modelled.

– Animator. An animator tool is available in both tool chains. This tool is
important to be able to validate the behaviour of the system with validating
customers which may not be able to understand the notation (especially if
completely mathematical). It is also a useful tool for the model developer
to better understand its model. The AADL animator shows more powerful
capabilities related to embedded systems (like impact of allocation which re-
quire a more complex explicit model in Event-B) while the Event-B animator
is more powerful at computing complex animations.

– Code generator. Both tool chain have a link with the code level.

4.2 Domain Specific vs Generic Language

AADL is a domain specific language for the architecture of embedded systems.
As such it can directly capture key elements such as timing constraints, and
resource allocation. Such requirements must be explicitly modelled in Event-B
and will yield a heavier, less readable and less easy to maintain models. Moreover
in order to perform useful proofs, it it not trivial to design the right modelling
approach, as experienced in the DEPLOY project. However once ”tuned”, it can
be reproduced across projects.

4.3 Industrially Grown vs Carefully Designed Language

AADL was grown in an industrial context with the goal to fulfill immediate needs
that were progressively raised from a communication means between people to a
model that can be processed and transformed. Event-B has an opposite history
with formal grounds and tools progressively opening to industrial users. This
requires still on-going adaptations such as support for some missing constructs
(records) and team-work (modularisation).

5 Conclusions and Perspectives

In this paper, we have presented a comparison of two recent tool chains in the
context of embedded system design. Although based on quite different underly-
ing languages, they show several similarities at task level support. As expected
none is a silver bullet but they show interesting complementarities in terms of
expressiveness, precision, and automation. An interesting approach would be to
produce a mixed approach combining a domain specific language with a grounded
but more hidden underlying formalism.



Acknowledgement

This project was financially supported by the DEPLOY FP7 project (project
reference number 214158). We also warmly thanks all the partners of the SPICES
ITEA consortium.

References

1. Jean-Raymond Abrial, Modeling in Event-B, System and Software Engineering,
Cambridge University Press, 2010.

2. axlog, ADeS, http://www.axlog.fr/aadl/ades_en.html.
3. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, Météor: A successful appli-
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