
System Architecture, Dependability and Modes

Linas Laibinis, Elena Troubitsyna
Aabo Akademi
Turku, Finland

{linas.laibinis, etroubit}@abo.fi

Alexei Iliasov, Alexander Romanovsky
Newcastle University

Newcastle Upon Tyne, UK
{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk

Abstract—The mode, defining the specific type of functional
behaviour that a system exhibits during its operation, is an
important architectural level concept, which has a significant
impact on system design, verification and dependability. The
notions of modes and mode changes are widely used by the
industrial engineers to structure reasoning about different
conditions of system functioning. Even though there has been
some work on developing modal systems, we still lack a general
understanding of how to architect, verify and ensure depend-
ability of such systems. In our work we rely on formal model-
ling and verification to study intricate relationships between
fault tolerance, operation modes and architectural design.

Keywords-fault tolerance, formal methods, structuring

I. INTRODUCTION AND MOTIVATION
Operation modes [1, 2] form a useful structuring concept

that facilitates the design of safety-critical systems in differ-
ent industrial sectors, including avionic, automotive, trans-
portation and space. Modes define functionality of the sys-
tem in relation to its own state and the state of its environ-
ment. In particular, the concepts of modes and mode changes
are widely used for structured reasoning about normal and
abnormal behaviour of systems and their components, recov-
ery, degradation and reconfiguration. Our experience in the
FP7 ICT project DEPLOY (www.deploy-project.eu/) shows
that many domain experts express system requirements and
define system behaviour in terms of system and component
modes and mode transitions [3].

There are several well-known problems associated with
modal systems, e.g., ensuing common operation mode in
distributed systems, verifying correctness of mode transi-
tions, mode confusion etc. It is clear, that proper dealing with
modes will have a direct impact on system dependability.
Yet, there is still a need for generic architectural-level ap-
proaches to designing modal systems. These approaches
should support hierarchical system structuring using modes
and components. The developers should be able to model the
local modes of individual components as well as the global
modes of the system in a systematic way. This will help
them to alleviate the above-mentioned problems inherent to
modal systems and to enhance dependability.

In our work we develop formal approaches to architect-
ing, designing and verifying complex embedded systems.
We advocate the use of the hierarchical architectures and
modularized formal development by refinement as the main
techniques for mastering complexity of modal systems and
assuring their dependability.

II. SOFTWARE ARCHITECTURE AND MODAL SYSTEMS
It is widely recognized that a layered architecture is pref-

erable in designing complex control systems since it allows
developers to map real-world domains into software layers.
Usually the lowest level confines the embedded real-time
subsystems which directly communicate with sensors and
actuators. These subsystems cyclically execute the standard
control loop consisting of reading the sensors and assigning
new values to the actuators. The layer above contains the
components that encapsulate the detailed behaviour of the
lowest level subsystems by providing abstract interfaces to
them. At the highest level of the hierarchy there is a mode
manager - the component responsible for system mode tran-
sition.

We assume that the overall system should execute a cer-
tain autonomous scenario defined in terms of modes (a well-
known example is a flight scenario, with the take off, as-
cending, cruising, descending, landing modes). Essentially
each mode is characterized by a certain set of component
states. Transition between the modes is guided by this sce-
nario as well as by the states of the system environment and
components. The mode manager monitors these states.
When it detects that the conditions required for entering the
next mode are satisfied, it commands the lower layer com-
ponents to set their new operation modes accordingly. Upon
receiving a mode changing request, the lower layer compo-
nents perform the similar type of calculations and issue the
corresponding requests further down in the hierarchy.

However, due to component failures or certain environ-
ment conditions the system might need to deviate from the
consecutive execution of the steps of the predefined sce-
nario. For instance, a plain might need to ascend at the land-
ing mode and redo landing due to air traffic or weather con-
ditions at the airport or internal aircraft problems. Hence the
mode manager should be also to detect failure conditions
and properly execute certain backtracking mode transitions
in a correct way as well.

Obviously, incorrect handling of mode transitions might
have major impact on system dependability. Unfortunately,
verification of correctness of mode transitions is compli-
cated by possibility of multiple component failures, chang-
ing operational conditions or failures of other components
during error recovery. To deal with the problems of these

types we propose a formal approach to architectural level
design and refinement of complex modal systems.

III. ARCHITECTING COMPONENT MODES AND MODE
TRANSITIONS

Our previous work [2, 4] presents the formal definitions
of the abstractions used to specify modal systems. According
to this approach, an architecture of a modal system is an ab-
stract specification of the modes as well as mode transitions
that may occur in a system. It specifies neither how the sys-
tem operates while it is in some specific mode nor how mode
transitions occur. It rather imposes restrictions on concrete
implementations, complementing traditional modelling but
not replacing it. These ideas have been further applied for
architecting fault tolerance modes [2].

Currently we are expanding this approach by showing
how to derive the layered architecture of the system while
preserving correctness of mode transitions. In this architec-
ture the modes of components are visible at the component
interfaces and can be accessed by the higher-level compo-
nents. We define a generic modelling pattern and specify
each component by instantiating it. The overall system archi-
tecture is built by recursive application of this pattern.

We use Event-B [5], a state-based formalism closely re-
lated to Classical B [6], to formally model both the overall
system architecture and system components. Event-B is a
state-based framework that suits well to modelling and veri-
fication of modal systems. Proofs that accompany the devel-
opment allow us to formally verify mode invariants, correct-
ness of mode transitions as well as consistency between sys-
tem and component modes.

We are now developing Mode and Modularization plug-
ins supporting this approach as part of the Eclipse Rodin
environment (www.event-b.org/). The Mode plug-in, provid-
ing a modal (orthogonal) view on the system architecture,
will allow the architect to graphically capture system modes
and mode transitions.

IV. DISCUSSION
Currently we are validating our approach by modelling

the architecture of the Attitude & Orbit Control System
(AOCS) [7]. AOCS is a typical representative of a class of
control systems. Its main function is to control the attitude
and the orbit of satellites. The system consists of the AOCS
Mode and FDIR (Fault Detection, Isolation and Recovery)
Manager, the Unit Manager and seven instruments. Various
mission stages define the autonomous scenario that the mode
manager should enforce. Each mode involves specific func-
tions performed by different instruments. The Mode Man-
ager controls the AOCS operation as specified by its modes
and their transitions. Each mode transition is described as a
set of specific actions to be performed in order for the mode
to get changed. Transitions between modes occur either be-
cause conditions for entering the next mode in the autono-
mous scenario are reached or because a failure has occurred
and the system needs to backtrack.

In developing the AOCS system we aim to validate the
proposed specification and refinement patterns as well as to

explore the scalability of the proposed approach to reasoning
about complex mode transitions. Our initial experience
shows that our approach supports well correct and consistent
decomposition of the global system modes into modes of
individual components and allows the system architect to
prove the consistency of mode changes while developing a
system architecture by refinement.

In our future work will plan to integrate architecting the
tasking structure into the models using refinement patterns,
as well as reasoning about system schedulability.

There has been some work on architecting systems using
the concept of operation modes. In the Architecture Analysis
& Design Language (AADL) [8] a system is built out of
communicating components and each component may have
modes, representing alternative operational states. AADL
modes identify configurations of components. A state ma-
chine abstraction is used, such that a distinct configuration is
a modal state and specific events cause transition among
them. A component may have distinct behaviour according
to the current mode. An AADL components ican be recur-
sively structured as a number of interlinked subcomponents.
In [9] the authors purpose an architectural support for mode-
driven fault tolerance in which the mechanisms for tolerating
hardware faults are associated with the modes and the mode
transitions are specified as the finite state machines. In [10],
the representation of degraded service outcomes and excep-
tional modes of operation using UML use cases, activity
diagrams and state charts are discussed. Unfortunately nei-
ther these nor other papers know to us support rigorous rea-
soning about mode and mode transitions by refinement, pro-
viding at the same time a rich set of abstractions to recur-
sively reason about system and component modes.

REFERENCES
[1] F. Jahanian, A. Mok, Modechart, “A specification language for real-

time systems,” IEEE Transactions on Software Engineering, vol. 20,
no. 12, pp. 933–947, 1994.

[2] A. Iliasov, F. Dotti, A. Romanovsky, “Structuring Specifications with
Modes.,” Proc. Fourth Latin-American Symposium on Dependable
Computing (LADC), September 1-4, 2009, Brazil. IEEE CS. 2009.

[3] DEPLOY Deliverable D5 - Report on knowledge transfer. FP7 ICT
DEPLOY Project. Jan 2009. www.deploy-project.eu.

[4] F. Dotti, A. Iliasov, L. Riberiro, A. Romanovsky, “Modal Systems:
Specification, Refinement and Realisation,” Proc. Conference on
Formal Engineering Methods - ICFEM 09, December 9 -12, 2009,
Rio de Janeiro, Brazil. Springer. 2009.

[5] J. R. Abrial, C. Metayer, “RODIN deliverable 3.2 - Event-B
language,” ICT RODIN Project Deliverable. Newcastle University,
UK. 2005. http://rodin.cs.ncl.ac.uk.

[6] J. R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press. 2005.

[7] DEPLOY Deliverable D20 - Report on Pilot Deployment in the Space
Sector. FP7 ICT DEPLOY Project. Jan 2010. www.deploy-project.eu.

[8] P. H. Feiler, D. P. Gluch, J. J. Hudak, “The architecture analysis &
design language (AADL): An introduction,” TN-011, SEI, 2006.

[9] D. Srivastava, P. Narasimhan, “Architectural support for mode-driven
fault tolerance in distributed applications,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pp. 1–7, 2005.

[10] S. Mustafiz, J. Kienzle, A. Berlizev, “Addressing degraded service
outcomes and exceptional modes of operation in behavioural
models,” Proc. International Workshop on Software Engineering for
Resilient Systems (SERENE). NY, USA: ACM, 2008, pp. 19–28.

