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Abstract—The mode, defining the specific type of functional 
behaviour that a system exhibits during its operation, is an 
important architectural level concept, which has a significant 
impact on system design, verification and dependability. The 
notions of modes and mode changes are widely used by the 
industrial engineers to structure reasoning about different 
conditions of system functioning. Even though there has been 
some work on developing modal systems, we still lack a general 
understanding of how to architect, verify and ensure depend-
ability of such systems. In our work we rely on formal model-
ling and verification to study intricate relationships between 
fault tolerance, operation modes and architectural design. 
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I.  INTRODUCTION AND MOTIVATION  
Operation modes [1, 2] form a useful structuring concept 

that facilitates the design of safety-critical systems in differ-
ent industrial sectors, including avionic, automotive, trans-
portation and space. Modes define functionality of the sys-
tem in relation to its own state and the state of its environ-
ment. In particular, the concepts of modes and mode changes 
are widely used for structured reasoning about normal and 
abnormal behaviour of systems and their components, recov-
ery, degradation and reconfiguration. Our experience in the 
FP7 ICT project DEPLOY (www.deploy-project.eu/) shows 
that many domain experts express system requirements and 
define system behaviour in terms of system and component 
modes and mode transitions [3].  

There are several well-known problems associated with 
modal systems, e.g., ensuing common operation mode in 
distributed systems, verifying correctness of mode transi-
tions, mode confusion etc. It is clear, that proper dealing with 
modes will have a direct impact on system dependability. 
Yet, there is still a need for generic architectural-level ap-
proaches to designing modal systems. These approaches 
should support hierarchical system structuring using modes 
and components. The developers should be able to model the 
local modes of individual components as well as the global 
modes of the system in a systematic way. This will help 
them to alleviate the above-mentioned problems inherent to 
modal systems and to enhance dependability.  

In our work we develop formal approaches to architect-
ing, designing and verifying complex embedded systems. 
We advocate the use of the hierarchical architectures and 
modularized formal development by refinement as the main 
techniques for mastering complexity of modal systems and 
assuring their dependability.  

II. SOFTWARE ARCHITECTURE AND MODAL SYSTEMS 
It is widely recognized that a layered architecture is pref-

erable in designing complex control systems since it allows 
developers to map real-world domains into software layers. 
Usually the lowest level confines the embedded real-time 
subsystems which directly communicate with sensors and 
actuators. These subsystems cyclically execute the standard 
control loop consisting of reading the sensors and assigning 
new values to the actuators. The layer above contains the 
components that encapsulate the detailed behaviour of the 
lowest level subsystems by providing abstract interfaces to 
them. At the highest level of the hierarchy there is a mode 
manager - the component responsible for system mode tran-
sition.  

We assume that the overall system should execute a cer-
tain autonomous scenario defined in terms of modes (a well-
known example is a flight scenario, with the take off, as-
cending, cruising, descending, landing modes). Essentially 
each mode is characterized by a certain set of component 
states. Transition between the modes is guided by this sce-
nario as well as by the states of the system environment and 
components. The mode manager monitors these states. 
When it detects that the conditions required for entering the 
next mode are satisfied, it commands the lower layer com-
ponents to set their new operation modes accordingly. Upon 
receiving a mode changing request, the lower layer compo-
nents perform the similar type of calculations and issue the 
corresponding requests further down in the hierarchy.  

However, due to component failures or certain environ-
ment conditions the system might need to deviate from the 
consecutive execution of the steps of the predefined sce-
nario. For instance, a plain might need to ascend at the land-
ing mode and redo landing due to air traffic or weather con-
ditions at the airport or internal aircraft problems. Hence the 
mode manager should be also to detect failure conditions 
and properly execute certain backtracking mode transitions 
in a correct way as well. 

Obviously, incorrect handling of mode transitions might 
have major impact on system dependability. Unfortunately, 
verification of correctness of mode transitions is compli-
cated by possibility of multiple component failures, chang-
ing operational conditions or failures of other components 
during error recovery. To deal with the problems of these 



types we propose a formal approach to architectural level 
design and refinement of complex modal systems.  

III. ARCHITECTING COMPONENT MODES AND MODE 
TRANSITIONS 

Our previous work [2, 4] presents the formal definitions 
of the abstractions used to specify modal systems. According 
to this approach, an architecture of a modal system is an ab-
stract specification of the modes as well as mode transitions 
that may occur in a system. It specifies neither how the sys-
tem operates while it is in some specific mode nor how mode 
transitions occur. It rather imposes restrictions on concrete 
implementations, complementing traditional modelling but 
not replacing it. These ideas have been further applied for 
architecting fault tolerance modes [2]. 

Currently we are expanding this approach by showing 
how to derive the layered architecture of the system while 
preserving correctness of mode transitions. In this architec-
ture the modes of components are visible at the component 
interfaces and can be accessed by the higher-level compo-
nents. We define a generic modelling pattern and specify 
each component by instantiating it. The overall system archi-
tecture is built by recursive application of this pattern.  

We use Event-B [5], a state-based formalism closely re-
lated to Classical B [6], to formally model both the overall 
system architecture and system components. Event-B is a 
state-based framework that suits well to modelling and veri-
fication of modal systems. Proofs that accompany the devel-
opment allow us to formally verify mode invariants, correct-
ness of mode transitions as well as consistency between sys-
tem and component modes.  

We are now developing Mode and Modularization plug-
ins supporting this approach as part of the Eclipse Rodin 
environment (www.event-b.org/). The Mode plug-in, provid-
ing a modal (orthogonal) view on the system architecture, 
will allow the architect to graphically capture system modes 
and mode transitions. 

IV. DISCUSSION  
Currently we are validating our approach by modelling 

the architecture of the Attitude & Orbit Control System 
(AOCS) [7]. AOCS is a typical representative of a class of 
control systems. Its main function is to control the attitude 
and the orbit of satellites. The system consists of the AOCS 
Mode and FDIR (Fault Detection, Isolation and Recovery) 
Manager, the Unit Manager and seven instruments. Various 
mission stages define the autonomous scenario that the mode 
manager should enforce. Each mode involves specific func-
tions performed by different instruments. The Mode Man-
ager controls the AOCS operation as specified by its modes 
and their transitions. Each mode transition is described as a 
set of specific actions to be performed in order for the mode 
to get changed. Transitions between modes occur either be-
cause conditions for entering the next mode in the autono-
mous scenario are reached or because a failure has occurred 
and the system needs to backtrack.  

In developing the AOCS system we aim to validate the 
proposed specification and refinement patterns as well as to 

explore the scalability of the proposed approach to reasoning 
about complex mode transitions. Our initial experience 
shows that our approach supports well correct and consistent 
decomposition of the global system modes into modes of 
individual components and allows the system architect to 
prove the consistency of mode changes while developing a 
system architecture by refinement.  

In our future work will plan to integrate architecting the 
tasking structure into the models using refinement patterns, 
as well as reasoning about system schedulability. 

There has been some work on architecting systems using 
the concept of operation modes. In the Architecture Analysis 
& Design Language (AADL) [8] a system is built out of 
communicating components and each component may have 
modes, representing alternative operational states. AADL 
modes identify configurations of components. A state ma-
chine abstraction is used, such that a distinct configuration is 
a modal state and specific events cause transition among 
them. A component may have distinct behaviour according 
to the current mode. An AADL components ican be recur-
sively structured as a number of interlinked subcomponents. 
In [9] the authors purpose an architectural support for mode-
driven fault tolerance in which the mechanisms for tolerating 
hardware faults are associated with the modes and the mode 
transitions are specified as the finite state machines. In [10], 
the representation of degraded service outcomes and excep-
tional modes of operation using UML use cases, activity 
diagrams and state charts are discussed. Unfortunately nei-
ther these nor other papers know to us support rigorous rea-
soning about mode and mode transitions by refinement, pro-
viding at the same time a rich set of abstractions to recur-
sively reason about system and component modes. 
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