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Abstract— Maintaining semantic consistency of data is a sig-
nificant problem in distributed information systems, particularly
those on which a business may depend. Our current work aims
to use Event-B and the Rodin tools to support the specification
and design of such systems in a way that integrates well into
existing development processes. This paper presents Event-B
patterns that may be used to represent recovery from time-
bounded inconsistency and illustrates their use in a model derived
from industrial applications.
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I. INTRODUCTION

Computer-based business information systems are often
critical to the successful functioning of enterprises, but are
challenging to develop because of their large scale and dis-
tributed character. Our work in Deploy1 aims to provide
formal modelling and analysis technology that helps to re-
duce development risk by allowing early-stage comparison
of design alternatives and identification of potential sources
of defects. In order to promote take-up, we aim for a high
degree of automation in the analysis of formal models that are
derived, where possible automatically, from designs expressed
in domain-specific, often diagrammatic, notations [1].

We focus on applications of the kind developed using
SAP technology which support companies’ business processes.
These can be best practice customisable processes such as
“order-to-cash” or “procure-to-pay”. They are assembled from
components describing parts of processes, such as buying,
selling, planning, site logistics and accounting. On the other
hand, business processes can also be very specific to customers
and can be modelled with the help of specific business process
management (BPM) tools such as SAP NetWeaver BPM [2].

With the help of service-oriented architectures (SOA), busi-
ness processes can be closely linked to their technical realisa-
tion using independent business application components. For a
typical business process, dozens of independent business com-
ponents form a complex network where (mostly asynchronous)
messaging is used to satisfy the components’ communication
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needs without giving up their loose coupling. Complexity
arises from the large-scale composition of relatively simple
protocols, making it a challenge to determine application-level
properties such as inconsistency and race conditions. This
complexity suggests that there is an argument for machine-
assisted verification of these applications.

In a typical business process, the consistency of data across
the components involved in the process is of considerable
importance. For example, in a scenario in which a customer
places an order, the quantity of a product in the sales order data
should be the same in the final invoice and the dispatch note.
The exact definition of consistency is application-dependent.
For example, the goods in a delivery should be a subset of
those ordered. We refer to this application-dependent consis-
tency as semantic consistency.

Although semantic consistency is important in business
information systems, inconsistency is also a fact of life. For
example, orders or parts of orders can often be changed or
cancelled, even though subsequent process steps have already
reached an advanced state. This is problematic if, for example,
the delivery of cancelled orders has already started. A sub-
process may be delayed pending a manual approval or other
manual processing such as moving or packaging goods, and
this delay may give rise to temporary inconsistency. Finally,
messages which are intended to update other process compo-
nents may be blocked in transmission through lower layers,
causing errors to be propagated to the higher layers. For these
reasons, processes are often in temporarily inconsistent states.
After a certain delay caused by late changes, manual steps, or
recovery from errors, they must however assume a consistent
state.

Modelling consistency and error recovery may help the
developers to integrate late change or (partial) cancellation
of business objects into business logics, and to mechanically
analyse earlier in the development cycle the ways the business
scenarios are constructed to recover from such errors and
to adapt them if necessary before implementing them. Since
reasoning about semantic consistency involves the consid-
eration of delays, handling consistency in models entails
understanding and modelling time.
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Our objective is to support modelling and analysis of busi-
ness processes that can accommodate time-bounded semantic
inconsistency. We use the Event-B modelling formalism [3]
and the Rodin tools platform [4], because they have several
features that make them appropriate to our application area.
The modelling language allows description of both structured
data and functionality. The tools are open-source and based on
the Eclipse framework, allowing the integration of specialised
provers, model checkers, editors, pretty printers and other new
features. The method and tools have a significant and growing
community of practice.

Experience in Event-B modelling suggests [1] that the
choices of abstractions and modelling/refinement patterns dur-
ing development have a significant bearing on the level of
automation achievable in analysis. We therefore focus first on
abstractions and patterns that can form the basis of reasoning
about bounded inconsistency. The contribution of this paper is
to identify Event-B patterns that can be used to model and
analyse time-bounded semantic inconsistency in distributed
business information systems and to demonstrate their use in
a realistic scenario.

In a typical SOA scenario, a business process developer
is not responsible for implementing the services or the mid-
dleware, but will rather use existing service components and
configure middleware. It is therefore important for such a
developer to explore several options of how to realize a
business process early on in the design process. Formalizing,
simulating and automatically analyzing processes and consis-
tency properties is thus an important aspect of the efficiency
and quality of business process design.

We first briefly describe salient aspects of Event-B and
patterns (Section II-A) and give an abstract machine that
forms the basis of the patterns presented (Section II-B). We
consider the Time Constraint Pattern (TCP) in Section III-A
and describe an adaptation that separates time and consistency
in Section III-B. We give a simple pattern for modelling
error detection and recovery at the level of abstraction of the
business information systems models that we deal with (Sec-
tion IV). An example of the application of this pattern to
an realistic business process is given in Section VI. This is
integrated with the adapted TCP to form a single pattern
modelling both time and consistency in Section V. Related
work is discussed in Section VII. Conclusions and further work
are described in Section VIII.

II. BACKGROUND

As indicated in Section I, inconsistency can arise through
the normal operation of a business process which includes
the possibility of cancellations and updates. It may also arise
as a result of faults in lower levels, such as middleware or
message transport layers. In normal operation, each process
attempts to maintain semantic consistency by informing other
processes of changes that need to be made. The parts of
the system related to this change are necessarily inconsistent
while these messages are created, transmitted, received and
processed. This normal operational inconsistency is time-
bounded. Further, the system may include a recovery mech-
anism to allow it to recover from the occurrence of faults at

lower levels in the system. This will involve the distribution of
error recovery messages. In both normal operation and error
recovery message transmission, latency will be a significant
factor in bounding the resulting inconsistency. We therefore
begin to model time-bounded recovery from inconsistency by
considering message transfer.

A. Event-B and Event-B Patterns

The basic modelling unit in Event-B is the machine. Each
machine may contain variables modelling persistent state data,
invariants that restrict the valid content of variables, and
guarded events that describe functionality in terms of actions
defined over the state variables. Definitions of the carrier sets
and constants may be defined in units called contexts that are
visible to machines. A system model typically consists of a
chain of Event-B machines, each of which (apart from the first)
is linked to its predecessor by a refinement relation expressed
in terms of a linking invariant. A typical Event-B model has
an extremely simple initial machine, with detail added in a
controlled way through refinement steps.

Machines and refinement steps give rise to proof obligations
that ensure internal consistency of machines and behaviour
preservation across refinement steps. Types of proof obliga-
tions include, among others, guard strengthening and invariant
preservation. Guard strengthening requires that, in a machine
refinement, the guards of an event in the abstract machine
are refined by the guards of the corresponding event in the
concrete machine. Invariant preservation requires that within
a machine, each event preserve each invariant.

Patterns in Event-B [5], [6], [7], [8] are a means of ex-
pressing reusable modelling structures and managing effort by
promoting proof re-use. Several forms of Event-B pattern have
been proposed, differing in their levels of generality. Iliasov [7]
treats a pattern as a general model transformation method.
Hoang, Fürst and Abrial [6], by contrast, treats a pattern as a
fragment of Event-B designed to be directly substituted into
a development. The first and last machine of the pattern are
referred to as the abstracta and concrete pattern respectively.
Cansell et al. [8] regard a pattern as being less general than
Iliasov, but still requiring some specialisation before it is
applied to a development.

In the approach taken by Hoang et al. [6] the application
of a pattern to an Event-B development requires that each
variable and event in the abstract pattern must be matched with
a variable or event in the current machine in the development.
Variables match if a subset of the variables in the development
have the same type as variables in the abstract pattern. Events
match if a subset of the events in the development have the
same behaviour as the events in the abstract pattern. The devel-
opment can then be extended by replacing matched events and
variables (and relevant invariants) with the events, variables
and invariants of the concrete pattern. The application of the
pattern presented by Cansell et al. in [8] requires both data
refinement (of variables) and event refinement.

Beginning with the pattern presented in [8] (the Time Con-
straint Pattern), we develop a pattern to add timing information
to a model of a business information system. We then develop
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a pattern for adding error recovery behaviour, and combine the
two patterns developed. The patterns that we develop follow
the approach of Hoang et al., since our goal is to automatically
apply these patterns.

B. The Abstract Channel

The duration of message transmission between components
is a major source of time-bounded inconsistency. We therefore
need to be able to describe real-time requirements, and in
particular to articulate and prove properties relating to time-
bounded inconsistency, as well as the means of recovery from
inconsistency. In this section we develop an abstract machine
corresponding to a small fragment of a business information
system which contains no representation of time or error
recovery. We then investigate patterns for refining this machine
by adding time and error recovery. In Section III-A we apply
the TCP to this abstract channel. In Section III-B we adapt
the TCP to separate the modelling of time and consistency.
In Section IV we propose a pattern to describe error recovery,
and in Section V we combine the modified TCP with the error
recovery pattern to generate the Timed Error Recovery Pattern.
An outline of these developments is given in Fig. 1.

Fig. 1. Structure of the developed models.

We identify two processes, a sender and a receiver, and
consider a channel carrying messages between them. The
channel could be a lower-level off-the-shelf component, or
a portion of the business network containing a number of
other processes. We consider only messages that identify
inconsistencies to be resolved. At this level of abstraction,
receipt of a message models correction of the inconsistency.
We identify a set cons of messages. A message is in this set
if the inconsistency to which it refers has been resolved. We
refer to these messages as consistent.

We model the transmission and reception of messages over
the channel (events snd and rcv in Fig. 2.) The variables
sent, chan and cons are all subsets of MSG (a carrier set
representing the set of all messages identifying inconsisten-
cies). Variables sent and chan represent messages that have
been sent and the contents of the channel respectively. In
this abstract machine, and in subsequent developments, we
will state consistency invariants. These are normal Event-B

invariants, and their purpose is to capture what we can prove
about consistency in the different machines. The (untimed)
consistency invariant is given in Fig. 2. Consistent messages
are those that have been removed from the channel.

snd
any m where

m ∈MSG ∧m /∈ sent
then

sent := sent ∪ {m}
chan := chan ∪ {m}

end

rcv
any m where

m ∈ chan
then

cons := cons ∪ {m}
chan := chan \ {m}

end

invariants
cons = sent \ chan

Fig. 2. The abstract channel.

III. AN ADAPTATION OF THE TIME CONSTRAINT PATTERN

In this section, we describe the timed behaviour of the
channel. Time is not an explicit part of the Event-B language,
so in order to describe time-bounded inconsistency, we begin
by examining an important pattern for representing time.

We will go on to model recovery from time-bounded
inconsistency. At this stage we do not wish to set a hard
upper limit on the period on inconsistency, so we do not set an
upper bound on the duration of message transmission. Instead,
we associate a real-time period limit with each message
in the channel. This limit is the time limit of “acceptable”
inconsistency. If a message arrives after limit then recovery
will be necessary.

A. The Time Constraint Pattern

Several extensions have been proposed for modelling time
in B and Event-B (e.g. [9], [10]). However, we prefer to work
entirely within the Event-B language in order to take advantage
of the tools provided.

The Time Constraint Pattern presented in Cansell et al [8] is
a promising Event-B pattern for introducing time constraints
into a development. An elaboration is given by Rehm [11]. In
the TCP, time progression is measured by the increase of a
dedicated variable time of type NAT . The passage of time is
modelled by a separate event tick tock, see Fig 3. A collection
of “active times” is maintained to represent the times in the
future when certain events must be performed. (Rehm [11]
associates events with these times, whereas the earlier paper
of Cansell et al. [8] just records the set of active times in
the variable at.) The value tm is the new value for time
after the event tick tock. Time must not progress beyond the
point at which the next event is scheduled to be performed,
as guaranteed by the third guard in tick tock. Time constraints
are introduced to and removed from the set of active times by
the events post time and process time respectively (Fig. 3).

The TCP is not designed to be applied directly, but must be
adapted to a match a specific development. Here, we wish to
use the pattern to allow us to record constraints that messages
are handled within deadlines: each message should be received
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post time
any tm where

tm ∈ NAT ∧ tm > time
then

at := at ∪ {tm}
end

process time
when

time ∈ at
then

at := at \ {time}
end

tick tock
any tm where

tm ∈ NAT ∧ tm > time
(at 6= ∅⇒ tm ≤ min(at))

then
time := tm

end

Fig. 3. The TCP events.

within limit time units. The constant limit (defined as a
natural number in the associated context) is the upper limit
on the delivery of messages before recovery is necessary.

In Fig. 4 we show the machine TCP-channel resulting from
an application of the TCP to our abstract channel of Fig. 2.
The variable now (representing elapsed time) matches the TCP
variable time. The correspondence between variable deadline
and TCP variable at is less immediate. We use deadline to
record the time at which messages must leave the channel.
The variable at therefore matches rng(deadline). The map
structure associating messages and times is similar to the
presentation given in [11].

The variable timesent is a total function from sent mes-
sages to time, and records the time at which messages are
placed on the channel. The variable timercvd records the time
at which messages are received from the channel. All messages
in chan have an associated deadline, given by deadline(m).

We refine the snd event to record the time at which a
message is sent, as suggested by the event post time from
the TCP. Event snd also adds the message to the channel,
and adds timing information in the form of the maplet {m 7→
now + limit} to the variable deadline. The time posted in
deadline is now + limit, giving a real-time deadline for
receipt of the message.

The concrete rcv event corresponds to the process time
event. We generalise the timed guard from process time to
now ≤ deadline(m), to allow messages to be received at
any point before their deadline is reached. Event rcv removes
a message from the channel and the associated maplet from
deadline, adds the message to cons, and records the time at
which the message was received. The tick event is a refinement
of the tick tock event of TCP. When tick fires, time progresses
by one unit.

For this machine timely receipt of a message represents
time-bounded recovery from inconsistency. A timed consis-
tency invariant is given in Fig. 5.

Any sent messages for which the deadline has passed
(timesent(m) + limit < now) must be in the consistent set
cons.

This direct application of TCP produces a machine that
excludes the possibility of messages being delayed, since
deadline(m) gives a hard upper bound on the duration of

snd
any m where

m ∈MSG
m /∈ dom(timesent)

then
timesent := timesent ∪ {m 7→ now}
chan := chan ∪ {m}
deadline := deadline ∪ {m 7→ now + limit}

end

rcv
any m where

deadline 6= ∅
m ∈ chan
now ≤ deadline(m)

then
deadline := deadline \ {m 7→ deadline(m)}
chan := chan \ {m}
cons := cons ∪ {m}
timercvd := timercvd ∪ {m 7→ now}

end

tick
when

dom(deadline) 6= ∅ ⇒ now < min(ran(deadline))
then

now := now + 1
end

invariants
now ∈ N
sent = dom(timesent)
timesent ∈ dom(timesent)→ N
deadline ∈ dom(timesent) 7→ N
timercvd ∈ dom(timesent) 7→ N
dom(deadline) = chan

Fig. 4. The invariants and events of the TCP-channel.

∀m · m ∈ dom(timesent) ⇒
(timesent(m) + limit < now⇒m ∈ cons)

Fig. 5. A timed consistency invariant in TCP-channel.

transmission of message m. However, as noted previously, the
application developer is not designing the message-carrying
layer, and may not know this information at the time of
development. In this case, he cannot assume that all messages
will be delivered within a certain deadline. He may only be
able to say that messages should be delivered within some
time, and that messages which take longer should be subject
to error-recovery. We therefore adapt the TCP, to allow him
to specify from this point of view.

B. Adapting the Time Constraint Pattern for Modelling
Bounded Inconsistency

We adapt the TCP by removing the guard on tick and the
third guard on rcv, giving events ungrd tick and untmd rcv
(Fig. 6). By allowing time to progress at any stage in the execu-
tion of a machine, we allow any message to be delayed beyond
deadline(m). In the machine that results, with concrete events
snd (unchanged from TCP-channel, Fig. 4), untmd rcv (Fig. 6)
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and ungrd tick (Fig. 6), all messages received at any time are
consistent. A possible consistency invariant is also given in
Fig. 6.

untmd rcv
any m where

deadline 6= ∅
m ∈ chan

then
deadline := deadline \ {m 7→ deadline(m)}
chan := chan \ {m}
cons := cons ∪ {m}
timercvd := timercvd ∪ {m 7→ now}

end

ungrd tick
begin

now := now + 1
end

invariants
dom(timercvd) = cons

Fig. 6. Events untmd rcv and ungrd tick and invariant.

We now need to separate normal and recovery behaviour,
distinguishing the receipt of message m before and after
deadline(m). We propose an error recovery pattern to deal
separately with this error recovery behaviour.

IV. AN ERROR RECOVERY PATTERN

Fig. 7. Structure of Concrete Error Recovery Pattern.

Effective modelling and analysis of fault tolerance relies
on a clear separation between normal and abnormal states
and behaviours. This structuring reduces the complexity of
system design. It allows developers to reason explicitly about
erroneous states and to associate appropriate recovery ac-
tions with them. Moreover, it provides a consistent means
of expressing the switchover between normal and abnormal
modes of execution, the initiation of recovery actions and the
management of success and failure of this recovery.

In this section we present a pattern modelling error recovery.
We will refer to this as the Error Recovery Pattern (ERP). The
ERP has one abstract and one concrete machine. The abstract
machine is the original description of the channel given in
Fig. 2. To model error recovery, we begin by distinguishing
the possibilities that the message transmission is either correct
or faulty. If the transmission is faulty (the message is cor-
rupted, late, etc.), then some recovery action is required. The
concrete part of the pattern is represented diagrammatically
in Fig. 7. Event rcv from Fig. 2 is now refined into three

events (rcv good, rcv bad and recover, Fig.8), and the channel
of the abstract machine is split into two queues. q rcv is the
queue of messages waiting to be received, and q comp is the
queue of messages which have been received and for which
compensation is required. The variable consistent represents
those messages which were immediately consistent on arrival,
and compensated represents those messages for which the
system had to perform recovery.

rcv good
refines rcv
any m where

m ∈ q rcv
then

consistent := consistent ∪ {m}
q rcv := q rcv \ {m}

end

rcv bad
any m where

m ∈ q rcv
then

q comp := q comp ∪ {m}
q rcv := q rcv \ {m}

end

recover
refines rcv
any m where

m ∈ q comp
then

compensated := compensated ∪ {m}
q comp := q comp \ {m}

end

invariants
cons = consistent ∪ compensated
chan = q comp ∪ q rcv

Fig. 8. A concrete Error Recovery Pattern.

In the concrete machine of the ERP given in Fig.8, the event
rcv good models the receipt of a good message from q rcv. No
further action is required and the part of the system to which
it refers is immediately consistent. Event rcv bad models the
receipt of a faulty message and its placement in q comp –
the queue of messages which need to be compensated. Event
recover performs the recovery action, removing the faulty
message from q comp and placing it in the set of compensated
messages compensated. The event snd (not given) is almost
unchanged, except that sent messages are placed in the queue
for the receiving component q rcv instead of chan.

As well as the general role that careful structuring plays in
the provision of effective fault tolerance, recursive structuring
supports the description of the propagation of responsibility
for error handling through system levels [12]. An example of
this hierarchical error recovery is Fault Detection, Isolation
and Recovery (FDIR) [13]. If, rather than just consider the
case where compensation is successful, we consider as well
the case where it fails, we can reapply the ERP to itself to
model hierarchical error recovery. A single application of ERP
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Fig. 9. Hierarchical Error Recovery.

to itself results in the machine summarised diagrammatically
in Fig. 9, and presented in full in Fig. 11.

V. THE TIMED ERROR RECOVERY PATTERN

We combine the ERP and the adapted TCP to generate the
concrete part of the Timed Error Recovery Pattern, guarantee-
ing recovery from time-bounded inconsistency arising from
the late arrival of messages. We distinguish the timely and
late arrival of messages. Event rcv good becomes rcv ontime
(Fig. 12.) The addition of the timing guard deadline(m) ≥
now ensures that this event applies only to messages whose
deadline has not yet passed. Event rcv late is derived from
the rcv bad event of the ERP, with the addition of the guard
deadline(m) < now. Event compensate deals with a late
message which requires compensation. It places the message
in the set of messages which have been compensated, and
removes the deadline information from deadline. We also
record the time at which a message is received (timercvd).
With these, we can then prove the timed consistency invariants
in Fig 10.

The Timed Error Recovery pattern has two refinement
stages which need to be applied to guarantee recovery from
time-bounded inconsistency. The first changes events snd and
rcv to the three events in Fig. 8 and adds the event ungrd tick
(Fig. 6) The second refines these events with the events
in Fig. 12. The total pattern contains a total of 120 proof
obligations, 102 of which have been proved automatically.
These proof obligations do not need to be reproved when the
pattern is applied.

For example, the proof obligation generated to demonstrate
that the event rcv ontime preserves the first consistency invari-
ant of Fig 10 is given in Fig 13. To prove this, we may appeal
to axioms from the context and other invariants as well as the
guards and behaviour of the event rcv ontime.

VI. APPLICATION

Prandi et. al. [14] give a description of a Credit Request
Process (CRP). A bank customer uses a credit portal to request
credit from a bank. If authentication is successful, he creates
a loan request, which is sent to the bank. The bank sends the
information provided to a validation service which performs
some checks and returns the result to the bank. This result is
then returned to the customer. If the customer is unsuccessful,
they may modify the amount requested and reapply. Fig. 14

shows the part of the CRP after authentication is complete. The
notation is Business Process Modelling Notation (BPMN). The
labelling of tasks (Tx) and events (Ex) matches the labelling
from [14].

We begin with a systematically produced Event-B model
of the CRP. We focus on the consistency of loan requests
between the customer and the credit portal. We wish to
ensure that credit requests from the customer either arrive
within a specified time or are compensated for in some (as
yet unspecified) way. We therefore apply the Timed Error
Recovery Pattern to the channel indicated between T5 and
T9. This application of the pattern was done automatically,
using the approach and tool described in [6]. This produces
a refined version of the CRP Event-B machine, in which the
invariants of Fig. 10 hold.

Fig. 15 shows the relevant events and further invariants in
the Event-B model of the Credit Request Portal. The event
cSend models the customer sending a credit request to the
portal. The guard tk cSend > 0 ensures that a loan request
has been created or modified (process T4 or T6). The second
two guards match the guards of the sending event in the
abstract part of the Timed Error Recovery Pattern (event snd
in Fig. 2). cSend adds a loan request identifier (ln) on to
channel (ch req ids). It also deals with the control flow tokens
and adds a CreditReq object on to the channel between the
customer and the credit portal, and records ln in the set sent.

The event pReceive models the reception of a loan request
by the portal. A loan request may arrive when the token for
process T9 has been set (tk pReceive > 0). This is set at the
completion of the previous process in the Credit Portal. The
presence of the CreditReq object in ch C2P is an indication
that a credit request has been made. The variable ch C2P
is the communication channel between the customer and the
portal. The incoming loan request identifier ln must be on the
request identifier channel ch req ids.

When pReceive fires the token for that stage (tk pReceive)
is reduced and the token for the next stage ((tk pV eriSend)
is set. The credit request object is removed from the channel
ch C2P and the loan request is added to the consistent set
cons and removed from the channel ch req ids.

For the Timed Error Recovery Pattern to be applied, cSend
and pReceive are substituted for snd and rcv from Fig. 2.
The guards and actions in each event which are substituted in
this application are labelled in Fig. 15 with the word pattern.
The variable limit is set to the maximum time that loan
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∀m·(m ∈ dom(timercvd) ∧ timercvd(m)− timesent(m) ≤ limit) ⇔ m ∈ consistent
∀m·(m ∈ dom(timercvd) ∧ timercvd(m)− timesent(m) > limit) ⇔ m ∈ q comp ∪ compensated

Fig. 10. Timed Error Recovery Pattern Consistency Invariants.

snd
refines snd
any m where

m ∈MSG
m /∈ sent

then
sent := sent ∪ {m}
q rcv := q rcv ∪ {m}

end

rcv good
refines rcv good
any m where

m ∈ q rcv
then

consistent :=
consistent ∪ {m}

q rcv := q rcv \ {m}
end

rcv bad
refines rcv bad
any m where

m ∈ q rcv
then

to comp :=
to comp ∪ {m}

q rcv := q rcv \ {m}
end

init recovery
refines init recovery
any m where

m ∈ to comp
then

to comp :=
to comp \ {m}

q recovery :=
q recovery ∪ {m}

end

recovery success
refines term recovery
any m where

m ∈ q recovery
then

q recovery :=
q recovery \ {m}

recovered1 :=
recovered1 ∪ {m}

end

recovery fail
any m where

m ∈ q recovery
then

q comp2 :=
q comp2 ∪ {m}

q recovery :=
q recovery \ {m}

end

level2 recovery
any m where

m ∈ q comp2
then

recovered2 := recovered2 ∪ {m}
end

Fig. 11. Hierarchical Error Recovery events.

requests may be in the channel ch req ids without requiring
compensation.

The application of the pattern results in the creation of the
pReceive ontime, pReceive late and compensate events within
the refined Credit Request Process, given in Fig. 16. The
bounded consistency invariants given in Fig. 10 hold, and do
not have to be reproved.

We can also apply the pattern in a way that maintains
consistency of information within a component. For ex-
ample, to consider time bounded consistency of credit re-
quests within the credit portal, we can match the snd event
with T9 (receive credit request) and the rcv event with T11
(send preliminary decision). There is no channel directly be-
tween these two events, so we introduce a virtual channel

tick
begin

now := now + 1
end

rcv ontime
refines rcv
any m where

m ∈ q rcv
deadline(m) ≥ now

then
deadline := deadline \ {m 7→ deadline(m)}
consistent := consistent ∪ {m}
q rcv := q rcv \ {m}

end

rcv late
any m where

m ∈ q rcv
deadline(m) < now

then
q rcv := q rcv \ {m}
q comp := q comp ∪ {m}

end

compensate
refines rcv
any m where

m ∈ q comp
then

deadline := deadline \ {m 7→ deadline(m)}
compensated := compensated ∪ {m}
q comp := q comp \ {m}

end

snd
refines snd
any m where

m ∈MSG
m /∈ dom(timesent)

then
timesent := timesent ∪ {m 7→ now}
deadline := deadline ∪ {m 7→ now + limit}
q rcv := q rcv ∪ {m}

end

Fig. 12. The events of the concrete part of Timed Error Recovery Pattern.

connecting them. Loan requests join this channel when they
arrive at T9, and leave when the decision is sent back to the
customer at T11. Loan requests which take greater than a
certain time limit to travel between these two points may be
compensated by refining the event compensate.

VII. RELATED WORK

Approaches to the formal modelling and analysis of
workflows over service-oriented architectures, particularly for
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m0 ∈ dom(timercvd) ∪ {m 7→ now} ∧
(timercvd ∪ {m 7→ now})(m0)− timesent(m0) ≤ limit

⇔
m ∈ consistent ∪ {m 7→ now}

Fig. 13. A proof obligation in Timed Error Recovery Pattern.

Fig. 14. The Final Stage of the Credit Request Process.

BPEL, use a variety of notations and tools. Many base formal
models on transition systems and Petri Nets, allowing the
analysis of path and termination properties [15], [16]. Finite
automata encoded in Promela have also been used for deadlock
detection [17]. Process Calculi such as FSP [18], LOTOS [19]
and Abstract State Machines [20] have also been used to model
workflow supporting a range of properties including aspects
of fault handling and compensation.

Our approach focuses on the use of proof to give semantic
analysis of functional and timing aspects of workflows over
distributed business systems. The closest work to our own
is perhaps that of Aı̈t-Sadoune and Aı̈t-Ameur [21] which
presents an Event-B translation of the BPEL language in-
cluding fault handling. This allows for proof-based validation
of properties such as deadlock-freeness. Ball and Butler [5]
identify design patterns relating fault tolerance behaviour in
the family of agent interaction protocols dealing with agent
contracts. The patterns codify possible responses to problems
which agents can encounter when exchanging requests to
carry out actions and are presented as blueprints, capturing
typical elements of the agent models. Our work differs from
the approaches above by addressing application-level semantic
consistency, focusing on patterns that can be included in the
Event-B model derived from workflow and having an explicit
model of real time.

Clearly, the Time Constraint Pattern of Cansell et al. [8]
is closely linked to this work, and applies to cases where
the developer can be confident that the message transportation
layer can guarantee certain timing properties. The pattern we
develop here covers the case where these timing characteristics

invariants
sent ⊆ reqId
ch req ids ⊆ reqId
cons ⊆ reqId
cons ∩ ch req ids = ∅
sent = ch req ids ∪ cons
cons = sent \ ch req ids

cSend
any ln where

tk cSend > 0
ln ∈ reqId pattern
ln /∈ sent pattern

then
tk cSend := tk cSend− 1
ch C2P := ch C2P ∪ {CreditReq}
tk cGate := tk cGate + 1
sent := sent ∪ {ln} pattern
ch req ids := ch req ids ∪ {ln} pattern

end

pReceive
any ln where

tk pReceive > 0
CreditReq ∈ ch C2P
ln ∈ ch req ids pattern

then
tk pReceive := tk pReceive− 1
ch C2P := ch C2P \ {CreditReq}
tk pV eriSend := tk pV eriSend + 1
cons := cons ∪ {ln} pattern
ch req ids := ch req ids \ {ln} pattern

end

Fig. 15. Part of the Credit Request Process.

are not known. The timing part of our pattern is simpler
than the TCP. If these characteristics were settled later in the
development, it would therefore be possible to add this detail
to the Event-B development, and return to the full strength of
the Time Constraint Pattern.

Besides time and consistency, our approach makes use of
a simple error recovery pattern. There are several approaches
to patterns for fault tolerance in B and Event-B. Laibinis and
Troubitsyna [22] propose a formal specification pattern (in B)
that can be recursively applied to specify exception raising
and handling at various architectural layers of component-
based systems. The approach is developed for systems in
which components interact by issuing synchronous calls and
which mainly face hardware failures and human errors. Il-
iasov [23], [7] offers a general approach to defining fault
tolerance refinement patterns assisting system developers in
disciplined application of software fault tolerance mechanisms
during rigorous system design. Our work additionally requires
modelling of temporal constraints. These patterns are formally
defined as model transformations producing correct model
refinements. The approach is backed by a tool and a theory of
pattern composition.

VIII. CONCLUSIONS AND FURTHER WORK

We have presented a pattern that may be used to describe
time-bounded semantic consistency properties for distributed
business information systems. Our approach adapts the Timed
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pReceive ontime
refines pReceive
any m where

tk pReceive > 0
m ∈ q rcv ∪ q comp
m ∈ q rcv
deadline(m) ≥ now

then
tk pReceive := tk pReceive− 1
ch C2P := ch C2P \ {CreditReq}
tk pV eriSend := tk pV eriSend + 1
deadline := deadline \ {m 7→ deadline(m)}
consistent := consistent ∪ {m}
q rcv := q rcv \ {m}

end

pReceive late
any m where

m ∈ q rcv
deadline(m) < now

then
q rcv := q rcv \ {m}
q comp := q comp ∪ {m}
timercvd := timercvd ∪ {m 7→ now}

end

compensate
refines pReceive
any m where

tk pReceive > 0
m ∈ q rcv ∪ q comp
m ∈ q comp

then
tk pReceive := tk pReceive− 1
ch C2P := ch C2P \ {CreditReq}
tk pV eriSend := tk pV eriSend + 1
deadline := deadline \ {m 7→ deadline(m)}
compensated := compensated ∪ {m}
q comp := q comp \ {m}

end

Fig. 16. Events in the Concrete CRP after application of the TERP.

Consistency pattern of Cansell et al., adding (optionally hier-
archical) error recovery.

Although our approach was inspired by business infor-
mation systems applications, we conjecture that the same
approach could be used for a wider class of distributed applica-
tions. The work reported in this paper concentrates on business
process models and not the choreography models that describe
communications protocols between business processes. Our
previous work [1] modelled the effect of faults in commu-
nications middleware on the completion of communications
protocols at the choreography level that underpins applications.
An important direction for future work is to link these two
levels, in order to provide more complete analysis, including
error propagation and recovery.

We intend to apply the patterns for modelling temporary
semantic inconsistency to realistic business processes typically
implemented in SAP software and to custom business pro-
cesses modelled with the help of BPMN. To this end we are
investigating ways of representing these processes in a formal
language like Event-B, similar to the general approach of
Aı̈t-Sadoune and Aı̈t-Ameur [21]. Automating and providing

tool support for the translation into a formal language and
for the application of the error recovery pattern may give
business process designers the most convenient support for
their work. There is preliminary evidence that the re-use of
patterns in Event-B can save significantly in proof effort [6];
we would wish to gather more data from other applications
of our patterns in order to confirm this. It is in our plans for
the future work to evaluate the applicability of general pattern
approaches such as those of Iliasov [7] to the development
of the time constraint and error recovery patterns proposed in
this paper. The use of good labour-saving patterns is likely to
play a significant part in the achievement of that goal.
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