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Abstract. Recently, Space Systems Finland has undertaken formal Event B devel-
opment of a part of on-board software for the BepiColombo space mission. As a re-
sult, lack of modularization mechanisms in Event B has been identified as a serious
obstacle to scalability. One of the main benefits of modularization is that it allows us
to decompose system models into components that can be independently developed.
It also helps to manage complexity of models that in the industrial setting are usually
very large and difficult to comprehend. On the other hand, modularization enables
reuse of formally developed components in the formal product line development.
In this paper we propose a conservative extension of Event B formalism to support
modularization. We demonstrate how our approach can support reuse in the formal
development in the space domain.

1 Introduction

In the Deploy project[8], Space Systems Finland has performed a pilot Event B devel-
opment[11] of a part of on-board software for the BepiColombo space mission [5]. The
developed system is responsible for controlling and monitoring instruments that produce
valuable scientific data that are critical for the success ofthe mission. The undertaken
development aimed at identifying the strengths and weaknesses of Event B method and
its supporting tool – the RODIN platform[14]. The experience demonstrated that the re-
finement approach provides a suitable design technique. It allows us to structure complex
and numerous requirements and promotes disciplined development via abstraction and
proofs. However, it has also became obvious that the lack of modularization makes Event
B unscalable for formal development of industrial systems.In this paper we propose a
conservative extension of Event B language that supports a simple modularization idea.

The idea of modules is very well known and is supported by mostof the formal frame-
works. Usually they define a module interface via pre- and postconditions. However, in
our case introducing preconditioned operations in Event B was unacceptable due to two
main reasons. Firstly, preconditioned operations would not be supported by the RODIN
platform and building a new tool of similar strength would require significant time and fi-
nancial investments. Secondly, introduction of a preconditioned operation would seriously
complicate the proof obligations required to verify correctness and hence would lower the
degree of automation in the development. Therefore, our approach is strictly driven by the
pragmatic needs and oriented towards automation.
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In this paper we briefly describe the on-board software that have been modelled and
present the experience gained by Space Systems Finland. Then we describe our proposal
for introducing modularization in Event B and demonstrate how the system can be rede-
veloped in a modular fashion.

We believe that by enabling modular development in Event B wenot only improve
scalability of formal modelling but also potentially increase productivity. Indeed, formally
developed components can be reused in other developments and hence amplify the effect
of formal modelling.

2 Challenges and Experiences in Formal Development of Onboard
Software

2.1 Example of Onboard Software

Spacecraft-embedded software – onboard software – is responsible for managing various
spacecraft operations. For instance, the controlling software is critical to the mere sur-
vivability of a mission, while scientific software is responsible for correct and effective
handling of high volume of data generated by extensive scientific experiments. Therefore,
failure of onboard software can have major repercussions. Yet, onboard software must
withstand extreme conditions of the space environment and operate with hardware, which
has limited capabilities compared to personal computers. It is clear that these factors make
the design, implementation and verification of onboard software very challenging.

Space Systems Finland is one of software providers for the European Space Agency
(ESA) mission BepiColombo. The main goal of the mission is exploration of the planet
Mercury. The mission comprises various scientific studies,e.g., analysis of its internal
structure and a surface, investigation of the geological evolution of the planet etc. To
achieve the defined scientific goals, one of the mission orbiters – Mercury Planetary Or-
biter – will carry remote sensing and radioscience instrumentation. Space Systems Finland
is responsible for developing software for an important part of the orbiter – the data pro-
cessing unit. The company has undertaken formal development[11] of it in the Event B
framework with the support of the RODIN platform[14].

The data processing unit (DPU) is used to control two scientific instruments: Solar
Intensity X-ray and particle Spectrometer (SIXS) that records the radiation from the Sun
at the position of the spacecraft, and Mercury Imaging X-raySpectrometer (MIXS) that
records fluorescent X-rays from the planet surface. In turn,both instruments contain two
separate sensor units: X-ray spectrometer (SIXS-X) and particle spectrometer (SIXS-P)
for SIXS, and telescope (MIXS-T) and collimator (MIXS-C) for MIXS.

The DPU unit is communicating with the BepiColombo spacecraft via SpaceWire in-
terfaces, which are used to receive telecommands from the spacecraft and transmit science
and housekeeping telemetry data back to the spacecraft.

The system under construction consists of three main software components: the Core
Software (CSW), the SIXS instrument application software (SIXS ASW) and the MIXS
instrument application software (MIXS ASW). CSW is the common interface software
for the MIXS ASW and SIXS ASW. It controls and monitors the operating states of SIXS
and MIXS instruments, as well as handles telecommand/telemetry communication with
the BepiColombo platform.

In general, the behaviour of the system consists of receiving telecommands (TC) from
the BepiColombo platform and producing corresponding telemetry data (TM). The re-
ceived TCs are stored in a memory buffer. CSW is responsible for validation of syntactical
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and semantical integrity of each received TC. In particular, it checks that each TC adheres
to the PUS standard[?] describing telemetry and telecommand packet utilization. If vali-
dation fails then the corresponding TM is generated. Otherwise a TC is placed in the pool
of TCs waiting for execution. Each TC has a ”recipient” – the component that will actually
execute TC.

There are several types of TCs. They might change the operation mode of the compo-
nent, request to produce housekeeping report or generate scientific date etc. The compo-
nent that executes TC always acknowledges TC execution by generating the corresponding
TM. Besides an acknowledgment TM, a reaction on a TC might also include a TM con-
taining progress reports, housekeeping reports or periodically generated scientific data.

Above we have given a very brief, high-level overview of system functionality. The
actual detailed requirements for the DPU unit are rather complex and large (the real re-
quirements document contains about several hundreds of pages), so we omit their detailed
description here. Next we outline the steps of the formal development aimed at modelling
the functional behaviour of the system.

2.2 Experiences in Formal Modelling

The formal development of the DPU unit started from an abstract specification that mod-
els the general control flow, abstractly representing a sequence of TC handling and TM
generation steps. The first refinement step introduces explicit stages of TC and TM pro-
cessing. Depending on the stage, a TC or a TM is assigned a specific status. For example,
the TC status can beUnchecked(before validation),Acceptedor Reject(after validation),
Waiting for Execution(before execution),Succesful Executionor Execution Failed(after
execution), andRemovable(TC processing is finished).

The second refinement step elaborates on the structure of TCsand TM, introducing
the notion of TC and TM types. We introduce a number of concrete types of TCs and
TM, though many types are still modelled abstractly. The third refinement step focuses
on introducing software processes, representing softwarecomponents in the model. The
representation of TC and TM is extended to explicitly model the target component that
should execute a TC or the source component that produced a TM.

The fourth refinement step introduces the notion of the component operating modes
and mode transitions. For instance, the Core Software CSW can be inOperational, Standby,
andSafemodes. The fifth refinement step focuses on modelling generation of reports – the
dedicated TMs confirming validation and execution of the corresponding TCs.

Certain types of TCs require not only reporting TMs but also TMs informing about
progress of the TC execution, an operating mode change, or failure detection. Such progress
reporting is introduced in the sixth refinement step. Furthermore, this refinement step in-
troduces some details modelling the behaviour of one of the components – SIXS-X. The
seventh refinement step models the behaviour of the other instruments in the similar way.
Besides it also elaborates on component-specific TM generation and internal component
behaviour.

We verified correctness of the entire refinement chain by proofs in the RODIN plat-
from. The resultant specification has 20 variables, 61 events, 38 invariants. Additionally,
the static data structures (15 sets, 88 constants) are defined by formulating 207 axioms and
20 theorems. The text of the specification (apart from definition of the data structures) has
more than 40 pages.

The formal modelling of data processing unit described above has highlighted the fol-
lowing problems in Event B development
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– It is not clear how to reuse the conducted development in the similar projects;

– Lack of modularization support hinders independent development of several subsys-
tems;

– Without decomposition(modularization), a specification of even a relatively simple re-
alistic system becomes very large and difficult to comprehend.

Therefore, there is a clear need to support modularization mechanisms in formal Event B
development. Next we discuss our proposal for alleviating these problems.

Complexity of onboard software is constantly increasing, thus software for a space
mission is usually partitioned into components that developed by different providers. In the
space sector, cooperation between the providers and quality assurance is facilitated by two
general mechanisms – the standards and, more recently, the reference architecture. Some
of the available standards regulate the development process in general. Others define the
interfaces (the format of data and data flows) between components, e.g., the PUS standard
mentioned above. To facilitate the development in the sector, the reference architecture
aims at providing a proven template solution for an architecture for the space domain. It
lists typical functions of a space mission and interfaces between the functional blocks. A
simplified version of a reference architecture is given in Fig. 1.

Fig. 1.Reference architecture

The reference architecture provides us with a suitable basis for identifying generic com-
ponents. Since the communication between the components isregulated by the standards,
modules can be abstractly defined by their interfaces. The development of components
should ensure that the implementation preserves the given interface. Hence we can for-
mally specify a system on architectural level, formally define the conditions imposed on
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the component interfaces and then develop individual components while preserving their
interfaces. Furthermore, we can reuse the models of previously developed components by
composing them using their interfaces. Such an approach alleviates a problem of verifying
large composed specifications.

3 Event B

In this section we introduce our formal framework – The B Method [1]. It is an approach
for the industrial development of highly dependable software. The method has been suc-
cessfully used in the development of several complex real-life applications [10]. Recently
the B method has been extended by the Event B framework [2], which enables modelling
of event-based (reactive) systems. In fact, this extensionhas incorporated the action system
formalism [3, 4] in the B Method.

The B Method development starts from creating a formal system specification. The
basic idea underlying stepwise development in B is to designthe system implementation
gradually, by a number of correctness preserving steps calledrefinements.

A simple B specification has the following general form:

MACHINE AM
SEES Context
VARIABLES v
INVARIANT Inv
INITIALISATION Init
EVENTS
E1 = . . .
. . .
EN = . . .

END

A B specification, called anabstract machine, encapsulates a local state (program vari-
ables) and provides operations on the state. In the Event B framework, such operations are
calledevents. The events can be defined as

WHEN g THEN SEND

or, in case of a parameterised event, as

ANY vl WHERE g THEN SEND

wherevl is a list of new local variables (parameters),g is a state predicate, andS is a B
statement (assignment) describing how the program state isaffected by the event. Both
ordinary and non-deterministic assignments can be used to specify state change. The non-
deterministic assignments are of the form:

v : | Post(v,v′)

wherePost is the postcondition or the next state predicate, relating the variable values
before and after the assignment.

The events describe system reactions when the givenWHEN or WHERE conditions
are satisfied. TheINVARIANT clause contains the properties of the system (expressed as
predicates on the program state) that should be preserved during system execution. The
data structures needed for specification of the system are defined in a separate component
calledcontext.
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4 Introduction to Modules in Event B

Our primary goal is to conservatively extend the Event-B language with a possibility of
(atomic) operation calls. Such an extension would naturally lead to the notion of mod-
ules – components containing groups of callable operations. Moreover, modules can have
their own (external and internal) state and the invariant expressing properties on this state.
The important characteristic of modules is that they can be developed separately and then
composed with the main system during its formal development. Since we are interested
in incorporating modules into Event B modelling, it should be also possible to statically
check the correctness of such a composition within the EventB framework.

Let us start with an ”ideal” (somewhat extreme) example of a general Event B opera-
tion that we would like to be able to express in our formal language.

op =

WHEN

Prec(v1,...,vN)

THEN

v1 : | ... op1 call(parameters1) ...

...

vN : | ... opN call(parametersN ) ...

opN+1 call(parametersN+1)

...

opN+K call(parametersN+K )

END

Hereopi call(...) are either function or procedure calls from available modules4. A proce-
dure call can be considered as special case of a function call(with the pre-defined return
values). Thus from now on we will focus only on modelling function calls in Event-B.

Once an enabled event is chosen for execution in Event B model, all its actions are
executed atomically and in parallel. However, the standardsemantics of a function call,
realised in most programming and formal languages, prescribes the well-defined order of
execution steps:

1. Actual parameter expressions are evaluated and passed toa module operation;
2. The operation is executed on the given parameters and the module state. The operation

result is returned to the calling operation;
3. The actions of the calling operation are executed, substituting the function calls with

the returned results.

Moreover, the atomicity of an event operation with functioncalls should be preserved – no
other event operation of the main system can intervene in between. Our challenge in this
paper is to implement this standard functionality within the Event B semantics.

We split our task into two separate issues. First, we show howwe can introduce mod-
ules and module calls during Event B development using modeldecomposition. Next, we

4 Since all actions in the operation body should be executed inparallel, to avoid writing conflicts,
we assume here that all function and procedure calls are fromdifferent modules
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assume availability of pre-defined modules and demonstratecorrectness of our specifi-
cation containing module operation calls. The latter is a special case of verifying model
composition.

4.1 Introducing Modules via Model Decomposition

In this paper we use the J.-R. Abrial’s approach on Event-B decomposition[13]. The ap-
proach allows to split an Event B specification into several components (sub-models) that
can be developed separately. If needed, some of these components can be further decom-
posed. Most importantly, the approach formally guaranteesthat the final re-composed sys-
tem will be a refinement of the original one.

The decomposition is based on partitioning the model operations among the new com-
ponents. The model variables are distributed as well, either asinternal variablesbelong-
ing to some particular components, or asshared variablesthat can be accessed by several
components. To make the components self-contained, each ofthem is complemented by
specialexternal events, abstractly modelling how the shared variables may be modified
by other components. The approach also restricts data refinement of the shared variables
to make a decomposed system consistent. Essentially, the shared variables between two
components of a decomposed system can be often seen as the input and output channels
allowing these components to synchronise their activities.

Let us start with a simple generic example of an Event B operation. We would like to
refine it so that it delegates (part of) its functionality to an external operation and then uses
the returned result. In other words, the operation refinement should be of the form:

op =

WHEN

Prec(v)

THEN

v : | Post(v,v’)

END

⊑

calling op =

WHEN

Prec’(v,ext)

THEN

v := Out Expr(v,Module op(In Expr(v)))

END

wherePost is the postcondition of the original event,In Expr(v) is the actual parameter
expression,Out Expr(...) is a state expression incorporating the result of the operation
call, andext is the externally visible part of the module state.

We interpret the refined operation as a syntactic sugaring hiding the actual definition
in terms of the current Event B language. The idea is to model afunction call by three
events, simulating the three-step execution described above. Moreover, these three events
should be introduced in such a way that we could decompose thesystem by distributing
the system state and operations between the calling and called components.

The execution of a called module operation is abstractly modelled byModule op pre-
sented below. Note that, in addition to calculating the result res, an operation call can
also update the module stateext. The execution of a module operation is wrapped by two
events of the calling component:call preparation, which passes parameters to a module,
andcall finalisation, which incorporates the returned results.

The variablesi flag and o flag (of the type0..1) are used to enforce the fixed or-
der of execution between the main component and a module: first call preparation, then
Module op, and finallycall finalisation. In addition, to guarantee atomicity of an operation
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Module op =

WHEN

i flag 6= o flag

THEN

ext,res : | M Post(pars,ext,ext’,res’)

o flag := 1-o flag

END

call preparation =

WHEN

Prec’(v,ext)

i flag = o flag

pars = NIL

THEN

pars := In Expr(v,ext)

i flag := 1-i flag

END

call finalisation =

WHEN

i flag = o flag

pars 6= NIL

THEN

v := Out Expr(v,res)

pars := NIL

END

call, all the other operations of the calling component should be blocked untilcall finalisation

finishes. It can be achieved by strengthening their guards by(i flag = o flag) ∧ (pars =
NIL). Essentially, the above solution is a special case of the alternating bit protocol.

This refinement step also achieves partitioning the state and operations between com-
ponents. The variablesres, o flag can be put into the future module component, while
pars, i flag,v belong to the main specification. Following the Abrial’s approach, we can
decompose the system by movingModule op into a separate module, where it can be de-
veloped (refined) independently.

To prove operation refinement, we need to show the connectionbetween and the ab-
stract operationPrec and the strengthened preconditionPrec′, as well as the expected
postconditionPost in the main specification and the postconditionM Post of the module
operation. Specifically, the following two theorems shouldbe proved as additional proof
obligations:

∀ext.Prec′(v,ext)∧M Inv(ext) ⇒ Prec(v)

∀(v,ext,ext′res).M Post(In Expr(pars,ext),ext,ext′, res)∧M Inv(ext) ⇒

Post(v,Out Expr(v, res))

whereM Inv is the module invariant on its external state.

4.2 System Development via Model Composition

In the previous section we showed how we can delegate a part offunctionality of the main
specification to a module by means of model decomposition. Inpractice, however, we are
more interested in the opposite – composing our systems using a collection of pre-defined
modules.
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In our examples above, execution of a module operation was specified as a single event.
In general, a module implementation could contain many callable operations, each of them
consisting of a group of events. Demonstrating the correctness of a operation call would
then become a non-trivial task.

Since Event B is a refinement-based formalism, the problem can be solved by ap-
plying the classical rules of program correctness, in particular, the correctness rules for
operation calls[7, 9]. Basically, following these rules, it is sufficient to show the relation-
ships between the pre- / postcondition of a operation call and the corresponding pre- /
postcondition of a module operation. Specifically, we need to prove that

Prec ∧ M Inv ⇒ M Prec

M Post ∧ M Inv ⇒ Post

wherePrec, Post andM Prec, M Post specify respectively an operation call and an mod-
ule operation itself.

The pre- and postcondition for a module operation then become a part of the externally
visible module description, alongside with the external module variables and invariant.
Such an external description is called amodule interface. An exact structure of a module
interface will be presented in the next section.

Let us recall the example from the previous section. However, this time the module
interface describing the module external state, invariant, and operation preconditions and
postconditions is available. Then it can be shown that the operationcalling op is just a syn-
tactic sugaring for the following (provided that the above conditions on the preconditions
and postconditions are proved):

calling op =

ANY

ext’, result

WHERE

Prec’(v,ext)

M Post(In Expr(v),ext,ext’,result)

THEN

v := Out Expr(result)

ext := ext’

END

The required sequence of parameter passing, external operation execution, and returning
of its results is now implicitly modelled by new local variables and their initilisation in the
operation guard.

In this section we demonstrated that the module interfaces can be very useful very-
ing the correctness of a module operation call. However, theexamples considered so far
are still pretty simple. In the next section we will discuss the structure and semantics of
modules and their interfaces in a general case.
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5 Extending Event B with Modules

5.1 Module Interface

Our main objectives are to facilitate model reuse and enableconcurrent development of
formal models. The interface concept plays a central role inachieving this. The introduc-
tion of an operation call can be validated by considering only an interface description of
a called operation. Symmetrically, an implementation of anoperation does not have to be
aware of a possible context of an operation call since the validation is done againts the
requirements stated in the interface. In other words, a module interface allows a module
user to invoke module operations and observe module external variables without having to
inspect module implementation details.

In our approach, a module interface consists of external module variables (w), con-
stants (c), and sets (s), the external module invariant, and a collection of moduleoperations,
characterised by their pre- and post-conditions.

MODULE INTERFACE MI =

SEESInterface Context

VARIABLES w

INVARIANT M Inv(c, s, w)

OPERATIONS

res← op1(par) =

PRECONDITION M Pre1(c, s, par, w)

POSTCONDITION M Post1(c, s, par, w, w’, res’)

. . .

END

A module interface does not have an initialisation (it is provided by a module implemen-
tation) and there are no events. However, an interface stillmust satisfy certain consistency
conditions typical for Event B specifications – operationfeasibility (i.e., there are some
states that would satisfy pre- and postconditions) and preservation of the module invari-
ant:

∃res′,w′ ·M Inv(c,s,w)∧M Pre(c,s,p,w)∧M Post(c,s,p,w,w′, res′) (1)

M Inv(c,s,w)∧M Pre(c,s,p,w)∧M Post(c,s,p,w, r′,w′)⇒M Inv(c,s,w′) (2)

A module development always starts with the design of an interface. Once an interface
is formulated and declared final it cannot be altered in any manner. This ensures that an
operation call context is recomposable with an operation implementation, provided by the
last refinement step of a module body.

5.2 Module Body

A module interface formally defines a collection of module operations. Obviously, it should
be complemented by the corresponding module body that provides a suitable implemen-
tation for each operation. Since an Event-B specification has a flat structure, there is a
problem of relating an interface operation declaration to aset of events implementing the
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operation. To show correctness of a module implementation,we need a clear separation
between the events implementing different module operations.

The solution we are putting forward is based on an introduction of a simple specifi-
cation structuring mechanism. The events associated with aparticular operation are put
together forming anevent group. Several event groups make up a body a module imple-
mentation, one group for each interface operation. The defining property of an event group
is the following: once a control is passed to a group, the group runs till termination with-
out interference from other groups. This allow us to formulate correctness conditions by
considering only an operation and its associated event group.

Events groups simply partition events of a machine. A modulebody defining a collec-
tion of groups has the following structure:

MODULE M =

VARIABLES w

INVARIANT M Inv

GROUP group name1

(events)

GROUP group name2

(events)

. . .

END

The name of a group must match the name of an interface operation definition. Each in-
terface operation is associated with one group and vice versa. The termination of an event
group corresponds to the termination of an operation call.

Events of a group obey the usual Event-B consistency and refinement conditions with
an additional constraint requiring that a refined event inherits a group membership from
its abstract counterpart.

The pre- and postconditions of an interface operation definehigh-level requirements
to the behaviour of an event group. At least one event of an event group must be enabled
in the state described by the operation precondition.

M Pre⇒ G1∨G2∨·· ·∨Gn (3)

Each of the events returning control back from an event groupmust satisfy the operation
postcondition and provide suitable return values.

Postev(w,w′)∧¬(G1(w
′)∨G2(w

′)∨·· ·∨Gn(w
′))⇒M Post(w′) (4)

wherePostev is the event postcondition.
A divergent event group cannot be a proper implementation ofan operation. Therefore,

In the first model realising a given interface (that is, an abstract module implementation)
all the event groups must be terminating. The further refinement steps have to demonstrate
the non-divergence of new events, as it is done in a conventional Event-B development.

5.3 Operation Invocation

The syntactic shorthand for an operation invocation is a function call. The interpretation
behind such a shorthand is based on the interface attributesof an operation: its pre- and
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post-conditions. We have already discussed a simple case when just one invocation hap-
pens within an action. However, our approach scales well to several invocations even when
there is a complex interlink between call instances such as using the result of one operation
as a parameter for another.

The semantics of an operation call is given by the computation of an equivalent state-
ment that would be free from the call. Let us consider the following general case of an
event which action relies on an operation call:

E = WHEN G(v, w) THEN v : | Post(v, w, v’, op(a)) END

Here the predicatePost is the before-after predicate of the eventE. It relates the current
model statev to the next statev′ and also, indirectly, via the operation call, the current
external module statew to the next statew′. The result of the operation callop(a) ia
used inPost to constrainv′. The following rewrite rule replaces the operation call with an
equivalent characterisation based on the module interfacepre- and postconditions:

E = ANY res, w’ WHERE
M Inv(w) ∧ M Pre(par,w) ∧ M Post(par, w, w’, res))[a/par]

THEN
v : | Post’(v, w, v’,res)

w := w’

END

whereM Inv(w) is the module invariant andM Pre andM Post are the pre- and post-
conditions of the operationop. The new postconditionPost′ is computed by replacing all
the occurrences ofop invocations with the local variableres, constrained in the event guard
to a possible return value ofop.

Since there can be more than one such invocation, the rule hasto be applied iteratively
until there are no operation calls left. The important pointis the order in which invocations
are eliminated. In a general case, there is a causal link between calls because each subse-
quent call may observe side effects (updates of module external or internal variables) of all
the preceding calls. Another form of a causal link is passingthe result of an operation call
as a parameter to another call. The collection of causal relationships defines a total order
on operation calls of an event. Once this ordering of calls isdefined, we apply the above
rule iteratively. The result is the following syntactic translation. For some event depending
on a set of operation callsa1, . . . ,an

E = WHEN G(v, w) THEN v : | Post(v, w, op1(a1), . . . , opn(an), v’)

the corresponding (free of operation calls) translation iscomputed as follows:

E =

ANY res1, w′1

WHERE G(v, w)∧ call(1)[a1 / par1][osub(0)]

ANY res2, w′2

WHERE call(2)[a2, w′1/ par2, w2][osub(1)]

. . .
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ANY resn, w′n

WHERE call(n)[an, w′n−1/ parn, wn][osub(n-1)]

THEN

w := w′n

v : | Post(v, par, op1(a1), . . . ,opn(an), v’)[osub(n)]

END

END

END

where[osub(k)] is the subsitution[res1, . . . , resk/op1(a1), . . .opk(an)], andcall(k) stands
for M Inv(w)∧M Prek(wk,park)∧M Postk(park,wk,w

′
k
, resk). HerePrek andPostk are

the pre- and post-conditions of the operationopk. A nestedANY construct is a syntactic
sugaring that may be reduced to a singleANY. More details on this may be found in the
Rodin deliverable on the Event-B language [13].

The expansion of operation calls into a plain Event-B notation reduces the problem of
operation call verification to conventional set of proof obligations generated for an Event-B
event. However, we are not proposing to do such conversion inpractice – this would under-
mine all the benefits provided by a syntactical representation of an operation call. Instead,
we rely on the expanded form to derive the proof obligations neccessary to demonstrate
event correctness. From practical view, a tool implementing the operation call mechanism
would do the operation call expansion as an intermediate step prior to the generation of
proof obligations.

6 Modularization of the DPU unit

This section presents an application of our modularizationapproach in Event B to model
one of important DPU subsystems, responsible for TC validation.

6.1 The Validation Module

The arrived telecommands should be validated (i.e., checked for syntactic and semantic
correctness of their fields) before they are forwarded to execution. The core software is re-
sponsible for syntactic (”early”) checking, while the telecommand target software (which
can be either the core software or application software) does more thorough (”late”) se-
mantical checking.

In the Event B specification, the validation stage of telecommand processing corre-
sponds to a group of events, covering different cases depending on the telecommand type,
the software component (process) it is targeted to, the current core software mode etc. As a
result of validation, the status of the processed telecommand is changed to eitherAccepted
or Rejected. In addition, the additional set variableExclusive Rej is updated in the case
when the core software rejects the telecommand. The information from Exclusive Rej is
needed by the core software later – in the reporting phase.
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One of examples of such validation events is as follows:

Reject Private TC Early =

ANY

tc handler

WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

TCpool(tc handler) ∈ VALID TCS

Type of TC(TCpool(tc handler)) ∈ PRIVATE TC TYPES

CSW mode 6= Operational

THEN

TC status(tc handler) := TC Rejected

Exclusive Rej := Exclusive Rej ∪ {tc handler}

END

This is an abstract event specifying one such case when the considered TC belongs to pri-
vate (i.e., mission-specific) TC type and the core software is not in the operational mode
(i.e., is on standby or in the safe mode). As a result, the coresoftware rejects the telecom-
mand and marks it as ”exclusively rejected”.

Many implementation details describing the validation process (especially the accep-
tance of TCs) are still missing and could be added in the laterrefinement steps. However,
we would like to move the whole group of validation cases intoa separate module (called
Validation) and develop this module further independently. The case analysis and appli-
cation of concrete validation actions would happen then within theValidation module.
Therefore, we can specify the validation phase within a single operation event containing
a call to the operationValidate described in this module.

Validate op =

ANY

tc handler

WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

THEN

TC status(tc handler) := Validate(tc handler,CSW mode)

END

The parameters for calling theValidate operation are the TC being processed as well the
current core software mode. The returned result is the new status of the processed TC.
Please note the absence of the variableExclusive Rej in the calling operation. The reason
for that is that we turnExclusive Rej into an external variable of the new module. The
”external” status would allow other components read the current value of this variable.
The variable will be updated internally, when needed to record ”exclusive” rejection. The
additional module operationRemove Exclusive would allow other the calling component
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to remove a particulartc handler from Exclusive Rej after it served its purpose (i.e., in the
reporting phase).

The following excerpt of theValidation module interface contains declaration of the
external module variableExclusive Rej as well as the interfaces for the operationsValidate

andExclusive Remove.

MODULE INTERFACE Validation =

VARIABLES Exclusive Rej

INVARIANT

Exclusive Rej ⊆ TC ADDRESSES

...

OPERATIONS

res1← Validate(tc handler,CSW mode) =

PRECONDITION

tc handler∈dom(TCpool)

CSW mode ∈ MODES

TC status(tc handler)=Unchecked

POSTCONDITION

res1 ∈ {TC Accepted,TC Rejected}

tc handler∈Exclusive Rej’⇒ res1=TC Rejected

TC pool(tc handler)6=VALID TCS⇒ tc handler∈Exclusive Rej’

Type of TC(TC pool(tc handler))∈ PRIVATE TC TYPES ∧

CSW mode6=Operational⇒ tc handler∈Exclusive Rej’

...

res2← Exclusive Remove(tc handler) =

PRECONDITION

tc handler ∈ Exclusive Rej

TC status(tc handler) = Rejected

POSTCONDITION

res2 ∈ BOOL

(res2 = TRUE)⇒ (Exclusive Rej’ = Exclusive Rej\{tc handler})

(res2 = FALSE)⇒ (Exclusive Rej’ = Exclusive Rej)

...

END

6.2 Module Architecture

The Validation module is just one example of DPU modularization. Below we present the
suggested module architecture, structuring the Core software and instruments into several
different modules such asValidation, Reporting, Mode Management and so on, each con-
taining callable operations and both external and internaldata. The modulesTC pool and
TM pool are especially interesting, since they essentially implement datatypes (classes) for
handling currently processed TCs and TMs.
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Fig. 2.Module Architecture

7 Conclusions

In this paper we proposed a pragmatic approach to supportingmodularization in Event
B. This work was motivated by the formal development conducted by Space Systems
Finland[11]. We described the system that have been developed, presented the develop-
ment approach and experience gained from the development. The analysis of the develop-
ment has shown that the lack of modularization makes the approach unscalable. Yet the
top-down development paradigm and automated proof-based verification offer an attrac-
tive design platform. Our conservative extension of Event Balleviates scalability problem
while preserving all the benefits.

The proposed approach to modularization can be seen as a special case of the ”shared
variables” type of decomposition by J.-R.Abrial[13]. Abrial aims at enabling decompo-
sition for distributed systems. Hence his approach is more general and complex. In our
case, the systems under construction are sequential, even though their functionality is dis-
tributed among several modules. Our goal was to enable parallel development of several
independent parts of the system as well as reuse formally developed modules in other
developments.

Another proposal for supporting decomposition in Event B aims at ”shared events”
style decomposition for distributed systems [6]. Finally,there is also proposal for support-
ing event fusion in Event B[12]. However, all these works offer more general and hence
more difficult to implement alternatives for the modularization.

We believe that our proposal for supporting modularizationfor Event B can help to
keep a positive momentum gained in the recent development and pave a path towards
industrial deployment of formal engineering. In our futurework we are planning to imple-
ment our approach as a plug-in to the RODIN platform.
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