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Abstract. Recently, Space Systems Finland has undertaken format Bvéevel-
opment of a part of on-board software for the BepiColomb@spaission. As a re-
sult, lack of modularization mechanisms in Event B has bdentified as a serious
obstacle to scalability. One of the main benefits of modmédion is that it allows us
to decompose system models into components that can becimdieqtly developed.
It also helps to manage complexity of models that in the itrihlsetting are usually
very large and difficult to comprehend. On the other hand, utastzation enables
reuse of formally developed components in the formal prodine development.
In this paper we propose a conservative extension of EventiBdlism to support
modularization. We demonstrate how our approach can stipgase in the formal
development in the space domain.

1 Introduction

In the Deploy project[8], Space Systems Finland has perdran pilot Event B devel-
opment[11] of a part of on-board software for the BepiColonspace mission [5]. The
developed system is responsible for controlling and moimigoinstruments that produce
valuable scientific data that are critical for the succesthefmission. The undertaken
development aimed at identifying the strengths and wealasesf Event B method and
its supporting tool — the RODIN platform[14]. The experierdemonstrated that the re-
finement approach provides a suitable design techniqukowsaus to structure complex
and numerous requirements and promotes disciplined davelot via abstraction and
proofs. However, it has also became obvious that the lackanfularization makes Event
B unscalable for formal development of industrial systemmshis paper we propose a
conservative extension of Event B language that suppoits@esmodularization idea.

The idea of modules is very well known and is supported by robite formal frame-
works. Usually they define a module interface via pre- andqooslitions. However, in
our case introducing preconditioned operations in Eventa unacceptable due to two
main reasons. Firstly, preconditioned operations wouldheosupported by the RODIN
platform and building a new tool of similar strength wouldjué&e significant time and fi-
nancial investments. Secondly, introduction of a preciimtiéd operation would seriously
complicate the proof obligations required to verify cotrexss and hence would lower the
degree of automation in the development. Therefore, ourcaap is strictly driven by the
pragmatic needs and oriented towards automation.
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In this paper we briefly describe the on-board software thaeleen modelled and
present the experience gained by Space Systems Finland vilghdescribe our proposal
for introducing modularization in Event B and demonstrate/tthe system can be rede-
veloped in a modular fashion.

We believe that by enabling modular development in Event Bnatonly improve
scalability of formal modelling but also potentially inese productivity. Indeed, formally
developed components can be reused in other developmehteane amplify the effect
of formal modelling.

2 Challenges and Experiences in Formal Development of Onbod
Software

2.1 Example of Onboard Software

Spacecraft-embedded software — onboard software — isme#ge for managing various
spacecraft operations. For instance, the controllingaso# is critical to the mere sur-
vivability of a mission, while scientific software is resginle for correct and effective
handling of high volume of data generated by extensive sifieaxperiments. Therefore,
failure of onboard software can have major repercussions. 0fiboard software must
withstand extreme conditions of the space environment asdabe with hardware, which
has limited capabilities compared to personal computeissclear that these factors make
the design, implementation and verification of onboardveatfe very challenging.

Space Systems Finland is one of software providers for thef&an Space Agency
(ESA) mission BepiColombo. The main goal of the mission iplesation of the planet
Mercury. The mission comprises various scientific studéeg,, analysis of its internal
structure and a surface, investigation of the geologicalution of the planet etc. To
achieve the defined scientific goals, one of the missionendit Mercury Planetary Or-
biter — will carry remote sensing and radioscience instmat@®n. Space Systems Finland
is responsible for developing software for an important pathe orbiter — the data pro-
cessing unit. The company has undertaken formal develofpirigrof it in the Event B
framework with the support of the RODIN platform[14].

The data processing unit (DPU) is used to control two sdieritistruments: Solar
Intensity X-ray and particle Spectrometer (SIXS) that rdedhe radiation from the Sun
at the position of the spacecraft, and Mercury Imaging X-$agctrometer (MIXS) that
records fluorescent X-rays from the planet surface. In tooth instruments contain two
separate sensor units: X-ray spectrometer (SIXS-X) anticimaspectrometer (SIXS-P)
for SIXS, and telescope (MIXS-T) and collimator (MIXS-CyfdIXS.

The DPU unit is communicating with the BepiColombo spackestia SpaceWire in-
terfaces, which are used to receive telecommands from #eespaft and transmit science
and housekeeping telemetry data back to the spacecratft.

The system under construction consists of three main sodta@mponents: the Core
Software (CSW), the SIXS instrument application softwa8BEXS ASW) and the MIXS
instrument application software (MIXS ASW). CSW is the coominterface software
for the MIXS ASW and SIXS ASW. It controls and monitors the ogieng states of SIXS
and MIXS instruments, as well as handles telecommand/etlgnecommunication with
the BepiColombo platform.

In general, the behaviour of the system consists of reagt@lecommands (TC) from
the BepiColombo platform and producing correspondingnteley data (TM). The re-
ceived TCs are stored in a memory buffer. CSW is respongibledlidation of syntactical
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and semantical integrity of each received TC. In particul@hecks that each TC adheres
to the PUS standar@] describing telemetry and telecommand packet utilizatibwuali-
dation fails then the corresponding TM is generated. Otlsera TC is placed in the pool
of TCs waiting for execution. Each TC has a "recipient” — tbenponent that will actually
execute TC.

There are several types of TCs. They might change the openaitbde of the compo-
nent, request to produce housekeeping report or geneiatdifc date etc. The compo-
nent that executes TC always acknowledges TC executionri®rgeng the corresponding
TM. Besides an acknowledgment TM, a reaction on a TC migltt isislude a TM con-
taining progress reports, housekeeping reports or peatidigenerated scientific data.

Above we have given a very brief, high-level overview of systfunctionality. The
actual detailed requirements for the DPU unit are ratherptexnand large (the real re-
guirements document contains about several hundreds eEpap we omit their detailed
description here. Next we outline the steps of the formaétigyment aimed at modelling
the functional behaviour of the system.

2.2 Experiences in Formal Modelling

The formal development of the DPU unit started from an absspecification that mod-
els the general control flow, abstractly representing a esecgiof TC handling and TM
generation steps. The first refinement step introducesadéxsiages of TC and TM pro-
cessing. Depending on the stage, a TC or a TM is assigned Hisgé&atus. For example,
the TC status can béncheckedbefore validation)Acceptecr Reject(after validation),
Waiting for Executior{(before execution)Succesful Executioor Execution Failedafter
execution), andRemovabl€TC processing is finished).

The second refinement step elaborates on the structure ofA€C3 M, introducing
the notion of TC and TM types. We introduce a number of cowrctgpes of TCs and
TM, though many types are still modelled abstractly. Thedthefinement step focuses
on introducing software processes, representing softa@mgponents in the model. The
representation of TC and TM is extended to explicitly modhel target component that
should execute a TC or the source component that produced a TM

The fourth refinement step introduces the notion of the corapboperating modes
and mode transitions. For instance, the Core Software C3\WemOperational, Standhy
andSafemodes. The fifth refinement step focuses on modelling genaratreports — the
dedicated TMs confirming validation and execution of theegponding TCs.

Certain types of TCs require not only reporting TMs but al$dsTinforming about
progress of the TC execution, an operating mode changelunefdetection. Such progress
reporting is introduced in the sixth refinement step. Furttere, this refinement step in-
troduces some details modelling the behaviour of one of timeponents — SIXS-X. The
seventh refinement step models the behaviour of the othteaiments in the similar way.
Besides it also elaborates on component-specific TM gdoarahd internal component
behaviour.

We verified correctness of the entire refinement chain by fgrimothe RODIN plat-
from. The resultant specification has 20 variables, 61 sy&& invariants. Additionally,
the static data structures (15 sets, 88 constants) are défyrfermulating 207 axioms and
20 theorems. The text of the specification (apart from dédimibf the data structures) has
more than 40 pages.

The formal modelling of data processing unit described ali@s highlighted the fol-
lowing problems in Event B development



4 Authors Suppressed Due to Excessive Length

— Itis not clear how to reuse the conducted development inithies projects;

— Lack of modularization support hinders independent desrakent of several subsys-
tems;

— Without decomposition(modularization), a specificatibeven a relatively simple re-
alistic system becomes very large and difficult to comprehen

Therefore, there is a clear need to support modularizatiechanisms in formal Event B
development. Next we discuss our proposal for alleviatirggé problems.

Complexity of onboard software is constantly increasihgistsoftware for a space
mission is usually partitioned into components that dgwettby different providers. In the
space sector, cooperation between the providers andyasstirance is facilitated by two
general mechanisms — the standards and, more recentlgférenmce architecture. Some
of the available standards regulate the development pacegeneral. Others define the
interfaces (the format of data and data flows) between comgsne.g., the PUS standard
mentioned above. To facilitate the development in the setiie reference architecture
aims at providing a proven template solution for an architecfor the space domain. It
lists typical functions of a space mission and interfacés/éen the functional blocks. A
simplified version of a reference architecture is given i Bi

3
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Fig. 1. Reference architecture

The reference architecture provides us with a suitablesasiidentifying generic com-

ponents. Since the communication between the componemiglitated by the standards,
modules can be abstractly defined by their interfaces. Thelogment of components
should ensure that the implementation preserves the gnterface. Hence we can for-
mally specify a system on architectural level, formally defthe conditions imposed on
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the component interfaces and then develop individual carapts while preserving their
interfaces. Furthermore, we can reuse the models of prelyideveloped components by
composing them using their interfaces. Such an approaeViatés a problem of verifying

large composed specifications.

3 EventB

In this section we introduce our formal framework — The B Metljl]. It is an approach
for the industrial development of highly dependable sofevdhe method has been suc-
cessfully used in the development of several complex rmabpplications [10]. Recently
the B method has been extended by the Event B framework [2¢hadnables modelling
of event-based (reactive) systems. In fact, this extertsasrnincorporated the action system
formalism [3, 4] in the B Method.

The B Method development starts from creating a formal syspecification. The
basic idea underlying stepwise developmentin B is to deigrsystem implementation
gradually, by a number of correctness preserving stepsdrafinements

A simple B specification has the following general form:

MACHINE AM
SEES Context
VARIABLES v
INVARIANT  Inv
INITIALISATION  Init
EVENTS
E1 =
En =
END
A B specification, called aabstract machineencapsulates a local state (program vari-
ables) and provides operations on the state. In the EveratrBework, such operations are
calledeventsThe events can be defined as

WHEN g THEN SEND
or, in case of a parameterised event, as
ANY vl WHERE g THEN SEND

wherevl is a list of new local variables (parameterg)s a state predicate, ar®lis a B
statement (assignment) describing how the program statffdsted by the event. Both
ordinary and non-deterministic assignments can be usquktifg state change. The non-
deterministic assignments are of the form:

v :| Post(v,V)

wherePost is the postcondition or the next state predicate, relatirgvariable values
before and after the assignment.

The events describe system reactions when the gWEN or WHERE conditions
are satisfied. ThHENVARIANT clause contains the properties of the system (expressed as
predicates on the program state) that should be preservethdiystem execution. The
data structures needed for specification of the system #ireedeén a separate component
calledcontext
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4 Introduction to Modules in Event B

Our primary goal is to conservatively extend the Event-Bjlzage with a possibility of
(atomic) operation calls. Such an extension would natutetd to the notion of mod-
ules — components containing groups of callable operatMpseover, modules can have
their own (external and internal) state and the invariaptessing properties on this state.
The important characteristic of modules is that they caneweldped separately and then
composed with the main system during its formal developufginice we are interested
in incorporating modules into Event B modelling, it should &iso possible to statically
check the correctness of such a composition within the BBdramework.

Let us start with an "ideal” (somewhat extreme) example oéaegal Event B opera-
tion that we would like to be able to express in our formal laage.

op =
WHEN
Prec(vy,...,VN)
THEN
vi :| ... oppcall(parametersy) ...
VN | ... opn-call(parametersy) ...

opN-1-call(parametersy41)

OpN+kK -call(parametersyk )
END

Hereop;_call(...) are either function or procedure calls from available megfulA proce-
dure call can be considered as special case of a functiofvattll the pre-defined return
values). Thus from now on we will focus only on modelling ftioa calls in Event-B.

Once an enabled event is chosen for execution in Event B malilés actions are
executed atomically and in parallel. However, the standardantics of a function call,
realised in most programming and formal languages, ptessthe well-defined order of
execution steps:

1. Actual parameter expressions are evaluated and pasaadddule operation;

2. The operation is executed on the given parameters anddteleistate. The operation
result is returned to the calling operation;

3. The actions of the calling operation are executed, dulisty the function calls with
the returned results.

Moreover, the atomicity of an event operation with functiatis should be preserved — no
other event operation of the main system can intervene indmat. Our challenge in this
paper is to implement this standard functionality withie tvent B semantics.

We split our task into two separate issues. First, we showwewan introduce mod-
ules and module calls during Event B development using mel@dmposition. Next, we

4 Since all actions in the operation body should be executgaiallel, to avoid writing conflicts,
we assume here that all function and procedure calls aredifferent modules
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assume availability of pre-defined modules and demonst@tectness of our specifi-
cation containing module operation calls. The latter is eci&) case of verifying model
composition.

4.1 Introducing Modules via Model Decomposition

In this paper we use the J.-R. Abrial’'s approach on Event-&®udmosition[13]. The ap-
proach allows to split an Event B specification into seveoahponents (sub-models) that
can be developed separately. If needed, some of these cemigaran be further decom-
posed. Most importantly, the approach formally guaranteststhe final re-composed sys-
tem will be a refinement of the original one.

The decomposition is based on partitioning the model ofmeraamong the new com-
ponents. The model variables are distributed as well, edbaternal variablesbelong-
ing to some particular components, orshsred variableshat can be accessed by several
components. To make the components self-contained, eatlemfis complemented by
specialexternal eventsabstractly modelling how the shared variables may be neadifi
by other components. The approach also restricts data megimeof the shared variables
to make a decomposed system consistent. Essentially, &nedskiariables between two
components of a decomposed system can be often seen as twhandpoutput channels
allowing these components to synchronise their activities

Let us start with a simple generic example of an Event B operatVe would like to
refine it so that it delegates (part of) its functionality toexternal operation and then uses
the returned result. In other words, the operation refinesteould be of the form:

op = calling.op =
WHEN WHEN
Prec(v) C Prec’(v,ext)
THEN a THEN
v ;| Post(v,v") v := Out_Expr(v,Module_op(In_Expr(v)))
END END

wherePost is the postcondition of the original evemt, Expr(v) is the actual parameter
expressionQut_Expr(...) is a state expression incorporating the result of the ojperat
call, andextis the externally visible part of the module state.

We interpret the refined operation as a syntactic sugaridigdpithe actual definition
in terms of the current Event B language. The idea is to modehetion call by three
events, simulating the three-step execution describedealdoreover, these three events
should be introduced in such a way that we could decompossyitem by distributing
the system state and operations between the calling aretl@Gamponents.

The execution of a called module operation is abstractlyetied byModule_op pre-
sented below. Note that, in addition to calculating the ltesis, an operation call can
also update the module statet. The execution of a module operation is wrapped by two
events of the calling componentill_preparation, which passes parameters to a module,
andcall_finalisation, which incorporates the returned results.

The variables_flag and o_flag (of the type0..1) are used to enforce the fixed or-
der of execution between the main component and a modulecdiigpreparation, then
Module_op, and finallycall _finalisation. In addition, to guarantee atomicity of an operation
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Module_op =
WHEN
i_flag # o_flag
THEN
ext,res : | M_Post(pars,ext,ext’,res’)
o_flag := 1-o_flag
END

call_preparation =
WHEN

callfinalisation =

WHEN
Prec’(v,ext) )
i_flag = o_flag
i_flag = o_flag
pars # NIL
pars = NIL
THEN
THEN

v := Out_Expr(v,res)
pars := In_Expr(v,ext)
pars := NIL

i_flag := 1-i_flag END

END

call, all the other operations of the calling component &hba blocked untitall_finalisation
finishes. It can be achieved by strengthening their guardsfbyg = o_flag) A (pars =
NIL). Essentially, the above solution is a special case of tleeredting bit protocol.

This refinement step also achieves partitioning the stadeoparations between com-
ponents. The variablegs, o_flag can be put into the future module component, while
pars,i_flag,v belong to the main specification. Following the Abrial’'s epgch, we can
decompose the system by movimgdule_op into a separate module, where it can be de-
veloped (refined) independently.

To prove operation refinement, we need to show the connetitween and the ab-
stract operatiorPrec and the strengthened preconditiBrec’, as well as the expected
postconditiorPost in the main specification and the postconditMnPost of the module
operation. Specifically, the following two theorems shobédproved as additional proof
obligations:

Vext.Prec’(v,ext) AM_Inv(ext) = Prec(v)

V(v,ext,ext’res).M_Post(In_Expr(pars, ext), ext,ext’, res) A M_Inv(ext) =
Post(v, Out_Expr(v,res))

whereM_Inv is the module invariant on its external state.

4.2 System Development via Model Composition

In the previous section we showed how we can delegate a pamctionality of the main
specification to a module by means of model decompositioprdntice, however, we are
more interested in the opposite — composing our systemg asiollection of pre-defined
modules.
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In our examples above, execution of a module operation wesfegd as a single event.
In general, a module implementation could contain manyb#gloperations, each of them
consisting of a group of events. Demonstrating the coresstiof a operation call would
then become a non-trivial task.

Since Event B is a refinement-based formalism, the problembeasolved by ap-
plying the classical rules of program correctness, in paldr, the correctness rules for
operation calls[7, 9]. Basically, following these rulesisi sufficient to show the relation-
ships between the pre- / postcondition of a operation call the corresponding pre- /
postcondition of a module operation. Specifically, we n@sgrbve that

Prec A M_Inv = M_Prec

M_Post A M_Inv = Post

wherePrec, Post andM_Prec, M_Post specify respectively an operation call and an mod-
ule operation itself.

The pre- and postcondition for a module operation then beapart of the externally
visible module description, alongside with the externaldule variables and invariant.
Such an external description is calledhadule interfaceAn exact structure of a module
interface will be presented in the next section.

Let us recall the example from the previous section. Howetés time the module
interface describing the module external state, invareamd operation preconditions and
postconditions is available. Then it can be shown that tleatpncalling_op is just a syn-
tactic sugaring for the following (provided that the aboeaditions on the preconditions
and postconditions are proved):

calling.op =
ANY
ext’, result
WHERE
Prec’(v,ext)
M_Post(In_Expr(v),ext,ext’,result)
THEN
v = Out_Expr(result)
ext := ext’
END

The required sequence of parameter passing, externaltimpeexecution, and returning
of its results is now implicitly modelled by new local varlab and their initilisation in the
operation guard.

In this section we demonstrated that the module interfaaasbe very useful very-
ing the correctness of a module operation call. Howevereit@nples considered so far
are still pretty simple. In the next section we will discule structure and semantics of
modules and their interfaces in a general case.
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5 Extending Event B with Modules

5.1 Module Interface

Our main objectives are to facilitate model reuse and enedobeurrent development of
formal models. The interface concept plays a central rokchieving this. The introduc-
tion of an operation call can be validated by consideringy @ml interface description of
a called operation. Symmetrically, an implementation obparation does not have to be
aware of a possible context of an operation call since thielatbn is done againts the
requirements stated in the interface. In other words, a feddterface allows a module
user to invoke module operations and observe module exteriables without having to
inspect module implementation details.

In our approach, a module interface consists of externaluleodariables ), con-
stants €), and setsd), the external module invariant, and a collection of modyderations,
characterised by their pre- and post-conditions.

MODULE _INTERFACE MI =
SEESiInterface_Context
VARIABLES w
INVARIANT M_Inv(c, s, w)
OPERATIONS
res < opi(par) =
PRECONDITION M_Pre;(c, s, par, w)
POSTCONDITION M_Post; (c, s, par, w, W', res’)

END

A module interface does not have an initialisation (it isyided by a module implemen-
tation) and there are no events. However, an interfacewstiit satisfy certain consistency
conditions typical for Event B specifications — operatfeasibility (i.e., there are some
states that would satisfy pre- and postconditions) andepvation of the module invari-
ant:

Jres’,w’ - M_Inv(c,s,w) A M_Pre(c,s, p,w) A M_Post(c,s, p,w,w’, res’) Q)

M_Inv(c,s,w) A M_Pre(c,s, p,w) A M_Post(c,s, p,w,r,w') = M_Inv(c,s,w')  (2)

A module development always starts with the design of arrfarde. Once an interface
is formulated and declared final it cannot be altered in angrmea This ensures that an
operation call context is recomposable with an operatiggi@mentation, provided by the
last refinement step of a module body.

5.2 Module Body

A module interface formally defines a collection of modulergiions. Obviously, it should
be complemented by the corresponding module body thatgeewa suitable implemen-
tation for each operation. Since an Event-B specificatiom d#lat structure, there is a
problem of relating an interface operation declaration $eiof events implementing the
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operation. To show correctness of a module implementati@nneed a clear separation
between the events implementing different module opearatio

The solution we are putting forward is based on an introductif a simple specifi-
cation structuring mechanism. The events associated withrticular operation are put
together forming arvent groupSeveral event groups make up a body a module imple-
mentation, one group for each interface operation. The idgfproperty of an event group
is the following: once a control is passed to a group, the jgrous till termination with-
out interference from other groups. This allow us to fornrileorrectness conditions by
considering only an operation and its associated evenpgrou

Events groups simply partition events of a machine. A mobtoldy defining a collec-
tion of groups has the following structure:

MODULE M =
VARIABLES w
INVARIANT M_Inv
GROUP group.namel

(events)
GROUP group.name?2

(events)

END

The name of a group must match the name of an interface opemdifinition. Each in-
terface operation is associated with one group and vicevéirse termination of an event
group corresponds to the termination of an operation call.

Events of a group obey the usual Event-B consistency anceraéint conditions with
an additional constraint requiring that a refined eventiith@ group membership from
its abstract counterpart.

The pre- and postconditions of an interface operation défigle-level requirements
to the behaviour of an event group. At least one event of ant@m@up must be enabled
in the state described by the operation precondition.

M_Pre= Gy VG V--- VG, (3)

Each of the events returning control back from an event grougt satisfy the operation
postcondition and provide suitable return values.

Poste, (W, w') A =(Gg (W) V Go(w') V-V G (W) = M_Post(w’) (4)

wherePosty is the event postcondition.

A divergent event group cannot be a proper implementati@maperation. Therefore,
In the first model realising a given interface (that is, anti@a$ module implementation)
all the event groups must be terminating. The further referrateps have to demonstrate
the non-divergence of new events, as it is done in a conveatievent-B development.

5.3 Operation Invocation

The syntactic shorthand for an operation invocation is &tion call. The interpretation
behind such a shorthand is based on the interface attribites operation: its pre- and
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post-conditions. We have already discussed a simple case jukt one invocation hap-
pens within an action. However, our approach scales weditersl invocations even when
there is a complex interlink between call instances suclsiaguhe result of one operation
as a parameter for another.

The semantics of an operation call is given by the computatfan equivalent state-
ment that would be free from the call. Let us consider theofwihg general case of an
event which action relies on an operation call:

E = WHEN G(v, w) THEN v :| Post(v, w, v', op(a)) END

Here the predicatPostis the before-after predicate of the evéntlt relates the current
model statev to the next state’ and also, indirectly, via the operation call, the current
external module state to the next statev’. The result of the operation catp(a) ia
used inPost to constrain/. The following rewrite rule replaces the operation callhan
equivalent characterisation based on the module inteffeseand postconditions:

E = ANY res, w WHERE
M_Inv(w) A M_Pre(par,w) A M_Post(par, w, w’, res))[a/par]

THEN
v :| Post'(v, w, V',res)
wi=w

END

whereM_Inv(w) is the module invariant ani¥1_Pre and M_Post are the pre- and post-
conditions of the operatiosp. The new postconditioRost’ is computed by replacing all

the occurrences @ invocations with the local variables constrained in the event guard
to a possible return value op.

Since there can be more than one such invocation, the ruke h&@sapplied iteratively
until there are no operation calls left. The important p@rthe order in which invocations
are eliminated. In a general case, there is a causal linkdmgtwalls because each subse-
guent call may observe side effects (updates of moduleredter internal variables) of all
the preceding calls. Another form of a causal link is pas#iegesult of an operation calll
as a parameter to another call. The collection of causdioakhips defines a total order
on operation calls of an event. Once this ordering of calteiined, we apply the above
rule iteratively. The result is the following syntactictisdation. For some event depending
on a set of operation calls, . .. ,an

E = WHEN G(v, w) THEN v :| Post(v, w, op1(ai), ... , opn(an), v')
the corresponding (free of operation calls) translaticzoimputed as follows:

E =
ANY resq, Wll
WHERE G(v, w) A call(1)[a1 / pari][osub(0)]
ANY resp, wh
WHERE call(2)[as, w’ll parp, wa][osub(1)]
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ANY resy, W,
WHERE call(n)[an, wj,_1/ para, wp][osub(n-1)]
THEN
w = w),
v :| Post(v, par, op1(a1),.-.,0pn(an), v))[osub(n)]
END
END
END

where[osub(k)] is the subsitutiorjresy, ..., resy/op1(a1),...opk(an)], andcall(k) stands
for M_Inv(w) A M_Prey (wy, park) A M_Posty(park, wk, w,, resk ). HerePre, andPosty are
the pre- and post-conditions of the operatign. A nestedANY construct is a syntactic
sugaring that may be reduced to a singleY. More details on this may be found in the
Rodin deliverable on the Event-B language [13].

The expansion of operation calls into a plain Event-B notateduces the problem of
operation call verification to conventional set of proofightions generated for an Event-B
event. However, we are not proposing to do such conversipraictice — this would under-
mine all the benefits provided by a syntactical represemtatf an operation call. Instead,
we rely on the expanded form to derive the proof obligatioescessary to demonstrate
event correctness. From practical view, a tool implemerttire operation call mechanism
would do the operation call expansion as an intermediafe @ter to the generation of
proof obligations.

6 Modularization of the DPU unit

This section presents an application of our modularizaigproach in Event B to model
one of important DPU subsystems, responsible for TC vatidat

6.1 The Validation Module

The arrived telecommands should be validated (i.e., chiefdesyntactic and semantic
correctness of their fields) before they are forwarded tcetxen. The core software is re-
sponsible for syntactic ("early”) checking, while the denmand target software (which
can be either the core software or application softwarey adoere thorough ("late”) se-
mantical checking.

In the Event B specification, the validation stage of telec@mnd processing corre-
sponds to a group of events, covering different cases dépgod the telecommand type,
the software component (process) it is targeted to, thenucore software mode etc. As a
result of validation, the status of the processed telecomaisachanged to eitheéccepted
or Rejected. In addition, the additional set variabliclusive_Rej is updated in the case
when the core software rejects the telecommand. The infiwm&om Exclusive_Rej is
needed by the core software later — in the reporting phase.
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One of examples of such validation events is as follows:

Reject_Private_TC_Early =
ANY
tc_handler
WHERE
tc € dom(TC_pool)
TC_status(tc_handler) = TC_Unchecked
TCpool(tc_handler) € VALID_TCS

Type_of _ TC(TCpool(tc_handler)) € PRIVATE_TC_TYPES
CSW._mode # Operational
THEN

TC_status(tc_handler) := TC_Rejected

Exclusive_Rej := Exclusive_Rej U {tc_handler}
END

This is an abstract event specifying one such case when tistddawved TC belongs to pri-
vate (i.e., mission-specific) TC type and the core softwsurgoit in the operational mode
(i.e., is on standby or in the safe mode). As a result, the softavare rejects the telecom-
mand and marks it as "exclusively rejected”.

Many implementation details describing the validationgess (especially the accep-
tance of TCs) are still missing and could be added in the taferement steps. However,
we would like to move the whole group of validation cases mteparate module (called
Validation) and develop this module further independently. The casdysis and appli-
cation of concrete validation actions would happen themiwithe Validation module.

Therefore, we can specify the validation phase within alsingeration event containing
a call to the operatioNalidate described in this module.

Validate_op =
ANY
tc_handler
WHERE
tc € dom(TC_pool)

TC_status(tc_handler) = TC_Unchecked
THEN

TC_status(tc_handler) := Validate(tc_handler, CSW_mode)
END

The parameters for calling théalidate operation are the TC being processed as well the
current core software mode. The returned result is the natusbf the processed TC.
Please note the absence of the varidxdusive_Rej in the calling operation. The reason
for that is that we turrExclusive_Rej into an external variable of the new module. The
"external” status would allow other components read theenirvalue of this variable.
The variable will be updated internally, when needed to reétexclusive” rejection. The
additional module operatioRemove_Exclusive would allow other the calling component
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to remove a particulax_handler from Exclusive_Rej after it served its purpose (i.e., in the
reporting phase).

The following excerpt of th&/alidation module interface contains declaration of the
external module variablexclusive_Rej as well as the interfaces for the operatidatidate
andExclusive_Remove.

MODULE _INTERFACE Validation =
VARIABLES Exclusive_Rej
INVARIANT

Exclusive_Rej C TC_ADDRESSES

OPERATIONS
resl «— Validate(tc_handler,CSW_mode) =

PRECONDITION
tc_handleredom(TCpool)
CSW_mode € MODES
TC_status(tc_handler)=Unchecked

POSTCONDITION
resl € {TC_Accepted, TC_Rejected }
tc_handlercExclusive_Rej’ = res1=TC_Rejected
TC_pool(tc_handler)#VALID_TCS = tc_handlercExclusive_Rej’
Type_of_ TC(TC_pool(tc_handler))c PRIVATE_.TC_TYPES A

CSW_mode#Operational = tc_handlercExclusive_Rej’

res2 «— Exclusive_Remove(tc_handler) =

PRECONDITION
tc_handler € Exclusive_Rej
TC_status(tc_handler) = Rejected

POSTCONDITION
res2 € BOOL
(res2 = TRUE) = (Exclusive_Rej = Exclusive_Rej\ {tc_handler})
(res2 = FALSE) = (Exclusive_Rej’ = Exclusive_Rej)

END

6.2 Module Architecture

The Validation module is just one example of DPU modulaiiratBelow we present the
suggested module architecture, structuring the Core aoétand instruments into several
different modules such aslidation, Reporting, Mode Management and so on, each con-
taining callable operations and both external and intedlatd. The modulesC pool and
TM pool are especially interesting, since they essentially impletrdatatypes (classes) for
handling currently processed TCs and TMs.
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Fig. 2. Module Architecture

7 Conclusions

In this paper we proposed a pragmatic approach to suppartodylarization in Event
B. This work was motivated by the formal development condddity Space Systems
Finland[11]. We described the system that have been dewé)quesented the develop-
ment approach and experience gained from the developmemtalysis of the develop-
ment has shown that the lack of modularization makes theoagprunscalable. Yet the
top-down development paradigm and automated proof-baséfication offer an attrac-
tive design platform. Our conservative extension of EveatlBviates scalability problem
while preserving all the benefits.

The proposed approach to modularization can be seen asialsse of the "shared
variables” type of decomposition by J.-R.Abrial[13]. Allraims at enabling decompo-
sition for distributed systems. Hence his approach is mereeral and complex. In our
case, the systems under construction are sequential,levegtt their functionality is dis-
tributed among several modules. Our goal was to enablelpldalelopment of several
independent parts of the system as well as reuse formallglaleed modules in other
developments.

Another proposal for supporting decomposition in Event Bsaat "shared events”
style decomposition for distributed systems [6]. Finalhgre is also proposal for support-
ing event fusion in Event B[12]. However, all these workseoffnore general and hence
more difficult to implement alternatives for the modulatias.

We believe that our proposal for supporting modularizafmmEvent B can help to
keep a positive momentum gained in the recent developmehpawve a path towards
industrial deployment of formal engineering. In our futwerk we are planning to imple-
ment our approach as a plug-in to the RODIN platform.
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