Modal Systems:

Specification, Refinement and Realisation*

Fernando L. Dotti?, Alexei Iliasov',
Leila Ribeiro®, and Alexander Romanovsky!

1 Centre for Software Reliability, Newcastle University, UK
{alexei.iliasov, alexander.romanovsky}@newcastle.ac.uk
2 Faculdade de Informética, PUCRS, Brazil
fernando.dotti@pucrs.br
3 Instituto de Informatica, UFRGS, Brazil
leila@inf.ufrgs.br

Abstract. Operation modes are useful structuring units that facilitate
design of several safety-critical systems such as such as avionic, trans-
portation and space systems. Although some support to the construction
of modal systems can be found in the literature, modelling abstractions
for the formal specification, analysis and correct construction of modal
systems are still lacking.

This paper discusses existing support for the construction of modal sys-
tems and proposes both a formalisation and a refinement notion for
modal systems. A modal system, specified using the proposed abstrac-
tions, can be realised using different specification languages. Comple-
menting the contribution, we define the requirements for an Event-B
model to realise a modal system specification. A case study illustrates
the proposed approach.

1 Introduction

Several systems, many of them safety-critical ones, are modal, i.e., they are de-
scribed using the notion of 'operation modes’. While there is no widely accepted
definition of operation mode and modal system, several authors use operation
modes to denote the expected system functionality under distinguished working
conditions of the system. A modal system denotes the assembly of a set of such
modes?, related by mode transitions that represent the possible changes in the
working conditions of a system, originated either by environmental changes or
by system evolution.

Given the importance of modal systems, several abstractions for their mod-
elling are provided. Examples of modal systems and a brief survey of modelling
approaches are discussed in Section 2. That efforts not withstanding, there is

* This work is partially supported by the ICT DEPLOY IP and the EPSRC/UK
TrAmS platform grant. Fernando L. Dotti is supported by CNPq/Brazil grant
200806,/2008-4. Leila Ribeiro is supported by CNPq/Brazil grant 200779,/2008-7.

4 "Mode’ and ’operation mode’ are used as synonyms.

a lack of abstraction to allow the formal specification of modal systems as well
as approaches to analysing and rigorously deriving implementations from these
systems.

In our previous work [1], we introduced modal systems and discussed their
use for structuring dependable systems (focusing specifically on the recovery and
degradation modes).

As one contribution, this paper presents the formal definitions of the abstrac-
tions used to specify modal systems. According to our approach, a modal system
is an abstract specification of the modes as well as mode transitions that may
occur in a system. It does not specify concretely how the system operates while
it is in some specific mode nor how mode transitions occur. It rather imposes re-
quirements on concrete implementations, complementing traditional modelling
but not replacing it. The construction of a concrete model that realizes a modal
system specification can be done using any existing formalism. Therefore it is
important to define when a concrete model realizes a modal system.

Event-B [2] is a state-based formal method closely related to Classical B [3]. It
has been successfully used in several applications, having available tool support
for both model specification and analysis. Another contribution of the paper
are the satisfaction conditions stating when an Event-B model realises a modal
system. A series of proof obligations on the Event-B model are derived from the
modal system to show its satisfaction. The realisation of a modal system using
state-based formal methods is especially interesting since the modal system helps
to structure state-based systems.

A final contribution of this paper is the formalization of the notion of modal
system refinement. A modal system can be step-wise detailed to model system
requirements, allowing an organized way to construct the system and reason
about its properties.

The rest of the paper is structured in 4 major parts: first, related work is
surveyed in Section 2; second, modal systems and modal system refinement are
formally defined in Sections 3 and 4; then Event-B is briefly introduced and its
relation to modal systems defined in Sections 5 and 6; finally, Section 7 presents
a case study to illustrate and evaluate the ideas introduced in the paper. Section
8 concludes the paper with a summary and an outline of future extensions of
the approach.

2 Related Work

A considerable number of systems are described using the notion of ‘operation
modes’, which serves to structure their operation. These are called ‘modal sys-
tems’. For example, in [4,5] the authors specify and analyse the operation mode
logics of space and avionic systems. In both avionics and space systems, modes
denote phases of a flight and operational status of on-board instruments, among
others. An extension of an Automated Highway System with degraded operation
modes that tolerates several kinds of faults is discussed in [6]. The Steam Boiler
Control [7], a classic case study showing the use of formal methods, is based

on the notion of operation modes. More recent examples of the extensive use of
modes for the specification of transportation and space systems can be found in

[8].

The use of operation modes is very common in real-time systems. Timing
properties are analysed considering operation modes of the system: deadlines to
enter or leave modes, or to perform mode changes are investigated. Modecharts
[9] focus on the specification of real-time properties of mode and mode switching.
The authors propose modes both as partitions of the state space, representing
different working conditions of the system, as well as a way to define control
information in large state machines, imposing structure on the operation of the
system. However, Modecharts lacks adequate support to specifying and reason
about functional properties.

According to [10], also focused on real-time systems, a mode is characterized
by a group of tasks. The system initiates in a given mode, with a specific set
of active tasks. During system evolution or to react to external stimuli, the
system may change modes. This involves stopping and starting tasks, keeping
or changing parameters of tasks. The approach discusses real-time systems and
how to meet deadlines. In such systems, a mode change may result in transient
stages where tasks are deleted/created. Mode changes take time but are atomic -
not iterrupted by other mode changes. The problem of meeting deadlines during
mode changes in real-time systems is also addressed in [11].

Since the notion of operation modes is rather generic and many modal sys-
tems are critical, modelling abstractions to support modal system definitions ap-
peared recently, which are not focused on real-time aspects. In the Architecture
Analysis & Design Language (AADL) [12] a system is built out of communicat-
ing components and each component may have modes, representing alternative
operational states. Modes serve to identify configurations of components. A state
machine abstraction is used, such that a distinct configuration is a modal state
and specific events cause transition among them. A component may have distinct
behaviour according to the current mode.

The Dependability Requirement Engineering Process (DREP) [13] provides
a methodology for developing modal systems using UML diagrams. A system is
considered to offer a set of services and, depending on the mode, different subsets
of services may be available. Switching modes means to change the configuration
of the system such that the profile of offered services changes. Since DREP
is specially focused on the representation of degraded service outcomes, some
modes are specially discussed: normal, degraded, emergency and restricted. The
use of modes to represent degraded system operation is commonly found in the
literature [14].

According to our literature survey, none of the existing approaches discusses
refinement of modal systems. Moreover, most of them are not formal, and thus
can neither be used as a basis for formal development nor to check whether
possible realisations are correct.

3 Modal Systems

As mentioned in the Introduction and observed in Section 2, operation modes
are generally used to denote expected system functionality under distinguished
working conditions of the system. A modal system consists of the assembly of a
set of such modes related by mode transitions. As a brief example, the Steam
Boiler Control [7] states that the normal mode is characterized by a working
water level sensor and the water level in normal range - in such conditions the
system works to keep the water level (read from sensor) in normal range. In the
event of a detected failure of a water level sensor, the system switches to rescue
mode where the sensor is not trusted - in such conditions the system operates
differently, based on the amount of water pumped into the boiler and amount of
steam generated. The case study in Section 7 discusses a cruise control system
with several modes, each organized in similar way and related by transitions.

We are interested in how to specify, analyse and build correct modal systems.
Instead of proposing a specification method, our approach is to provide abstrac-
tions that allow to formally specify the requirements of modal systems towards
concrete models that realize them. A modal system specification is a comple-
mentary view on the system that does not replace traditional formal modelling.
The construction of a concrete model that realises a modal system specification
can be done using any existing formalism, provided it is possible to demonstrate
that the model satisfies the modal system specification. This is further discussed
in Section 6.

Due to the nature of modal systems, we follow a state-based approach to
propose suitable abstractions. We consider that the state of a model is detailed
enough to allow one to distinguish its different operating conditions and also to
characterize required mode functionality and possible mode switching in terms
of state transitions.

Below we introduce the necessary elements (in definitions 1 and 2) to formally
define modal systems (definition 3).

Definition 1 (State, Invariant, Assumption, Guarantee). Given a set of
variables Var and a set of values Val, the state of a system is a (total) func-
tion v : Var — Val. We denote as State the set of all states. Invariant and
assumption are predicates over state variables. A gquarantee is a predicate over
Var x Var', where Var’ = {a'|x € Var}. It is interpreted over State x State.
We assume that there is a special value called Undef in Val, and the undefined
state (a state in which all values are mapped to Undef) is called Undef .

Invariant is a property preserved at each point in a systems life time. Often
it is interpreted as a characterisation of safe states of a system. A guarantee is
used to express the requirements towards the functionality of a mode, while an
assumption expresses the requirements of a mode, to the rest of the system, to
assure the functionality required by the guarantee. A pair assume/guarantee can
be seen as a contract between the mode and the rest of the system, and is what
defines a mode, as follows.

Definition 2 (Mode). Given an invariant I, a Mode is a pair A/G where A
s an assumption, G is a guarantee and:

— the assumption characterises a non-empty set of states: Jv - A(v), assuring
that a mode contributes to system functionality;

— G is feasible: Jv,v" - I(v) AN A(v) = G(v,v). Le. a mode should permit a
concrete implementation of the required functionality;

— G preserves the invariant I and the mode’s assumption A:

I(v) A A(w) AG(v,0") = I(v) NAR).
Given a mode M; we denote its assumption by A; and its guarantee by Gj.

Concerning the last condition, it would not make sense if a guarantee would
require the mode to violate the invariant. Also, we postulate that a mode guar-
antee should neither violate its assumption: this helps to clearly separate the
specification of actions that may cause mode switching from those that preserve
current mode, an important feature in modal systems.

Definition 3 (Mode Transition, Modal System). Given a set of modes M,
a transition t is a pair (i,7), with i,j € M. A transition is denoted by i ~> j,
and the source i and target j modes of a transition t are denoted by src(t) and
target(t), respectively.

A Modal System is a tuple M Sys = (Var,Val, I, M,T) where:

. Var is a set of variables of the system;

. Val is the set of possible values for variables;

I is an invariant;

M is a finite set of modes (M; = A;/Gi)i<nnen U{Tar, Las} such that

(a) I(v) = A1 (v) ® -+ @ A, (v), where & is the exclusive or operator.
This implies that for each mode a different assumption is declared, that
mode assumptions are exclusive, and that assumptions are valid with
respect to the invariant.

5. T C M x M is a set of mode transitions, with the following restrictions:

(b) Ym e M —{ Ly} (Tar,m) € T*, where T* is the transitive closure of
T.

ot te

A modal system is an assembly of several modes (M) related by mode transi-
tions (T"). Modes T p; and L are called start and terminal modes, respectively.
It is assumed that a system is only in one mode at a time, represented by condi-
tion 4a. The meaning and implications of a system being simultaneously in more
than one mode are not trivial and subject of further study. A mode transition
is an atomic step switching from one source mode i to one destination mode j.
The possible mode transitions of a modal system are defined by T'. According to
condition 5b, the start mode T s is present in any modal system specification.
A transition Tp; ~» M; defines that M; is a possible initial mode of the modal
system. Other such transitions may exist defining more than one initial mode.
Some systems may be non-terminating, in which case there will be no mode

transition to the terminal mode L ;. Condition 5a states that it is not possible
to switch to a state before initialization or from the terminal mode to another
mode; and during its lifetime a system enters at least one operation mode. Now
we define the behavior of a modal system.

Definition 4 (Modal System Behaviour). The behaviour of a modal system
MSys = (Var,Val,I,M,T), given by a transition system M ST = (M State, Sy,
—) where M State = {{(m,v) |m € {1..n, Tar, Lar} is a mode index A\ v is a state};
the initial state Sy is (T ar,Undef) and the transition relation —: M State —
M State is given by the rules:

T]\/] ~ k/\Ak(’U)
|E(‘I—M,Undeﬂ — (k,v)

A, (V) A G (0,0") N A (V1)

.)
internal <m,v> . (m,v’}

m~>n A Ap(v) A A, (V)

switching <m, ’U> . <TL, ’U/>

The state of a system described using operation modes is a tuple (m, v) where
m is the index of a current operation mode and v is the current system state. In
the following, each of the transition rules is explained.

Initialisation. A system starts executing one of its initialization mode tran-
sitions (T ps, Undef) — (k,v). The transition switches the system on, by estab-
lishing a possible state defined by Ag(v), and places it into some system mode
My, = Ay /Gj. This behaviour is described by rule start.

Evolution. A modal system may evolve either performing internal or mode
switching transitions. Rule internal states that while the system is in some mode
m the state may evolve to a state v satisfying both the corresponding guarantee
G (v,v") and the modes assumption A,,(v'). Rule switching states that the
system may switch modes if there is a defined mode transition originating from
the current mode. Internal and switching transitions compete with each other:
at each step a non-deterministic choice is made among the enabled transitions.

Termination. A system terminates by executing one of terminating mode
transition ¢ ~» 1. Not every system has to have this transition: a control
system would be typically designed as never aborting. There can be any number
of terminating mode transitions. Due to condition 5a, no mode transitions are
possible after | j; is reached

4 Refinement of Modal Systems

Modal System behavioural refinement details modes assumption or guarantee or
both. A mode can also be detailed in more than one corresponding modes at the
concrete level. Mode assumption cannot be strengthened during refinement. This
is based on the understanding that an assumption is a requirement of a mode

to its environment. As a system developer cannot assume control over the envi-
ronment of a modelled system, a stronger requirement to an environment may
not be realisable. On the other hand, a weaker requirement to an environment
means that a system is more robust as it would remain operational in a wider
range of environments. Therefore, weakening assumptions during refinement is
desired. Symmetrically, a mode guarantee cannot be weakened as a mode guar-
antee is understood as a contract of a mode with the rest of a system and the
system environment. In other words, weakening a mode guarantee could violate
expectations of another system part.

Mode transitions must be consistently refined along with refinement of modes.
The general rules for refining mode transitions are: (i) a mode transition present
at an abstract model must have at least one corresponding transition at a con-
crete model. If a source mode of a transition is split into two new modes, the
transition can be associated with any one of the new modes or both; (ii) no
new transitions may appear relating an abstract mode to another mode; (iii)
new transitions may be defined on concrete modes. Now we formalize the above
discussed notion of behavioural mode refinement.

Definition 5 (Modal System Behavioural Refinement). Given:

— a modal system MSysaps = (Varaps, Valaps, Labs, Mabs, Taps); and
— a modal system MSYSene = (Varene, Valene, Ienc, Mene, Tene)

a refinement of M Sysaps into MSysen. is defined by a pair ref = (ref™ refT)
of functions ref™M : Mope — Mays and ref’ : Tope — Taps such that:

1. refM is total, surjective and preserves the start and terminal modes; and
refT is partial and surjective;

2. an abstract mode assumption is stronger than the disjunction of assumptions
of its concrete modes: Ym € Myps - ij-jGMmc/\refM(j):m A=A,

3. an abstract mode guarantee is weaker than the disjunction of guarantees of
its concrete modes: Ym € M yps - ij_jeMcnc/\,refM ()=m G; = Gn

4. concrete transitions not mapped to abstract ones have the same abstract mode
as source and target (i.e. it was an internal, or non-observable, transition of
an abstract mode): Vt & dom(ref’) - refM (srcpe(t)) = refM (target,.s(t))

5. for all transition t € dom(refT), the squares bellow commute:

STCabs targetaps
Tabs Mabs Tabs — Mabs
refTT = TTefM refTT = TrefM
dom (Tcnc)SW Mepe dom (Tcngzr'm Mepe

These conditions mean that: (1) all concrete modes have an abstract mode that
they refine, and all abstract modes are refined by at least one concrete mode; and
all abstract mode transitions are refined into one or more concrete mode transi-
tions; (2) considering variables in the abstract system, concrete modes cover the

same state space as the abstract one — it is not possible to restrict assumptions
by refinement; (3) guarantees of the concrete system may be stronger (more de-
terministic) than the corresponding abstract ones; (4) if a transitions is added
in a refinement step, it must have a non-observable effect on the abstract level
(same source and target modes); (5) the transitions that are mapped to the ab-
stract level (those in dom(T,.)) must be consistent with the mapping of source
and target modes.

Via data refinement, the set v of model variables may change to a new set u
and model invariant I(v) is replaced with a new invariant J(v,u), often called
a gluing invariant. The presence of old variables v in new invariant J allows a
modeller to express a linking relation between the states of concrete and ab-
stract models. Given a gluing invariant J(v, u), data refinement can be added to
definition 5 by extending conditions 2 and 3 respectively as:

VYm € Maps - \/ijel\/fmf/\refM(j):m J(v,u) A Aj(u) < A (v)

Vm € Maps - ij-jGMref/\TefM(j):m J,u) NI, u') ANGj(u,u’) = G (v,v")

Proposition 1. Given:

— an abstract modal system MSysaps = (Varaps, Valaps, Labs, Mabs, Tabs);
— a concrete modal system MSYyscne = (Varene, Valene, Iency Mene, Tenc)s
— a refinement ref = (refM ref?) where ref? : Tene — Tups;

any possible sequence of modes described by the transition system of MSyscne
can be translated into a possible sequence of modes described by the transition
system of M Sysaps-

Proof. By definitions 3 and 4 the initial mode of a modal system is T, and
by definition 5 ref™(Tar) = Tar. So Ty is initial in any sequence of modes
described by both M Sys.,s and M Syscn.. Now consider the concrete modal
system in any mode m., corresponding through ref* to an abstract mode m,.
By definition 5, conditions 1 and 4, a mode transition in the concrete level is
either a new transition or refinement of a transition in the abstract level.

Consider the first case: by condition 4 a new transition can be added only
among modes that refine a same abstract mode. In this case, switching from m;
to me2, both corresponding through ref™ to mg, has no effect at the abstract
level - m, is kept.

Consider the second case: in definition 5, by conditions 1, 4 and 5, any mode
transition, which is not new (case above), starting from m,; refines a transition
starting from m, and any mode transition arriving in m.; also refines a tran-
sition arriving in m,. This means that m.; may offer a subset of possibilities
of transitions, compared to m,. However, since ref” is surjective (condition 1),
all transitions where m, is involved have to be mapped to the concrete level.
Thus another mode m.2, that have to be refined from m, (due to condition 5),
will be associated to transitions that, together with the transitions where m.;
is involved, are equivalent to the transitions of m,. The switching from m,; to
M2, according to the case above, does not correspond to a mode change at the

abstract level because m.; and m.s refine the same m,. Thus, the transitions of
me1 and mes correspond the transitions where m, is involved.

Since each refinement does not add new mode switching possibilities, ex-
cept those that have no observable effect at the abstract level, and since the
transitions involving concrete modes of a same abstract mode exactly cover the
transitions involving the abstract mode, the observable sequence of modes of a
concrete modal system can be translated to an observable sequence of modes of
the respective abstract modal system by taking each concrete mode my; of the
sequence and substituting by the corresponding abstract one (ref™ (m,.;)) while

eliminating consecutive switchings to the same resulting abstract mode. .

5 Event-B

Event-B [2] is a state-based formalism closely related to Classical B [3] and
Action Systems [15].

Definition 6 (Event-B Model, Event). An Event-B Model is defined by a
tuple EBModel = (¢, s, P,v, I, Ry, E) where ¢ are constants and s are sets known
in the model; v are the model variables®; P(c,s) is a collection of axioms con-
straining ¢ and s; I(c,s,v) is a model invariant limiting the possible states of
v s.t. de,s,v - P(e,s) AN(c,s,v) - i.e. P and I characterise a non-empty set of
model states; Ryr(c,s,v") is an initialisation action computing initial values for
the model variables; and E is a set of model events.

Given states v,v" an event is a tuple e = (H,S) where H(c, s,v) is the guard
and S(c, s,v,v") is the before-after predicate that defines a relation between cur-
rent and next states. We also denote an event guard by H(v), the before-after
predicate by S(v,v") and the initialization action by Ry(v').

Model correctness is demonstrated by generating and discharging a collection
of proof obligations. The model consistency condition states that whenever an
event on an initialisation action is attempted, there exists a suitable new state
v" such that the model invariant is maintained - I(v’). This is usually stated as
two separate proof obligations: a feasibility (I(v) A H(v) = Jv’-S(v,v’)) and an
invariant satisfaction obligation (I(v) A H(v) A S(v,v") = I(v")). The behaviour
of an Event-B model is the transition system defined as follows.

Definition 7 (Event-B Model Behaviour). Given EBModel = (¢, s, P,v, I,
R, E), its behaviour is given by a transition system BST = (BState, BSy, —)
where: BState = {{(v)|v is a state} UUndef, BSy = Undef, and —C BState X
BState is the transition relation given by the rules:

Rr(v") NI(V)

[start] Undef — (v')

® For convenience, as in [3], no distinction is made between a set of variables and a
state of a system.

A(H,S) e E-I(v) NH()ASv,v") NI(V)

transition <’U> — (’U/>

According to rule start the model is initialized to a state satisfying Ry A [
and then, as long as there is an enabled event (rule transition), the model may
evolve by firing an enabled event and computing the next state according to
the event’s before-after predicate. Events are atomic. In case there is more than
one enabled event at a certain state, the demonic choice semantics applies. The
semantics of an Event-B model is given in the form of proof semantics, based on
Dijkstra’s work on weakest preconditions [16].

To refine model M one constructs a new model M’ that is behaviourally
equivalent to the old one. In Event-B, this is achieved by constructing a refine-
ment mapping between M’ and M and by discharging a number of refinement
proof obligations.

An extensive tool support through the Rodin Platform makes Event-B espe-
cially attractiveA development environment for Event-B is supported. An inte-
grated Eclipse-based development environment is actively developed, and open
to third-party extensions in the form of Eclipse plug-ins. The main verification
technique is theorem proving supported by a collection of theorem provers, but
there is also some support for model checking®.

6 Modal Systems and Event-B

As already discussed, a modal system defines a class of possible models which
may be specified using established formal methods. Therefore, a consistency
condition is needed such that we can evaluate if a given model satisfies a modal
system. In this section we discuss first such condition and then how to enrich the
set of proof obligations on an Event-B model to show that it satisfies a modal
system specification.

Definition 8 (Modal System Consistency Conditions for an Event-B
Model). Given:

an Event-B model EBModel = (¢g, $g, Pg,vE, g, Ri,, Eg) and

a Modal System MSys = (Vary, Valnr, Ing, Mg, Thr)

where Vary Cog;

a state projection function fSpion(Sg) = Snm that, given a state sg of the
Event-B Model, constructs the corresponding state sy of the modal system
by projecting the modal system state;

a predicate projection function fppion(Pr) = Puy that, given a predicate
over vg constructs the corresponding predicate over Vary;

EBModel satisfies M Sys iff:

6 See Rodin Platform http://www.event-b.org/ (last accessed September 21st 2009).
Rodin Development is supported by European Union ICT Projects DEPLOY (2008
to 2012) and RODIN (2004 to 2007).

1. both specify the same invariant on Varas: foetom(Ig) = It
2. the initialisation is compatible, i.e. the initial state EBModel is compatible
with the assumption of any initial mode of M Sys:
prtOM (RIE) = VVtETM-src(t):TM Atarget(t)
3. (a) every transition tp : slg — s2g of the behaviour of EBModel has a
corresponding transition tyy : (ml,sly) — (m2,52)) in the behaviour
of M Sys, where fsgion(s1g) = sly A fSEronm ($2E) = 20
and tps 1s either:
i. an internal transition of M Sys, when ml = m2 or
1. a switching transition of M Sys, when ml # m2;
(b) every transition tpy : (ml,slp) — (m2,52p7) in the behaviour of MSys
has a corresponding transition tg : slgp — s2p of the behaviour of
EBM odel with fSEtoM(SlE) =sly A fSEtoM(SQE) = S2M:.

The following proposition states the compatibility between the computations
of the mode system and an Event-B model that realises it, according to Def.
8. Note that this realisation if not just a refinement relation because, besides
requiring that the event-B model does not introduce new behavior, it requires
also that the event-B model exhibits all possible behaviors defined in the mode
system being realised.

Proposition 2. Given:

— a Modal System MSys = (Vary, Valyr, Ing, Mg, Thr)

where Vary C vg;
— an Event-B model EBModel = (cg, sg, Pr,vE, g, Ri,, Fr) and
— function fsgiomr and fprion as in Def. 8 ;

any possible sequence in the transition system of M Sys can be translated into a
sequence described by the transition system of EBModel and vice versa.

Proof. Condition 1 of Def. 8 assures that the state space is the same (restricted
to the variables of M Sys).

First, we prove that given a transition sequence of M Sys, we can generate
a corresponding one for FBModel. Any sequence of M Sys must start with a
transition generated by rule start, that generates a state in which the assumption
of some initial mode Ay is true. Since this state is also possible in the EBM odel
(because the state spaces are the same) and assumptions of a mode system are
disjoint, condition 2 of Def. 8 ensures that there must be a transition generated
by rule start Event that leads to this state. From there on, 3b of Def. 8 guarantees
that there is a corresponding transition in the transition system of EBM odel
for each transition of M Sys.

The proof of the other direction (given a transition sequence of EBModel, a
corresponding one for M Ssys can be found) is analogous, using 3a of Def. 8. 0

Based on these consistency conditions, we now define the proof obligations
that are necessary to discharge to show that an Event-B model satisfies a mode
system. The first two proof obligations correspond to the first two consistency
conditions. The other 3 are necessary to ensure condition 3.

Definition 9 (Proof Obligations).

PO1 (Invariant compatibility) :

foetor(Ig) = Ing

PO2 (Initial state compatibility) :

prto]M (RIE) = \/ Ata'r‘get(t)
VteTr sre(t)=T m

PO3 (Events/Modes compatibility) :

V E; = (Hi,S;) € EgpModer -V Mj = Aj/Gj € Musys:
(Hi(v) A A;(v) A S(v,0")) = (1)
((A;(0') A Gs(w,0)V (2)
(M) = Ak /Gr € Myrsys - A(V')) A (J ~ k) € Tarsys)) (3)

PO4 (Event guard/Mode assumption compatibility) :

VE, = (Hz,SZ) S EEBIV[Od&lvHi(U) = \/ Aj(v)
V]\/Ij:Aj/Gje]\/I]MSys

PO5 (Events/Transitions compatibility) :

V (i~ j) € Tiusys, My = (Ai/Gi), M = (A;/Gj) € Musys:
JE,. = (Hk, Sk) € Femodel N (Hk(v) A\ Ai(’U) A\ Sk(’U,’Ul) A Aj(’l}/))

Condition 3 of Def. 8 relates the transitions of Event-B Model and Modal
System. Condition 3a states that any transition in the Event-B Model is a pos-
sible transition of the Modal System (3(a)i or 3(a)ii). This can be shown on
the structure of events. Each event of the model, whenever enabled in a mode,
will either: preserve the modes assumption and guarantee in case of 3(a)i or
switch mode according to existing mode switching transition in case of 3(a)ii.
Proof obligation PO3 has to be discharged to cover this condition. If an event
guard and a mode assumption are true (line 1), the event is possible in that
mode. In this case the event either describes an internal transition (line 2) or a
mode transition (line 3). In the first case, both assumption and guarantee of the
current mode have to be preserved by the event. In the second case, the modal
system specifies the possibility of such transition and the event establishes the
new assumption.

Since our mode definition allows the invariant to be weaker than the conjunc-
tion of assumptions, it is needed to show that any event is enabled only when
an assumption is, otherwise the event is specifying some behaviour that does
nor match any mode definition. This is assured by discharging proof obligation
PO4.

Condition 3b of Def. 8 states that all defined mode switching transitions have
a corresponding event in the Event-B model. The corresponding proof obligation
is POS5.

Reachability Properties. To completely assure condition 3b, it has to be
shown, additionally to the given proof obligations, that each mode transition
in the Modal System behaviour is possible in the Event-B model behaviour.
Proof obligations to discharge such properties can not be generated in general,
they are specific for each model. They can be assured either by structuring a
model such that these properties can be proven or by using additional analysis
techniques such as model checking.

7 Cruise Control Case Study

The Case Study is presented in the following parts: first we exemplify modelling
with modes; then we discuss aspects of building an Event-B model to realise a
modes specification; thirdly we exemplify proof obligations on the case study,
and then general comments are made.

7.1 Modelling with Modes

The Cruise Control case study illustrates the proposed technique to the develop-
ment of a simplified version of one of the DEPLOY case studies [8]. The system
assists a driver in reaching and maintaining some predefined speed. In the cur-
rent modelling we assume an idealised car and idealised driving conditions such
that the car always responds to the commands and the actual speed is updated
according to the control system commands.

Figure 1 presents the diagrams of the most abstract modal system for the
cruise control (A) and the resulting models of three successive refinement steps
(B to D). The assumption and guarantee for each mode is given in Figure 2.
The diagrams use a visual notation loosely based on Modechards [9]. A mode
is represented by a box with mode name; a mode transition is an arrow con-
necting two modes. The direction of an arrow indicates the previous and next
modes in a transition. Special modes T j; and L j; are omitted so that initiating
and terminating transitions appear connected with a single mode. Refinement is
expressed by nesting boxes. A refined diagram with an outgoing arrow from an
abstract mode is equivalent to outgoing arrows from each of the concrete modes.

At the most abstract level (Figure 1(A)) we introduce mode IGNITION.CYCLE
to represent the activity from the instant the ignition is turned on to the instant
it is turned off, represented by transitions ignitionOn and ignitionOf f. During
an ignition cycle, its guarantee must be respected independently of operation
by the driver or by the cruise control. The model includes: the state of ignition
(on/off) modelled by a boolean flag ig; the current speed of the car (a mod-
elling approximation of an actual car speed), stored in variable sa; a safe speed
limit speedLimit above which the car should not be; and a safe speed variation
mazSpeedV . No memory is retained about states in the previous ignition cycle.

(A) (B)

gnitionOn ?lgm'tion Off
1 IGNITION.CYCLE
‘ DRIVER ‘
‘qmﬁtionOn ?gnitionOﬁ ccOn + *ccO[f
IGNITION CYCLE ‘ CRUISE_-CONTROL ‘
(©) (D)
ignitionOn ?ignit’i,on off
gnitionOn ?z’gnition()ﬂ' IGNITION-CYCLE
DRIVER
IGNITION.CYCLH
\ DRIVE |©0REH ERROR olEH pRivE
‘ DRIVER ‘ ORMAL) "TING [Ty PECRADES
(:(307}/ ccOn hecOf cc()r}\‘\ccoﬂr ccOn Tfault
CRUISE_CONTROI, CRUISE_-CONTROL|
setSt setSt
[AINTAL <—’4PPROAC% }M AINTA Iﬁ%—ﬂ—ﬂ“PPROA cﬁ(
readSa readSa

Fig. 1. Cruise control refinement steps (A) to (D).

In the first refinement step (Figure 1(B)) ran1TION_CcYCLE is refined in DRIVER
corresponding to the activity when cruise control is off and crUISE.CONTROL
when cruise control is active. on/off interface buttons to activate/deactivate the
cruise control are mapped to transition events ccOn and ccO f f. This refinement
introduces: the state of cruise control (on/off), modelled by boolean flag cc; the
target speed that a cruise control is to achieve and maintain, represented by vari-
able st; an allowance interval isp that determines how much actual speed could
deviate from a target speed. The next refinement step (Figure 1(C)) introduces
different operating strategies: if the difference between current (sa) and target
(st) speeds is within an acceptable error interval (isp), the cruise control works
to MAINTAIN the current speed. Otherwise, it employs different procedures to
APPROACH the target speed. Switching from DRIVER to CRUISE.CONTROL may
either establish the assumptions of APPROACH or MAINTAIN, depending on the
difference between st and sa. In either of these two modes the cruise control can
be switched off and the control returned to the driver.

At any time failures of the surrounding components (e.g. airbag activated,
low energy in battery, etc.) may happen and are signalled to the cruise control
system. In the presence of an error, the control is returned to the driver and
handling measures are activated. Errors can be reversible or irreversible. After
being handled, the first ones allow the cruise control to become available again;
the irreversible ones cause the cruise control to become unavailable during the
ignition cycle. According to the last refinement step (Figure 1(D)), when an er-
ror is detected it is registered in an error variable. If an error is signalled in any

[modeJassumption [guarantee |

IGNITION [ignition is on [keep speed under limit and (ac/de)celarate safely |
CYCLE(ig = true [(sa < speedLimit) A (Jsa” — sa] < maxSpeedV) |
DRIVERY|ignition cycle assumption ignition cycle guarantee
and cruise control off
ig = true A cc = false (sa < speedLimit) A (Jsa’” — sa] < maxSpeedV)
CRUISE_|ignition cycle assumption ignition cycle guarantee and
CONTROL|and cruise control on maintain or approach target speed or
ig = true A cc = true (sa < speedLimit) A ([sa” — sa| < maxSpeedV)\
(|sa’ — st’'| <ispV |sa’ — st’| < |sa — st|)
APPROACH |cruise control assumption and |cruise control guarantee and
speed not close to target approach target speed
ig = true A cc = true A (sa < speedLimit) A ([sa” — sa] < mazSpeedV)A
|sa’ — st'| > isp (|sa’ — st’| < |sa — st]|)
MAINTAIN |cruise control assumption and [cruise control guarantee and
speed close to target maintain target speed
ig = true A cc = true A (sa < speedLimit) A ([sa” — sa| < maxSpeedV)\
|sa’ — st'| < isp (|]sa’ — st’| < isp)
DRIVE_|driver assumption and driver guarantee
NORMAL|and no error (and cruise control available)
ig = true A cc = falseA (sa < speedLimit) A
error = false (|sa’ — sa| < mazSpeedV)
ERROR._|driver assumption and error |driver guarantee and recovery measures
HAND-|and handling not finished (and cruise control not available)
ig = true A cc = falseA (sa < speedLimit) A
error = true A eHand = true |(|sa’ — sa| < mazSpeedV)
DRIVE_|driver assumption and driver guarantee
DEGRADED |error and handling finished (and cruise control not available)
ig = true A cc = falseN (sa < speedLimit) A
error = true A eHand = false|(|sa’ — sa| < maxSpeedV)

Fig. 2. Modes assumptions and guarantees.

of the system modes, the system switches to ERROR-HANDLING, where control
is with the driver. Eventually error handling reestablishes DrRIVE_.NORMAL, with
full functionality available, or switches to DRIVE_.DEGRADED mode where the
cruise control is not available. Note that although the guarantees of these three
concrete modes from DRIVER are the same, they have distinct mode transition
possibilities: in modes DRIVE.DEGRADED and ERROR-HANDLING the cruise con-
trol cannot be turned on. After finishing error handling the system continues in
either normal or degraded mode.

7.2 Building an Event-B model to realise the modal system

Once a modal system is sufficiently developed (but not necessarily finalised) one
can start building an Event-B model implementing it. The static part of a model,
such as variables and invariant is already elaborated to some degree in a modal
system specification. These are simply copied into an initial Event-B machine.
Next, one has to study a mode diagram to grasp the general architecture of a
system: the modes and the mode transitions. It helps to begin such a study with
the most abstract diagram as it gives the understanding of the relation between
the system modes.

We present excerpts from an Event-B model realising the modal system de-
veloped for the case study. For the most detailed modal specification, we have

the Event-B declaration of variables and invariant on the right. It is merely a
result of mechanically translating definitions from the modal specification into
the Event-B syntax. The referenced context cc_ctx contains declarations of sets
and constants such SPEFED and speedLimit.

machine cruisecontrol
sees cc_clx
variables g, cc, sa, st, error
invariant

ig € BOOL

cc € BOOL

sa € SPEED

st e SPEED

st >0

error € BOOL

eHand € BOOL

Initially, the invariant has no interesting statements relating to the safety
properties of the system. This is because in a modal system safety properties
are put into the guarantees of individual modes. However, once it comes to
the verification of an Event-B model against a modal specification the proof
obligations (see Def. 9), derived from the condition that an event must satisfy
a mode guarantee, would suggest additional invariants. Hence, the process of
showing modes/Event-B consistency gradually adds more details into an Event-
B model with each additional discharged proof obligation.

In Event-B an initialisation is a special event assigning initial values to all
the model variables. While in a modal specification there is no explicit discussion
of initialisation in terms of state computations, the conditions on all mode tran-
sitions originating at T ps result in a rather detailed characterisation of possible
variable initialisations.

For the cruise control case study the initial state should satisfy the invariant
and the assumption of the initiating mode ‘Drive Normal’ and thus the least
constrained initialisation event has the form shown on the right.

initialisation

ig :=TRUE || cc:= FALSE ||

sa:€ SPEED || st:€ Ny ||

error :== FALSE || eHand :: BOOL

The non-deterministic initialisation of sa (car speed) should raise concerns
as it contradicts our understanding that a car is initially stationary. There is,
however, nothing the mode specification that tells this and it is one of those
many details we have abstracted away in a mode specification. In this case
we choose to strengthen the initialisation event and state that initially sa is
zero. Obviously, such initialisation also satisfies the requirements to an event
implementing initiating mode transitions. The counterpart of the initialisation
event is an event halting the current ignition cycle. This is implemented with an
event setting ig to FALSE:

ignition_of f = when ig = TRUFE then ig := FALSE end

Let us now take a look at how a mode is implemented. There is no ready rule
for generating events from a mode description. This is the part where a designer
has the most freedom within the limits set by the assumption and guarantee of
a mode. There is no limitation on the number of events realising a mode. As
example, we have found it convenient to have two events for mode Drive Normal
Mode, each responsible for either decrease or increase in vehicle speed.

speed_up = any si where speed_-down = any sd where
st € SPEED sd e SPEED
st < maxSpeedV sd < maxSpeedV
sa + si < speedLimit sa—sd € SPEED
ig=TRUFE ig=TRUFE
cc=FALSE cc=FALSE
then then
sa := sa + si sa := sa — sd
end end

7.3 Examples of proof obligations generated from the modal system

Now we exemplify the application of the proof obligations in Def. 9 to the case
study.

PO1 is discharged trivially because the Event-B model has the same variable
definitions of the modal system and the same invariant.

PO2 reduces to prove that the initialization implies the assumption of the
initial mode which is Drive Normal Mode.

According to PO4, for each of the events we have to demonstrate that it is
enabled only when the mode assumption holds. For instance, for event speed_up
we have:

Vsi-si € SPEED A si < maxSpeedV A
sa+ si < speedLimit Nig =TRUFE Ncc= FALSE —
ig=TRUE Ncc=FALSE

According to PO3, it is required to show for each event that it either respects
the mode guarantee (Def. 9, PO3, line 2) or that it switches to another mode
according to a possible mode transition (line 3). Below we show the proof to
event speed_up in respecting guarantee of Drive Normal Mode.

Vsi-si € SPEED A si < mazxSpeedV N
sa + si < speedLimit Nig=TRUE N cc= FALSE N
sa’ =sa+siNig' =igAed =ccA
st' = st ANerror’ = error AeHand = eHand —
ig' =TRUE A cc = FALSE A
(sa’ < speedLimit) A |sa’ — sa| < maxSpeedV

According to POB5, for each transition there must be at least one event imple-
menting it. Event ignition_of f, for instance, is shown to implement transitions
from any mode to L ;.

The proof obligations, being formulated as Event-B theorem (extra condi-
tions on Event-B models), are automatically discharged by the Rodin platform
theorem prover. This is also true the rest of proof obligations, coming from modes
and native to Event-B.

7.4 General comments on the Case Study

From our experience, the construction of an Event-B from a modal specification
is a fairly straightforward process. However, we have also found that, for the
few initial development steps, constructing an Event-B model for each step of a
modal system refinement makes little impact on understanding the system. This
because a mode specification embodies basically the same information (albeit in
a structured manner) as an abstract Event-B model.

On the other hand, in absence of a dedicated tool support for checking modal
specifications, an Event-B implementation provides a verification platform in the
form of the Rodin toolkit. This also defines how we see the application of the
approach. A developer would start with translating requirements into a high-level
modal specification. More requirements are captured by refining modes and, at
some point, an Event-B model is constructed. For several further steps, modal
and Event-B developments go hand-in-hand until no further detalisation can be
done at the level of a modal specification. This would mark the final transition
into an Event-B model. However, even at that point a modal specification is
not forgotten. The consistency conditions proved at an earlier refinement are
preserved through a refinement chain and thus, even after several refinement
steps, an Event-B model still respects all the properties of a modal specification
from which it was initially derived.

8 Conclusions

A representative class of critical systems employs the notion of operation modes.
While this notion is supported in some languages [9,12], a formal definition for
modal systems as well as approaches for their rigorous construction could not be
found. Following previous work [1], in this paper we formalize modal systems and
modal systems refinement. The use of modes and modal system refinement helps
to organize system properties, to trace requirements into model definition and
helps to impose control structure in the system. Such advantages are specially
welcomed together with a state-based formal method. As a further contribution
of this paper we take Event-B and show how to demonstrate that a model in
Event-B is according to a modal system, i.e. respecting assumptions, guarantees
and mode switchings. Although the satisfaction conditions were shown for Event-
B, the same ideas can be generalised to other formal methods.

Using modal systems refinement and the notion of modal system consistency
for an Event-B model, both defined in this paper, together with the common
Event-B refinement notion, it is possible to build a concrete Event-B model
EBModelc refining an EBModel 4 and show that it satisfies an M Sysc which
refines M Sysa. A natural extension of this work is to formally define restrictions
on the refinement starting from EBModel 4 leading to EBModels which by
construction satisfies M Sysc. Such restrictions would be based on the refinement
from M Sysa to MSysc. Additionally, in future work we intend to investigate
the implications of mode concurrency.

Acknowledgements

We would like to thank John Fitzgerald for the valuable comments made on
earlier versions of this work.

References

1. Iiasov, A., Dotti, F.L., Romanovsky, A.: Structuring specifications with modes. In:
Proceedings of the fourth Latin-American Symposium on Dependable Computing,
Los Alamitos, CA, USA, IEEE Computer Society (2009) 81-88

2. Abrial, J.R., Métayer, C.: Rodin deliverable 3.2 - event-b language. Technical
report, Newcastle University, England (2005) http://rodin.cs.ncl.ac.uk.

3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

4. Butler, R.W.: Nasa technical memorandum 110255 an introduction to requirements
capture using pvs: Specification of a simple autopilot (1996)

5. Miller, S.P.: Specifying the mode logic of a flight guidance system in core and scr.
In: FMSP ’98: Proceedings of the second workshop on Formal methods in software
practice, New York, NY, USA, ACM (1998) 44-53

6. Lygeros, J., Godbole, D.N.; Broucke, M.E.: Design of an extended architecture for
degraded modes of operation of ivhs. In: In American Control Conference. (1995)
3592-3596

7. Abrial, J.R., Borger, E., Langmaack, H., eds.: Formal Methods for Industrial Ap-
plications, Specifying and Programming the Steam Boiler Control (the book grow
out of a Dagstuhl Seminar, June 1995). In Abrial, J.R., Borger, E., Langmaack, H.,
eds.: Formal Methods for Industrial Applications. Volume 1165 of Lecture Notes
in Computer Science., Springer (1996)

8. Abrial, J.R., Bryans, J., Butler, M., Falampin, J., Hoang, T.S., Ilic, D., Latvala,
T., Rossa, C., Roth, A., Varpaaniemi, K.: Report on knowledge transfer - deploy
deliverable d5 (February 2009)

9. Jahanian, F., Mok, A.: Modechart: A specification language for real-time systems.
IEEE Transactions on Software Engineering 20(12) (1994) 933-947

10. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and
a new proposal. Real-Time Syst. 26(2) (2004) 161-197

11. Fohler, G.: Realizing changes of operational modes with a pre run-time scheduled
hard real-time system. In: In Proceedings of the Second International Workshop
on Responsive Computer Systems, Springer Verlag (1992) 287-300

12.

13.

14.

15.

16.

Peter H. Feiler, David P. Gluch, J.J.H.: The architecture analysis & design lan-
guage (aadl): An introduction. Technical Note CMU/SEI-2006-TN-011, Software
Engineering Institute - Carnegie Mellon University (2006)

Mustafiz, S., Kienzle, J., Berlizev, A.: Addressing degraded service outcomes and
exceptional modes of operation in behavioural models. In: SERENE ’08: Proceed-
ings of the 2008 RISE/EFTS Joint International Workshop on Software Engineer-
ing for Resilient Systems, New York, NY, USA, ACM (2008) 19-28

Robert, T., Fabre, J.C., Roy, M.: Application of Early Error Detection for Handling
Degraded Modes of Operation. In Hélene WAESELYNCK, ed.: Proceedings of the
12th European Workshop on Dependable Computing, EWDC 2009 12th European
Workshop on Dependable Computing, EWDC 2009, Toulouse France (05 2009) 3
pages Rapport LAAS n° 09171.

Back, R.J., Sere, K.: Stepwise Refinement of Action Systems. In van de Snep-
scheut, J.L.A., ed.: Proceedings of the International Conference on Mathematics
of Program Construction, 375th Anniversary of the Groningen University, London,
UK, Springer-Verlag (1989) 115-138

Dijkstra, E.: A Discipline of Programming. Prentice-Hall International (1976)

