
Project DEPLOY
Grant Agreement 214158

“Industrial deployment of advanced system engineering methods
for high productivity and dependability”

Goal-Oriented Requirements Engineering in
Action in the Transportation Sector

Technical Report

28 May 2009

http://www.deploy-project.eu

Contributors:
Renaud De Landtsheer CETIC

Christophe Ponsard CETIC

Contents
1 Introduction 4

2 Structure of a typical KAOS goal-oriented language 4

3 Setting up the context 6

4 High-level goals and initial model 8

5 Analyzing obstacles to safety requirements 10

6 Detecting and resolving inconsistencies 11

7 Final requirements model 13

8 Why goal-orientation for requirements engineering? 14

9 Formal support for requirements elaboration 15

10 From formal requirements to Event-B specifications 17

Bibliography 22

3

1 Introduction
This report presents the goal-oriented approach to engineer high-quality re-
quirements. It is centered on the KAOS approach, which is a good repre-
sentative of goal-orientation [vL09]. It also includes some reference to non-
functional requirements engineering approaches such as NFR, I* and Tropos
[CNYM00, Yu95, BPG+04]. Further information can be found in reference
documents [vL09, CNYM00].

Starting from informally structured textual requirements, this report il-
lustrates some of the benefits of using a goal-oriented approach in terms of
guarantee of completeness, consistency, reasoning on the system boundaries,
identifying the responsibilities and dealing with potential conflicts. This re-
port is mainly on semi-formal notations but it also shortly considers the
formalization process.

This report is consistently illustrated on the first simplified pilot prob-
lem developed by the transportation sector during the DEPLOY project and
known as "mini-pilot" [F7 09]. The elaboration starts with an initial model
extracted from the specification document and then proceeds according to
the non-functional quality requirements included in this document to gradu-
ally make the requirements robust and compliant with these non-functional
requirements. Finally, some formalization aspects are illustrated and dis-
cussed.

2 Structure of a typical goal-oriented require-
ments engineering language

We use here the KAOS language [vL09]. It is a modelling language com-
posed of several sub-models related through concept sharing and inter-model
consistency rules. Figure 1 presents the key models and their inter rela-
tionships. In addition, UML-like class diagrams are also used to capture the
structure of the domain. A, operation models is also available for the derived
operational behaviour. This last model will not be considered here because
it overlaps with Event-B. The aim is to focus only on the intentional part
dealing with the requirements.

The goal model is the driving model. It declares the goals of the system-
to-be. A goal defines an objective the system-to-be should meet, usually
through the cooperation of multiple agents. For instance, a goal of the train
control system is Avoid[ATP mode on non-CBTC track]. It states that “The
ATP mode should not be selected if the train is not on a CBTC track. This is
because the ATP mode is fully automated and needs the presence of dedicated

4

G o a l m o d e l

A v o i d [A T P m o d e o n n o n - C B T C t r a c k]

A v o i d [A T P m o d e s e l e c t e d b y d r i v e r
w h e n n o t o n C B T C t r a c k]

A v o i d [A T P m o d e w h e n
n o t s e l e c t e d b y d r i v e r]

I n t e r - m o d e l c o n s i s t e n c y r u l e s

A g e n t R e s p o n s i b i l i t y m o d e l

A v o i d [A T P m o d e w h e n
n o t s e l e c t e d b y d r i v e r]

M o d e C o n t r o l l e r

A g e n t I n t e r f a c e m o d e l

S e l e c t e d m o d e

D r i v e r

M o d e C o n t r o l l e r

Figure 1: Structure of the KAOS meta-model

device beside the track. This is called CBTC track. ”. It is a safety goal.
Goal-refinement links relate a goal to a set of subgoals. A set of sub-

goals refines a parent goal if the satisfaction of all subgoals is sufficient for
satisfying the parent goal [DvLF93, Dar95, DvL96]. As an example, the
goal Avoid[ATP mode on non-CBTC track] is refined in Figure 1 into the
subgoals Avoid[ATP selected when not selected by driver] and Avoid[ATP
selected by driver when not on CBTC].

The agent responsibility model declares responsibility assignments of goals
to agents. Agents include software components that exist or are to be de-
veloped, external devices, and humans in the environment. Responsibility
assignment provides a criterion for stopping the goal refinement process. A
goal assigned as the responsibility of a single agent is not refined any further.
The meaning of a responsibility assignment is that the agent responsible for
a goal is the only one required to restrict its behaviour so as to ensure that
goal [Let01].

The agent interface model declares which objects are monitored and con-
trolled by each agent. In the agent interface model of Figure 1, the Driver
agent controls the Selected mode, which is a switch of the mode selector
agent.

5

There is an inter-model consistency rule between the agent interface and
the corresponding responsibility assignment of a goal to an agent. Roughly
speaking, a goal can be assigned as the responsibility of an agent only if the
goal is stated in terms of objects that are monitorable and controllable by
the agent and if the agent can behave so that it enforces the goal. This is
known as the realizability meta-constraint.

3 Setting up the context
The context includes the variables of the system, and the agents of the sys-
tem, together with their control and monitoring capabilities. Generally, one
distinguishes between the variables of the system, structured into an object
model, and the agent interface model. In this case, the running example
has no notion of entities or relationships, rather, it has a finite set of vari-
ables. We therefore present here a simplified version of our goal-oriented
approach where we use variables instead of an entity relationship attribute
model [BC95].

Agents are active objects such as humans, devices, or software compo-
nents that play some role towards goal satisfaction. Some agents define the
software-to-be whereas others define the environment. Our train control sys-
tem includes the Driver and the Mode controller agents.

Agents are declared by a name and a definition. The particular meta-
features of agents are that they can monitor and control objects, and take
responsibility for goals.

The Driver and Mode selector agents are defined as follows:

Agent Driver
Definition The driver is a human agent that monitors the track state and
can select a driving mode according to some non-formulated requirements.

Agent Mode Selector
Definition This is an automated agent that inputs user wishes about the
driving mode and select the most appropriate one. It also controls an
emergency brake.

The system includes the following variables:

Variable DesiredTrainMode
Definition A switch that is controlled by the driver and part of the Mode
Selector. It can have three possible values: ATP, ATPR, and Bypass.
Type: enumeration: {ATP, ATPR, Bypass}

6

Variable EmergencyBrake
Definition To stop the train in emergency situations.
Type: Boolean

Variable TrainMode
Definition This is the mode that is applied to the speed regulator of the
train. It can have three possible values: ATP, ATPR, and Bypass.
Type: enumeration: {ATP, ATPR, Bypass}

Agent interfaces are declared through Monitoring and Control links be-
tween agents and concepts of the domain, here, variables.

The meaning of a Monitoring link between an agent and an object at-
tribute is that the agent directly monitors (“reads”) the value of the attribute.

The meaning of a Control link between an agent and an object attribute
is that the agent directly controls (“writes”) the value of the attribute. In
other words, an agent controls an attribute if it is capable of controlling state
transitions for that attribute. We also consider that attributes controlled by
an agent are observable by that agent as well.

As an example, the Driver controls the position of the DesiredTrainMode
switch of the mode selector, and the Mode selector monitors the position of
this switch.

The control and monitoring capabilities of the agents are presented in
Figure 2. The adopted syntax is the one of the KAOS approach from [Let01].
Agents are represented by flattened hexagons, variables are represented by
rectangles. An arrow leading from a variable to an agent denotes that the
agent monitors the variable (i.e.: sees the variable), and an arrow leading
from an agent to a variable denotes that the agent controls the value of the
variable (i.e.: chooses its value).

Notice that context diagrams presented here cover part of the Problem
Frame concepts, with a more recent syntax [Jac01]. For examples, the phe-
nomena of problem frames are renamed into variables here. Other parts will
be covered in later sections.

Figure 2: Context diagram

7

4 High-level goals and initial model
A goal is a prescriptive statement of intent about the considered system-to-
be [vL01]. For example, Maintain[TrainMode Equal To Driver mode] is a
functional goal of the train control system.

Each goal has a name and a definition. The name of the goal is used to
identify the goal. The definition of the goal is the statement represented by
the goal expressed in natural language. Goals can also be defined formally
with the adjunction of a formal def field. The formal definition is generally
expressed in first order temporal logics. This is not covered in this report,
please refer to the reference document for further information [Let01, Lan07,
vL09].

The goal Maintain[TrainMode Equal To Driver mode] is fully defined as
follows:

Goal Maintain[TrainMode Equal To Driver mode]
Definition The train mode should be the one selected by the driver. This
is a functional goal.

The pattern of a goal is based on the temporal behaviour required by the
goal. In the case of the KAOS language, the following four goal patterns are
defined:

• Achieve goals: goals requiring that some property eventually holds

• Cease goals: goals requiring that some property eventually stops to
hold

• Maintain goals: goals requiring that some property always holds

• Avoid goals: goals requiring that some property never holds

Goal patterns provide a lightweight way of declaring the temporal behaviour
of a goal without writing formal goal definitions. The pattern of a goal is
often used as the first part of the goal name, like in the goal here above.

Another goal of the system is defined as follows. This is a safety goal.

Goal Avoid[ATP Mode on non-CBTC track]
Definition The ATP mode should not be selected if the train is not on a
CBTC track. This is because the ATP mode is fully automated and needs
the presence of dedicated device beside the track. This is called CBTC
track.

8

AND-refinement links relate a goal to a set of sub goals (called refine-
ment); this means that satisfying all sub goals in the refinement is a sufficient
condition in the domain for satisfying the goal. A goal can be AND-refined
in several alternative ways. In this case, these are considered as alternative
refinements and one of these alternatives must be chosen. For example, the
goal Avoid[ATP Mode on non-CBTC track] is refined into the two following
sub-goals:

Requirement Avoid[ATP selected when not selected by driver]
Definition The Train mode should never be ATP if it is not the mode
selected by the driver

Requirement Avoid[ATP selected by driver when not on CBTC]
Definition The train mode should never be ATP if it is not on a CBTC
track

A set of goals {G1, . . . , Gn} AND-refines (or refines for short) a goal G in
a domain theory Dom if the following three conditions hold [Dar95]:

• completeness: the satisfaction of the sub goals together with the
satisfaction of domain properties in Dom is sufficient for satisfying the
parent goal.
• minimality: if a sub goal is left out of the refinement, the remaining

sub goals are not sufficient for satisfying the parent goal.
• consistency: the conjunction of the sub goals is logically consistent

with the domain theory.

The formal definition of goals allows one to verify formally the complete-
ness, minimality and consistency of goal refinements. The completeness and
minimality conditions can be checked via model checking [PMR+04].

There is also two other high-level goals that will drive our analysis. The
first one is a non-functional goals, meaning that it cannot be expressed in
term of a condition on the variables of the system.

Non-Functional Goal Driver Cannot be relied upon for safety goals
Definition The driver cannot be relied upon for the enforcement of safety
goal. Mistakes from him should not hinder the safety of the train; high-
level security goals should be enforced even in the presence of human
error.

Goal Emergency Brakes On When Error Made By Driver
Definition Whenever the driver makes a mistake with respect to a safety
requirements he is responsible for, the emergency brakes should be acti-
vated.

9

The whole initial picture is summarized in Figure 3. Goals are repre-
sented by parallelograms inclined on the right. Refinements are denoted by
a bubble linking the parent goal with an arrow, and the child goals with
regular lines. A line linking an agent to a goal denotes that the goal is a
requirement under the responsibility of the agent.

D r i v e r M o d e S e l e c t o r

A v o i d [A T P M o d e
o n n o n - C B T C t r a c k]

A v o i d [A T P M o d e S e l e c t e d B y D r i v e r
W h e n n o t o n C B T C t r a c k]

A v o i d [A T P M o d e S e l e c t e d
W h e n N o t S e l e c t e d B y D r i v e r]

M a i n t a i n [T r a i n M o d e E q u a l T o
 D r i v e r M o d e]

D r i v e r c a n n o t b e r e l i e d
u p o n f o r s a f e t y g o a l s

E m e r g e n c y b r a k e s o n
w h e n E r r o r m a d e b y D r i v e r

Figure 3: Initial goal-oriented model of the train control sys-
tem

5 Analyzing obstacles to safety requirements
First-sketch specifications of goals, requirements and assumptions tend to be
too ideal; they are likely to be occasionally violated in the running system due
to unexpected agent behaviour [vLL00]. The objective of obstacle analysis
is to anticipate exceptional behaviours in order to derive more complete and
realistic goals, requirements and assumptions.

In the train control system, obstacle analysis can be guided by the non-
functional goal Driver Cannot be relied upon for safety goals.

These failures are modelled in requirements models through the concept
of obstacle. Obstacles are a dual notion to goals; while goals capture desired
conditions, obstacles capture undesirable (but nevertheless possible) ones.
An obstacle obstructs some goal, that is, when the obstacle gets true the goal
may not be achieved. The term “obstacle” denotes a goal-oriented abstrac-
tion, at the requirements engineering level, of various notions that have been
studied extensively in specific areas, such as hazards that may obstruct safety
goals [Lev95] or threats that may obstruct security goals [Amo94, vL04], or
in later phases of the software lifecycle, such as faults that may prevent a
program from achieving its specification [CL95, Gar99].

10

We focus here on the requirement Avoid[ATP selected by driver when not
on CBTC] that is under the responsibility of the driver.

The obstacle is rather trivial in this case, as it is the negation of the re-
quirement:

Obstacle ATP selected when not on CBTC
Definition The mode selected by the driver might be ATP and at the
same time, the train might not be on a CBTC track

This obstacle is resolved through the introduction of the additional re-
quirement:

Requirement ATPR mode selected when driver desires ATP on non CBTC
Definition When the mode desired by the driver is ATP and the train is
not on a CBTC track, the train mode should be the default safe ATPR
mode

On the other hand, the situation described by the obstacle is considered
as an error made by the driver. According to the non-functional requirement
Emergency Brakes On When Error Made By Driver, this situation must trig-
ger the emergency brakes. We therefore introduce the following additional
requirement:

Requirement Emergency Brakes On When ATP selected By Driver On
Non CBTC Track
Definition The emergency brakes should be activated when the mode
selected by the driver is ATP and the train is on a non-CBTC track. This
situation is considered as an error of the driver.

This analysis together with the resolution of the obstacle are summarized
in Figure 4. Obstacles are denoted by parallelograms inclined on the left.
Obstruction of goals by obstacle is denoted by a red-marked arrow leading
from the obstacle to the goal. The resolution of and obstacle by a goal is
denoted by a green-marked arrow leading from the goal to the obstacle.

6 Detecting and resolving inconsistencies
This section introduces the concepts of inconsistencies between goals. A di-
vergence between goals corresponds to situations where some particular com-
bination of circumstances can be found that makes the goals logically incon-
sistent. Such a particular combination of circumstances is called a boundary
condition [vLDL98, Lan07]. Inconsistencies can be automatically detected

11

Figure 4: Analysing unexpected conditions

by using dedicated formal methods [Lan07, vLDL98].
We need to check that there is no inconsistencies in the requirements

model. Typically, functional requirements and safety requirements are often
conflicting. In this case study, there is a conflict between the requirements
ATPR mode selected when driver desires ATP on non CBTC and Main-
tain[TrainMode Equal To Driver mode]. The conflict arises when the driver
selects ATP mode on a non-CBTC track. The conflict is defined as follows:

Conflict ATP selected on non-CBTC
Involved goal ATPR mode selected when driver desires ATP on non
CBTC
Involved goal Maintain[TrainMode Equal To Driver mode]
Definition When the driver selects ATP on a non-CBTC track, the train
mode should be ATPR. On the other hand, according to the goal Main-
tain[TrainMode Equal To Driver mode], they should always be equal.

This conflict is resolved by weakening the functional goalMaintain[TrainMode
Equal To Driver mode] into the following one:

Goal Maintain[Train Mode Equal To Driver Mode Except If ATP selected
and non-CBTC]
Definition The train mode should be equal to the one selected by the
driver except if this selected mode is ATP and the train is not on a CBTC
track.

12

The goal Maintain[TrainMode Equal To Driver mode] was not involved
in any refinement. Should it be the case, we would need to transfer all the
refinements from this goal to its refined version, and possibly, propagate the
weakening along the goal graph.

This analysis is summarized in Figure 5. Divergences and conflics are
graphically represented using the same notation as obstacle, except that they
relate to several goals with a red-marked arrow.

M o d e S e l e c t o r

A T P R m o d e w h e n A T P
s e l e c t e d o n n o n C B T C t r a c k

M a i n t a i n [T r a i n M o d e E q u a l T o
 D r i v e r M o d e E x c e p t W h e n

A T P s e l e c t e d o n n o n - C B T C t r a c k]

M a i n t a i n [T r a i n M o d e E q u a l T o
 D r i v e r M o d e]

A T P m o d e s e l e c t e d
a n d n o t o n C B T C

Figure 5: Analysing and resolving conflicts in the train con-
troller model

7 Final requirements model
The requirements under responsibility of the Mode selector are summarized
below. We focus on these requirements because they will be implemented, as
the Mode selector is a software agent. Requirements under the responsibility
of the Driver will need to be incorporated into some user procedure, and
possibly into some training.

Requirement Avoid[ATP selected when not selected by driver]
Definition The Train mode should never be ATP if it is not the mode
selected by the driver

Requirement ATPR mode selected when driver desires ATP on non CBTC
Definition When the mode desired by the driver is ATP and the train is
not on a CBTC track, the train mode should be the default safe ATPR
mode

Requirement Emergency Brakes On When ATP selected By Driver On
Non CBTC Track
Definition The emergency brakes should be activated when the mode
selected by the driver is ATP and the train is on a non-CBTC track. This
situation is considered as an error of the driver.

13

Requirement Maintain[Train Mode Equal To Driver Mode Except If ATP
selected and non-CBTC]
Definition The train mode should be equal to the one selected by the
driver except if this selected mode is ATP and the train is not on a CBTC
track.

The final model displaying only the requirements is shown on Figure 6.

A v o i d [A T P M o d e
o n n o n - C B T C t r a c k]

A v o i d [A T P M o d e S e l e c t e d B y D r i v e r
W h e n n o t o n C B T C t r a c k]

A v o i d [A T P M o d e S e l e c t e d
W h e n N o t S e l e c t e d B y D r i v e r]

D r i v e r c a n n o t b e r e l i e d
u p o n f o r s a f e t y g o a l s

D r i v e r

M o d e S e l e c t o r

E m e r g e n c y b r a k e s o n
w h e n A T P s e l e c t e d
o n n o n C B T C t r a c k

A T P R m o d e w h e n A T P
s e l e c t e d o n n o n C B T C t r a c k

M a i n t a i n [T r a i n M o d e E q u a l T o
 D r i v e r M o d e E x c e p t W h e n

A T P s e l e c t e d o n n o n - C B T C t r a c k]
E m e r g e n c y b r a k e s o n

w h e n E r r o r M a d e b y D r i v e r

A T P m o d e s e l e c t e d
a n d n o t o n C B T C

Figure 6: Final set of requirements for the train control sys-
tem

8 Why goal-orientation for requirements en-
gineering?

This section borrows from [vL01]. The goal-oriented modelling paradigm is
particularly well-suited for requirements engineering because it can provably
reach the purpose of requirements engineering, namely:

• Achieve requirements completeness. This is a major concern of require-
ments engineering. Completeness is about ensuring that all the nec-
essary requirements are identified. Several definitions of completeness

14

have been proposed [Yue87, Lan07]. Goals provide a precise criterion
for sufficient completeness of a requirements specification; the specifi-
cation is complete with respect to a set of goals if all the goals can be
proved to be achieved from the specification and the properties known
about the domain considered [Yue87, Lan07].
• Detect, represent and resolve conflicts between requirements [NKF94,

vLDL98, Lan07].
• Support the identification of unexpected conditions, and drive the elab-

oration of robust requirements that take into account those unexpected
conditions [vLL00].
• Avoid irrelevant requirements. Goals provide a precise criterion for

requirements pertinence; a requirement is pertinent with respect to a
set of goals in the domain considered if its specification is used in the
proof of one goal at least [Yue87, vL01].
• Explain requirements to stakeholders. Goals provide the rationale

for requirements, in a way similar to design goals in design processes
[Lee91]. A requirement appears because of some underlying goal which
provides a base for it [DFvL91, SS97]. More explicitly, a goal refine-
ment tree provides traceability links from high-level strategic objec-
tives to low-level technical requirements. In particular, for business
application systems, goals may be used to relate the software-to-be to
organizational and business contexts [Yu95].
• Provide a natural mechanism for structuring complex requirements

documents for increased readability.
• Provide support for the exploration of alternative during the require-

ments elaboration process. Alternative goal refinements allow alterna-
tive system proposals to be explored [vL00].
• Goals drive the identification of requirements to support them; they

have been shown to be among the basic driving forces, together with
scenarios, for a systematic requirements elaboration process [DFvL91,
RG92, DvLF93, AP98, EDP98, Kai00, vL00].

9 Formal support for requirements elabora-
tion

Formal methods can be usefully deployed at requirements time, to assist
the requirements engineer in various tasks. Through formal methods, it is
possible to more deeply check requirements completeness, consistency, and
minimality [PMR+04, vLL00, vLDL98, Lan07]. A formalized specification

15

can also be usefully animated, so that users of the future system can per-
form hands on validation of the system to be through animation sessions
[VvLMP04, HABJ05]. Specifications can also be inferred through automated
user interrogation, thanks to machine learning techniques [DLD05].

Generally (except for machine learning techniques), the first step towards
formal support is to formalize the goals and requirements. They are generally
formalized in first order temporal logics. The concepts referenced in these
formalization are defined in a model of the context of the system to be.
Generally, this is an entity relationship attribute model, that is represented
through UML-like graphical notations [Let01, Obj].

The formal definitions of goals is attached to the concepts of goals in a
dedicated field formal def. For instance, the goal Avoid[ATP selected when
not selected by driver] is formally defined as follows:

Requirement Avoid[ATP selected when not selected by driver]
Definition The Train mode should never be ATP if it is not the mode
selected by the driver
Formal Def TrainMode = ATP⇒ DriverSelectedTrainMode = ATP

The formalization captures the informal definition; P ⇒ Q is a shortcut
for ¤(P =⇒ Q), and ¤ is the always operator from temporal logics.

One can also specify real-time properties in temporal logics, using real-
time temporal operators. For instance, the requirement Emergency Brakes
On When ATP selected By Driver On Non CBTC Track prescribes some
reaction. We can suggest a time bound for this reaction, say 300ms. The
formalized requirements is as follows:

Requirement Emergency Brakes On When ATP selected By Driver On
Non CBTC Track
Definition The emergency brakes should be activated when the mode
selected by the driver is ATP and the train is on a non-CBTC track. This
situation is considered as an error of the driver.
Formal Def DriverSelectedTrainMode = ATP ∧ ¬OnCBTC

⇒ ♦≤300msEmergencyBrakesOn

Built on these definition one can check refinements:

• testing the completeness of refinements can be done through temporal
model-checking techniques [PMR+04]

• testing the consistency of requirements models requires realizability
testing engines [vLDL98, Lan07]

16

• potential obstacles can also be inferred automatically through regres-
sion procedures [vLL00]

• through a proper compilation process that generates state machines out
of declarative requirements, it is also possible to animate requirements
models [VvLMP04]

Formal methods enable one to:

• Reach a higher level of assurance in the correctness of the requirements
document. This is especially valuable for system-wide reasoning, such
as the detection of inconsistencies, that the human mind can difficultly
handle
• Automate the verification of the model, thus discharging the require-

ments engineer from heavy verification tasks
• support extra functionalities such as animation and inductive learning

of requirements [DLD05, VvLMP04, HABJ05]

10 From formal requirements to Event-B spec-
ifications

To support the Event-B formalisation process, Event-B models have to be
derived from declarative requirements. We report here some ideas and on-
going work on this topic.

Intuitively, the Event-B context and state declaration are extracted from
the context model such as the one displayed on Figure 2. Invariants of
the Event-B model are identified and formalised from requirements with the
proper temporal pattern (i.e "safety" requirements characterised with a single
outern “always” temporal operator). This approach was already discussed in
[pon06] in the context of B.

Deriving Event-B event declarations is more complex and there is on-
going work on this topic such as based on patterns approach [BAA+08,
AAB+09]. It requires some extension of the Event-B to fully take care
of progress properties (captured by the “eventual” temporal symbol). An
alternative, more generative, approach has also been studied by the FP6
GridTrust project with which DEPLOY is collaborating [FP609]. A restric-
tion is however the use of past LTL only. So far is has been applied to the
POLPA policy language [AAM+08], but Event-B could be considered as tar-
get language. Finally there is also some on-going work based goal refinement
patterns [MGL08].

17

Some non-functional requirements can also be captured in Event-B, as
they can constraint the interface of the system. Those must be studied on a
case-by-case basis.

References
[AAB+09] Benjamin Aziz, Alvaro Arenas, Juan Bicarregui, Christophe

Ponsard, and Philippe Massonet. From goal-oriented require-
ments to event-b specifications. In proceedings of the First NASA
Formal Methods Symposium (NFM 2009), April 6-8 2009.

[AAM+08] Benjamin Aziz, Alvaro Arenas, Fabio Martinelli, Ilaria Mat-
teucci, and Paolo Mori. Controlling usage in business process
workflows through fine-grained security policies. In TrustBus
’08: Proceedings of the 5th international conference on Trust,
Privacy and Security in Digital Business, pages 100–117, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Amo94] E.J. Amoroso. Fundamentals of Computer Security. Prentice
Hall, 1994.

[AP98] A.I. Anton and C. Potts. The use of goals to surface require-
ments for evolving systems. In Proc. ICSE-98: 20th Intrnational
Conference on Software Enginering, Kyoto, April 1998.

[BAA+08] Juan Bicarregui, Alvaro Arenas, Benjamin Aziz, Philippe Mas-
sonet, and Christophe Ponsard. Towards modelling obligations
in event-b. In ABZ, pages 181–194, 2008.

[BC95] Robert H. Bourdeau and Betty H. C. Cheng. A formal se-
mantics for object model diagrams. IEEE Trans. Softw. Eng.,
21(10):799–821, 1995.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto
Giunchiglia, and John Mylopoulos. Tropos: An agent-oriented
software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

[CL95] F. Cristian and M.R. Lyu. Software Fault Tolerance, chapter
Exception Handling. Wiley, 1995.

18

[CNYM00] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer Aca-
demic Publishers, Boston, 2000.

[Dar95] R. Darimont. Process Support for Requirements Elaboration.
PhD thesis, Université catholique de Louvain, Dépt. Ingénierie
Informatique, Louvain-la-Neuve, Belgium, 1995.

[DFvL91] A. Dardenne, S. Fickas, and A. van Lamsweerde. Goal-directed
concept acquisition in requirements elicitation. In Proc. IWSSD-
6 - 6th Intl. Workshop on Software Specification and Design,
pages 14–21, Como, 1991.

[DLD05] Christophe Damas, Bernard Lambeau, and Pierre Dupont. Gen-
erating annotated behavior models from end-user scenarios.
IEEE Trans. Softw. Eng., 31(12):1056–1073, 2005. Member-
Axel van Lamsweerde.

[DvL96] R. Darimont and A. van Lamsweerde. Formal refinement pat-
terns for goal-driven requirements elaboration. In Proc. FSE4 -
Fourth ACM SIGSOFT Symp. on the Foundations of Software
Engineering, pages 179–190, San Francisco, October 1996.

[DvLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed
requirements acquisition. Science of Computer Programming,
20:3 – 50, 1993.

[EDP98] E. Yu E. Dubois and M. Petit. From early to late formal require-
ments: A process-control case study. In Proc. IWSSD’98 - 9th
International Workshop on Software Specification and Design,
pages 34 – 42. IEEE CS Press, April 1998.

[F7 09] F7 DEPLOY consortium. Join Deliverable 1 - Report on Knowl-
edge Transfer, March 2009.

[FP609] FP6 GridTrust Consortium. Framework for Reasoning about
Trust ans Security in Grids at Requirement and Application
Levels. public deliverable D4.1, 2009.

[Gar99] F.C. Gartner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environment. ACM Computing Surveys,
31(1):1–26, March 1999.

19

[HABJ05] Constance Heitmeyer, Myla Archer, Ramesh Bharadwaj, and
Ralph Jeffords. Tools for constructing requirements specifica-
tions: The scr toolset at the age of ten. International Journal of
Computer Systems Science and Engineering, 20:19 – 35, January
2005.

[Jac01] Michael Jackson. Problem Frames. Addison Wesley, 2001.

[Kai00] H. Kaindl. A design process based on a model combining sce-
narios with goals and functions. IEEE Trans. on Systems, Man
and Cybernetic, 30(5):537 – 551, September 2000.

[Lan07] Renaud De Landtsheer. Elaborating Complete and Consistent
Requirements for Security-Critical Systems. PhD thesis, Uni-
versité Catholique de Louvain, Dépt. Ingénierie Informatique,
Louvain-la-Neuve, Belgium, June 2007.

[Lee91] J. Lee. Extending the potts and bruns model for recording de-
sign rationale. In Proc. ICSE-13 - 13th Intl. Conf. on Software
Engineering, pages 114 – 125. IEEE-ACM, 1991.

[Let01] E. Letier. Reasoning about Agents in Goal-Oriented Require-
ments Engineering. PhD thesis, Université Catholique de Lou-
vain, Dépt. Ingénierie Informatique, Louvain-la-Neuve, Belgium,
May 2001.

[Lev95] N.G. Leveson. Safeware - System Safety and Computers.
Addison-Wesley, 1995.

[MGL08] Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau.
A first attempt to express kaos refinement patterns with event
b. In ABZ, page 338, 2008.

[NKF94] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for
expressing the relationships between multiple views in require-
ments specifications. IEEE Transactions on Software Engineer-
ing, 20(10):760 – 773, October 1994.

[Obj] Object Management Group. Unified Modeling Language.
http://www.uml.org.

[PMR+04] Ch. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van
Lamsweerde, and H. Tran Van. Early verification and valida-
tion of mission-critical systems. In Proceedings of FMICS’04,

20

9th International Workshop on Formal Methods for Industrial
Critical Systems, Linz (Austria), 2004.

[pon06] From requirements models to formal specifications in b. In Proc.
International Workshop on regulations Modelling and their Val-
idation and Verification (REMO2V), June 2006.

[RG92] K.S. Rubin and A. Goldberg. Object behavior analysis. Com-
munications of the ACM, 35(9):48 – 62, September 1992.

[SS97] I. Sommerville and P. Sawyer. Requirements Engineering: A
Good Practice Guide. Wiley, 1997.

[vL00] A. van Lamsweerde. Requirements engineering in the year 00:
A research perspective. In Invited Paper for ICSE’2000 - 22nd
International Conference on Software Engineering,ACM Press,
Limerick, 2000.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering:
A guided tour. In RE’01 - 5th IEEE International Symposium
on Requirements Engineering, pages 249–263, Toronto, August
2001.

[vL04] Axel van Lamsweerde. Elaborating security requirements by
construction of intentional anti-models. In Proceedings of the
26th International Conference on Software Engineering, pages
148–157. IEEE Computer Society, 2004.

[vL09] Axel van Lamsweerde. Requirements Engineering From System
Goals to UML Models to Software Specifications. Wiley, January
2009. ISBN: 978-0-470-01270-3.

[vLDL98] A. van Lamsweerde, R. Darimont, and E. Letier. Managing
conflicts in goal-driven requirements engineering. IEEE Trans-
actions on Software Engineering, Special Issue on Managing In-
consistency in Software Development, pages 908 – 926, Novem-
ber 1998.

[vLL00] A. van Lamsweerde and E. Letier. Handling obstacles in
goal-oriented requirements engineering. IEEE Transactions on
Software Engineering, Special Issue on Exception Handling,
26(10):978 – 1005, October 2000.

21

[VvLMP04] H. Tran Van, A. van Lamsweerde, P. Massonet, and Ch. Pon-
sard. Goal-oriented requirements animation. In Proceedings of
RE’04, 12th IEEE Joint International Requirements Engineer-
ing Conference, pages 218–228, Kyoto, 2004.

[Yu95] Eric Yu. Modelling Strategic Relationships for Process Reengi-
neering. PhD thesis, Dept. of Computer Science, University of
Toronto, 1995.

[Yue87] K. Yue. What does it mean to say that a specification is com-
plete? In Proc. IWSSD-4, Fourth International Workshop on
Software Specification and Design, 1987.

22

