
On Event-B and Control Flow

A. Iliasov

Centre for Software Reliability, Newcastle University, UK
alexei.iliasov@newcastle.ac.uk

Abstract. Event-B is a general purpose formal development method
suitable for the design and detailed development of safety-critical sys-
tems. Being a data-driven formalism, it lacks any control flow constructs.
This turns out to be a limitation for systems with rich control flow prop-
erties. In Event-B, control flow information has to be embedded into
guards and event actions and this results in an entanglement of control
flow and functional specification with the additional downside of extra
model variables. This paper proposes a method for extending Event-B
models with an new viewpoint portraying control flow properties of a
model. The novelty of the work is in relying solely on theorem proving
to demonstrate the consistency of control flow and main Event-B spec-
ification. The focus is placed on the practicality of working with such
an extension and also on achieving proof economy. A detailed formal
treatment of the method is presented and illustrated with a case study.
A proof of concept implementation for the RODIN platform is briefly
discussed.

1 Introduction

Event-B [1–3] is a general-purpose specification language and is a close rela-
tive of the popular B-Method [4](or Classical B). Its distinctive feature is the
event-based specification paradigm. A model is a collection of a number of events
where the next event is selected non-deterministically among the currently en-
abled events. Event-B facilitates construction of models with a large number
of rather simple events. Theorem proving is the primary verification technique
and, crucially, almost all the correctness conditions (proof obligations) are for-
mulated on per-event basis. This makes Event-B very friendly to automated
theorem provers. High rate of verification automation is extremely important
and it makes Event-B one of the few practical proof-based formalisms.

There are some downsides in following pure event-based paradigm. Not all
systems are naturally expressed in this style. Often the information about event
ordering has to be embedded into guards and event actions. This results in
an entanglement of control flow and functional specification with an additional
downside of extra model variables.

There are a number of reasons to consider an extension of Event-B with an
event ordering mechanism:

– for some problems the information about event ordering is an essential part
of requirements; it comes as a natural expectation to be able to adequately
reproduce these in a model;

– explicit control flow may help to prove properties related to event ordering;
– sequential code generation requires some form of control flow information;
– since event ordering could restrict the non-determinism in event selection,

model checking is likely to be more efficient for a composition of a machine
with event ordering information;

– there is a potential for a machine editor presenting a visual machine layout
based on control flow information;

– realising such a mechanism could be an initial step towards bridging the gap
between high-level workflow and architectural languages and Event-B.

In this paper we discuss an extension of Event-B with a mechanism to rea-
son about event ordering. The practical issues, like verification means, the in-
tegration with the Event-B development process and the tooling support are
given the highest priority. Unlike much of the work on combining state-based
and process-bases specification methods [5–8] our proposal is based on theorem
proving rather than model checking. We demonstrate that the proposal is re-
alistic and presents distinct practical advantages with a proof-of-concept tool
realising the technique.

2 Background

Event-B is a state-based formalism closely related to Classical B [4] and Ac-
tion Systems [9]. The step-wise refinement approach is the corner stone of the
Event-B development method. The combination of model elaboration, atom-
icity refinement and data refinement helps to formally transition from high-
level architectural models to very detailed, executable specifications ready for
code generation. An extensive tool support makes Event-B especially attractive.
An integrated Eclipse-based development environment is actively developed and
well-supported. Importantly for us, it is open for contributions in the form of
Eclipse plug-ins. The main verification technique is theorem proving and the
development comes with a collection of powerful theorem provers while there is
also a capable model checker.

Formally, an Event-B model is defined by a tuple (c, s, P, v, I, RI , E) where
c and s are constants and sets known in the model; v is a vector of model
variables; P (c, s) is a collection of axioms constraining c and s. I is a model
invariant limiting the possible states of v: I(c, s, v). The combination of P and I
should characterise a non-empty collection of suitable constants, sets and model
states: ∃c, s, v · P (c, s) ∧ I(c, s, v). The purpose of an invariant is to express
model safety properties (that is, unsafe states may not be reached). In Event-B
an invariant is also used to deduce model variable types. RI is an initialisation
action computing initial values for the model variables; it is typically given in
the form of a predicate constraining next values of model variables without,

however, referring to previous values - RI(c, s, v′). Finally, E is a set of model
events.

An event is a guarded command:

H(c, s, v) → S(c, s, v, v′)

where H(c, s, v) is an event guard and S(c, s, v, v′) is a before-after predicate.
The general form of an event in Event-B notation is

name = any p where H(c, s, p, v) then S(c, s, p, v, v′) end

where p is an a vector of event parameters.
An event may fire as soon as the condition of its guard is satisfied and no

other event executes at the same time. In case there is more than one enabled
event at a certain state, the demonic choice semantics is applies. The result of
an event execution is some new model state v′. The semantics of an Event-B
model is usually given in the form of proof semantics, based on Dijkstra’s work
on weakest precondition. A collection of proof obligations is generated from the
definition of the model and these must be discharged in order to demonstrate
that the model is correct. For a n abstract model (a model that is not a refinement
of another model) two such proof obligations are the invariant satisfaction and
event feasibility. A new state produced by an event must satisfy module invariant:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ∧ S(c, s, v, v′) ⇒ I(c, s, v′)

An event must also be feasible, in a sense that an appropriate new state v′

must exist for some given current state v:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ⇒ ∃v′ · S(c, s, v, v′)

There are also proof obligations to establish deadlock freeness, enabledness
conditions and a collection of proof obligations for demonstrating Event-B for-
ward simulation refinement [3].

3 Flow Model

The essense of the proposal is an extension of Event-B models with expressions
defining event ordering. Such expressions, called flows, are written in a special
language resembling those used in process algebras, such CSP [10]. The basic
element of the language is an event. Events in a flow are the same events as
in an Event-B machine. Events are charactersied by an event label and may
have parameters (in flow analysis these are treated as an integral part of an
event label). The following is the summary of the constructs forming the flow
language:

e.a event with label e, index i and arguments a
p; q sequential composition
p‖q parallel composition synchronised on E
p & q choice
∗(p) terminating loop
′start initialisation event
′stop termination event
′skip stuttering event

Events starting with ′ bear special meaning. ′start is a shortcut for Event-
B event INITIALISATION, ′stop is an assumed termination event and ′skip
coresponds to an implicit Event-B skip event.

An essential part of the flow mechanism is the notion of a partial flow ex-
pression (or simply partial flow). There are situations when it is not neccessary
to mention all the machine events in a flow. For example, one may want to state
flow for a part model corresponding to the current refinement step or simply
focus on a part where flow reasoning is required. The notion of partial flow be-
comes clear if one thinks of a flow expression as a set of conditions formulated
on a machine. A partial flow is then a more relaxed version of a complete flow.

There are some basic well-formedness requierements to a flow. Event ′start
corresponding to the initalisation event of a machine may not be composed with
other events using choice and parallel composition. Also, it may only occur on
the left-hand side of a sequential composition. This restriction is due to the fact
that the initialisation event is a special case in Event-B. It has no guard and
is always a first event to run. Since flows may be partial, initialisation event
may be omitted from a flow. The termination event ′stop also needs special
treatment. This event is not present explicitly in a machine and the following
Event-B definition is implied if the event is present in a flow expression:

′stop = when ¬(G1 ∨ · · · ∨ Gn) then skip end

′stop is enabled when all other events are disabled; it executes infinitely but
keeps the state intact so that a machine cannot get into a state when anything
else is enabled. Since this event diverges it is not possible to have any other
event to follow ′stop. Hence, ′stop may not occur on the right-hand side of a
sequential composition. For the same reason, a parallel composition with ′stop
is disallowed. It is possible, however, to have a choice between ′stop and another
event (including ′start).

In a composition of a flow and machine, the flow loop construct ∗(p) would
correspond to a loop on machine events. It is the responsibility of the Event-B
part to demonstrate the convergence of a loop. This is a standard part of model
analysis in the RODIN Event-B environment. Later we discuss how to improve
the strategy of demonstrating convergence in Event-B by using the information
contained in a flow attached to a machine.

In the context of Event-B models, the parallel composition may only be
applied to certain kind events. We require that for any set of parallel events

(as defined in a flow expression) there exists a well-formed Event-B event that
simulates all the possible interleavings of the parallel events. This condition
results in a number of syntactic requirements to machine events.

Let rd(e) return the set of all variables read by event e. These are the model
variables referenced in the event guard and the event actions. Likewise, wr(e)
is a set of variables updated by event e. These are the variables found on the
left-hand side of substitutions in an event body. Events that are potentially
concurrent are called independent events.

Definition 1. Independent events. Events that do not have read/write and write/write
conflict are independent. The conflicts are defined as follows:

– Read/write conflict. A pair of events have a read conflict if one updates the
variables read by another. This is denoted as rdcfl(e1, e2) = rd(e1)∩wr(e2) *=
+ ∨ rd(e2) ∩ wr(e1) *= +.

– Write/write conflict. Events updating the same variable have a write conflict:
wrcfl(e1, e2) = wr(e1) ∩ wr(e2) *= +.

Formally, set E of events is independent, denoted as ind(E), if for every event
pair (a, b) from E the following holds: a *= b =⇒ ¬rdcfl (a, b) ∧ ¬wrcfl(a, b)

The condition ind(. . .) is checked for all the possible pairs of events composed
with the parallel composition operator.

4 Semantics

This section discusses the semantics of the flow language and the way to integrate
it with Event-B. In particular we show how to reason about flow and machine
consistency in the terms of machine properties rather than flow or machine
traces. But first we use the traces semantics to formally integrate flows with
Event-B. The following defines the traces of a flow expression.

traces(′skip) b= {〈〉}
traces(′start) b= {〈′start〉}
traces(′stop) b= {s | n ∈ N ∧ s ≤ {〈′stop〉}n}
traces(ei.a) b= {〈ei.a〉}
traces(p; q) b= {s!z | s!z ∈ traces(p)∧ z = 〈′stop〉}

{s!t | s!z ∈ traces(p)∧ t ∈ traces(q)∧ z &= 〈′stop〉}
traces(p|q) b= traces(p)∪ traces(q)
traces(∗(p)) b= traces(p|(p;∗(p)))
traces(p‖q) b= {s‖Et | s ∈ traces(p)∧ t ∈ traces(q)}

Here s ≤ t states that trace s is a prefix of trace t; α(x) is an alphabet of x
(set of all events occurring in x). The parallel composition operator is defined
as a collection of all the possible event interleavings:

〈〉‖E〈〉 b= 〈〉
〈a〉!p‖E〈〉 b= * a ∈ E
〈a〉!p‖E〈〉 b= {〈a〉!s|s ∈ (p‖E〈〉)} a /∈ E

〈a〉!p‖E〈b〉!q b= * a ∈ E ∧ b ∈ E ∧ a &= b
〈a〉!p‖E〈b〉!q b= {〈a〉!s|s ∈ (p‖Eq)} a ∈ E ∧ b ∈ E ∧ a = b
〈a〉!p‖E〈b〉!q b= {〈b〉!s|s ∈ (〈a〉!p‖Eq)} a ∈ E ∧ b /∈ E
〈a〉!p‖E〈b〉!q b= {〈a〉!s|s ∈ (p‖E〈b〉!q)}∪ a /∈ E ∧ b /∈ E

{〈b〉!s|s ∈ (〈a〉!p‖Eq)}

p‖Eq constructs all the possible interleavings of p and q while respecting the
synchronisation on common events E.

4.1 Event-B Trace Semantics

In this section we briefly present how traces of an Event-B model are constructed.
Much more detailed treatment of the subject is given in [11] and [12].

An elementary step of a machine interpretation is the computation of the set
of next states for some current event. For some event e the next states are found
by selecting a set of suitable values for the event parameters and using them to
characterise the possible next states v′. An Event-B machine may be understood
as a relation T : Event ↔ S ↔ S:

T
df= ∃pe · (Ge(pe, v) ∧ Se(pe, v, v′))

where pe, Ge, Se are the event parameters, guard and before-after predicate.
T is a predicate characterising a a relation on system states.

A next event would start from a state produced by a previous event. This is
expressed with the sequential composition operator ; defined as follows:

e1; e2 = T (e1)[v1/v′] ∧ T (e2)[v1/v]

where v1 is a vector of fresh names used to record the final state of e1 and
pass it on to e2.

The concept of sequential composition can be generalised to a chain of events.
Operator seq performs a sequential composition over an event list:

seq(〈〉) = T (skip)
seq(〈e〉t) = T (e); seq(t)

Using this definition, the traces of a machine are defined as all possible traces
reachable from the initial machine state:

traces(M) = {t | seq(t)[Init] *= +}

In the next section we use the traces semantics of flows and Event-B to
define the consistency conditions for a model combining a flow expression and
an Event-B machine.

4.2 Flow/Machine Consistency

The minimal requirement to a given pair of a flow and machine is that the two
agree on deadlocks and divergences. To account for partial flows it is required to
consider a situation when only a part of a machine traces is specified by a flow.
A flow trace starting with ′start and eventually reaching stop would match a
complete machine trace if it matches any trace at all.

Definition 2. Flow consistency. A flow is consistent with a given machine if it
is possible to find a machine trace that contains some flow trace: ∃t, hd, tl · t ∈
traces(f) ∧ hd!t!tl ∈ traces(m).

One important case of a flow and machine combination is when flow event
ordering and event guards together define a concrete, implementable event order-
ing. Individually, both flow expression and machine still may have non-deterministic
event choice. Such property is essential for code generation and sometimes is a
desired property of a model. While choice related non-determinism must be re-
solved, non-deterministic event ordering may still be present due to the parallel
composition operator. To distinguish between these two cases we use the notion
of interleaving equivalence.

Two traces are said to be interleave equivalent if one can be obtained from
another by swapping events in a pair of independent events. This is states with
a help of relation Re defined on traces as follows: s Re t ⇔ s = t ∨ ∃a, b, hd, tl ·
(hd!〈a, b〉!tl ∈ t ∧ hd!〈b, a〉!tl ∈ s ∧ ind({a, b}))

Traces s and t are said to be interleave equivalent if s Re∗ t where Re∗ is a
transitive closure of Re.

Definition 3. Concrete flow. The traces contained in the intersection of a con-
crete flow and machine traces are interleave equivalent.

Having these definitions does not lead to practical means of establishing flow
properties especially since it is our intention is to use theorem proving to reason
about a combination of a flow and machine. In the rest of the section we discuss
how to transition from statements about traces of flows and machines to equiv-
alent conditions on machine variables, events guards and event actions. First,
some mathematical context is presented. This gives a basis for theorems refor-
mulating the definitions of consistent and concrete flows in the terms of machine
properties. In its turn, this gives a foundation for deriving proof obligations.

In a general case, an event may be preceded by any configuration of choice
and parallel composition. Let us consider the following example: ((a‖b)|(c‖d)); z.
Event z gets enabled as soon as both a and b or c and d terminate. One has
to show that for any possible situation (that is, the first or the second branch
of the choice) it is possible to pass control to z. Even more complex case is
demonstrated by the following expression: ((a‖b)|(c‖d)); ((e‖f)|(g‖h)). For this,
one also has to consider a multitude of options on the right-hand side. The
notions of entry and exit points are introduced to reason about events actively
involved in passing control in a sequential composition. These are defined as
follows:

EN(e) = {{e}}
EN(′skip) = {{}}
EN(′start) = {{′start}}
EN(′stop) = {{′stop}}
EN(p; q) = EN(p) p &=′ skip
EN(′skip; q) = EN(p)
EN(p|q) = EN(p) ∪ EN(q)
EN(p‖q) = {{EN(p), EN(q)}}
EN(∗(p)) = EN(p)

EX(e) = {{e}
EX(′skip) = {{}}
EX(′start) = {{′start}}
EX(′stop) = {{′stop}}
EX(p; q) = EX(q) q &=′ skip
EX(p;′ skip) = EX(p)
EX(p|q) = EX(p) ∪ EX(q)
EX(p‖q) = {{EX(p), EX(q)}}
EX(∗(p)) = EX(p)

where EN(x) is a set of entry points of a flow expression x. Correspondingly,
EX(x) denotes the set of exit points. Note that entry and exits points are set of
sets. The reason is that a combination of parallel composition and choice results
in a set of event clusters. For example the set of entry points of ((a‖b)|(c‖d)); z
is {{a, b}, {c, d}}. This set contains two entry points {a, b} and {c, d} where each
entry points is set itself denoting a complex entry point of a parallel composition
construct.

Independent events may be merged into a single event1. Indeed, since inde-
pendent events are conflict free and can be executed in any order there is nothing
that prevents an existence of a single event that would have the same effect as
all possible interleavings of the independent events. This is a purely abstract
construction. There is, of course, no need to actually introduce merged events
in a model.

Definition 4. Operator merge(a, b). The operator constructs a single event
from the definitions of events a and b. It is well-defined only when a and b
are independent. For some events a and b

a = any p where G(p, d) then S(p, d, w′) end
b = any q where H(q, g) then R(q, g, u′) end

A merged event has the following general form:

a = any p, q where G(p, v) ∧ H(q, v) then S(p, v, v′) ∧ R(q, v, v′) end

Since only independent events may be merged, the resultant merged event
enjoys a number of properties. It is enabled when both its donor events are en-
abled and simulates the effect of interleaving the merged events. A merged event
is feasible as long as its individual donor events are feasible. It is straightforward
to see that the state observed after executing a merged event is the same state as
one would observe after executing both donor events in any order. Event merging
is a special case of event fusion [13].
1 Event-B uses event merging as a refinement technique. This has nothing to do with

our definition of merging.

Definition 5. Operator s !m t. This operator defines the consistency conditions
for a sequential composition where control is passed from a collection of exit
points s to a collection of entry points t. The operator type is

! : M × P(P(Event)) × P(P(Event)) → BOOL

where M is an Event-B model and Event is a set of model events; the second
and the third parameters are some exit and entry points.

The strategy is to construct an Event-B event implementing what is essen-
tially a sequential composition of s and t. The feasibility conditions for the event
would demonstrate the well-formedness of a sequential composition.

Let us first consider a simple case of a composition of two events when
s = {{e1}} and t = {{e2}}. Events e1 and e2 are defined as follows (these defi-
nitions come from an Event-B machine that is supplied as the first parameter to
operator):

e1 = any p where G(p, v) then S(p, v, v′) end
e2 = any q where H(q, v) then R(q, v, v′) end

A composed event ”e1; e2” is an event with the same guard as e1 and the
after state of e2 when executed after executing e1:

”e1; e2” = any p where G(p, v) then S(p, v, v′); (∃q · H(q, v) ∧ R(q, v, v′)) end

Here we introduce operator ; for the sequential composition of event actions2.
It can be reduced to a simple action using the following definition:

S0(p, v, v′);S1(p, v, v′)=̂∃ v1 · S0(p, v, v1) ∧ S1(p, v1, v
′)

Now we are ready to define the meaning of !m when, as a special case, it is
applied to a pair of events:

e1!̂me2 = FIS(”e1; e2”)

where FIS(e) is an Event-B event feasibility condition (see Section 2 and also
[3]).

The next step is to reduce the general form of ! to the simple case above.
For this we consider all the pairs from a cartesian product of s and t while also
reducing the multiple exit and entry points introduced by the parallel composition
construct to a single event.

∀e1, e2 · (e1, e2) ∈ s × t ⇒ mergeall(e1)̂!mmergeall(e2)

where mergeall(x) is a following generalisation of merge:

2 Classical B defines a similar operator to compose actions[4].

mergeall(x) =

e x = {e}
merge(hd,mergeall(tl)) x = {hd} ∪ tl

Finally, we are ready to approach the problem of checking flow/machine con-
sistency. Using the ! operator, the problem is reduced to a number of conditions
on Event-B machine events. Importantly, they all are expressed in first-order
logic as they are essentially various instance of the Event-B feasibility proof
obligation. The last remaining step is to lift ! to the level of a model composed
of a machine and flow.

Definition 6. Predicate cons. This predicate defines the consistency conditions
for a combination of a flow and machine. Its type is cons : F × M → BOOL
and the definition is as follows:

cons(ev, m) = true
cons(p; q, m) = cons(p) ∧ cons(q) ∧ (EX(p) !m EN(q))
cons(p|q, m) = cons(p) ∧ cons(q)
cons(p‖q, m) = cons(p) ∧ cons(q)
cons(∗(p), m) = cons(p)

where ev is either a machine event one of the predefined events (′skip, ′start
or ′stop).

Now we are able to state the flow consistency as a condition on machine
elements.

Theorem 1. A flow f is consistent with a machine m provided cons(f, m)
holds.

Proof. There are two fundamental reasons why a trace required by the Definition
2 could not be found.

Firstly, either a flow or machine may diverge at different points without giving
an option to continue with a non-divergent trace. For a flow this could only
happen when there is a transition into ′stop event (flow loops always agree with
machine event loops on divergences since a flow loop covers both terminating and
non-terminating machine loops). In other words, there is an instance of sequential
composition p; q such that {′stop} ∈ EN(q). For a machine, a divergence on
traces happens when an event infinitely enables itself while keeping all other
events disabled. The conditions introduced by cons guarantee that any sequential
composition is consistent and thus a divergent event may not be found in the
entry points of the right-hand side of a sequential composition. Then, assuming
that flow and machine traces agree on deadlocks, such an event may only be
′stop. Hence, the satisfaction of cons(f, m) establishes the fact that traces of f
and traces of m agree on divergences.

Secondly, there is a possibility that a combination of a flow and machine
reveals deadlocks that were not present in either flow or machine alone. The
only source of such deadlocks is a sequential composition that is not well-formed.
However, cons(f, m) states that this may not be a case.

Flow made of a loop of choices over machine events (including ′stop) is always
consistent with the machine. Indeed, for any given event, possible continuation
is either another machine event or a termination.

Corollary 1. Flow model ∗(e1| . . . |ek|′stop) is consistent with any (well-formed)
Event-B machine with events e1, . . . , ek. This immediately follows from the def-
inition of cons as this flow expression does not contain sequential or parallel
composition and thus is free from any consistency obligations.

One interpretation of an Event-B machine is that of a loop made of ma-
chine events and preceded by the initialisation event. In the flow language this
is expressed as ′start; ∗(e1| . . . |ek). This expression gives rise to a consistency
condition requiring that there is an enabled event after the initialisation event.
It is straightforward to see that machines shown to be deadlock free or refining
a deadlock free abstract machine are always consistent with this flow.

Theorem 2. A consistent flow f , containing ′start in its traces, is concrete
with the respect to machine m if for every instance of the sequential composition
p; q the following condition holds: ∀s, t · {s, t} ∈ EN(q)∧s *= t =⇒ ¬(EX(p) !m
s ∧ EX(p) !m t)

Proof. Let us consider two traces of f : d and g, d ∈ traces(f), g ∈ traces(f)
such that they are prefixes of some machine traces: ∃md, mg · d ≤ md∧ g ≤ mg.
d and g are necessarily prefixes since ′start is included in the flow expression f .
Should it not be possible to find two machine traces then the theorem condition
is trivially satisfied. Let us assume that d and g are not interleave equivalent:
¬(d Re∗ g). Then it is possible to find two distinct, non-independent events a
and b, a *= b,¬ind(a, b) where ∃hd ·hd!〈a〉 ≤ d∧hd!〈b〉 ≤ g∧#hd > 0 and #x
denotes the length of trace x. The two traces record the same event occurrences
until a point when a is recorded in one and b is recorded in another. Since the
theorem condition requires that f uses ′start it is known that 〈′start〉 ≤ hd and
thus hd is not empty. Prefix hd corresponds to some flow expression fp such
that traces(fp) = hd (it is not, however, necessarily a part of f as it might be
just one possible trace of a parallel composition in f). The fact that d and g
disagree on events a and b necessarily requires that pf is followed by a choice
construct that among its entry points has a and b. Thus, machine definition
would have to satisfy the following condition: EX(fp) !m {a} ∧ EX(fp) !m {b}.
Let us consider the theorem condition where let p = fp and {a, b} ∈ EX(q).
Then ¬(EX(fp) !m{a}∧EX(fp) !m{b}). The contradiction proves the theorem.

These two theorems show how to reason about flow and machine consistency
in terms of conditions o machine elements. Next we show how derive conditions
that could be used as proof obligations in the automated reasoning framework
of RODIN Platform[14].

4.3 Proof Obligations

To build a tool realising a language extension such ours one would need to ensure
that there are suitable verification means. Event-B is designed specifically for

theorem proving. It facilitates the creation of a large number of simple proof
obligations by requiring a modeller to express complex state transitions with a
number of simple atomic steps. The absolute number of proof obligations is not
of a major concern since there is an automated theorem proving support able
to discharge the majority of them. Still proofs scalability is important as to not
overwhelm provers with a gigantic number of proof obligations. In Event-B, the
number of proof obligations is approximately in linear correspondence with the
number of major model elements: events, invariants, guards and actions.

For a combination of a flow and machine we would like to be able to demon-
strate that the flow is consistent or concrete (the latter requires the former). The
general strategy is split an overall proof into a collection of simpler conditions.

For flow consistency, a suitable way to do this is to analyse each instance of
sequential composition individually as suggested by the condition of Theorem 1
(see Definition 6 for operator cons). For an instance of a sequential composition,
from Definition 5 we have the following feasibility condition for a composed
event.

I(v) ∧ G(p, v) +
∃v′ · (S(p, v, v′); (∃q · H(q, v) ∧ R(q, v, v′))) +

∃ v1 · (S(p, v, v1) ∧ ∃q · H(q, v1) ∧ R(q, v1, v
′)))

The condition is far too complex in the current form. A more compact one
could be found. Let us first assume that the composed events are feasible on
their own. This gives the following two axioms.

axm1 : I(v) ∧ G(p, v) + ∃v′ · S(p, v, v′)
axm2 : I(v) ∧ H(q, v) + ∃v′ · R(q, v, v′)

Applying axiom axm1, the feasibility condition for a composed event is sim-
plified to the following:

I(v) ∧ G(p, v) ∧ S(p, v, v1) + ∃ q · H(q, v1) ∧ R(q, v1, v
′)

With the help of the second axiom we are able to remove R(q, v1, v′) clause
from the goal:

I(v) ∧ G(p, v) ∧ S(p, v, v1) + ∃ q · H(q, v1)

Finally, extending the above with the consideration of model constants and
sets, the following proof obligation is formulated.

P (c, s) ∧ I(c, s, v) ∧ G(c, s, pe, v) ∧ S(c, s, pe, v, v′) + H(c, s, q, v) (1)

Here G and S are the guard and before-after predicate (actions) of what is
possibly a result of merging several model events. The proof obligation demon-
strates that an event characterised by G and S is able to pass control to another
(possibly merged) event with guard H for any possible state permitted by G.

The axioms we have relied upon are sound since they are a part of model
consistency proof obligations that are to be discharge for every Event-B model[3].

With a similar procedure we able to find a practical form of a proof obligation
for demonstrating that a flow is concrete. The following proof obligation requires
that for a given instance p; q of a sequential composition the choice branches in
q, if there any, are mutually exclusive.

P (c, s) ∧ I(c, s, v) ∧ G(c, s, p, v) ∧ S(c, s, p, v, v′) 4∧
{s,t}∈EN(q)∧s%=t ¬(Hs(c, s, qs, v′) ∧ Ht(c, s, qt, v′))

(2)

Here Hs and Ht are the guards of possibly merged events. The goal in this
proof obligation may become lengthy in some extreme case when there is a choice
on a large number of events. However, since the goal is in conjunctive form is
relatively straightforward for a prover to apply case analysis.

4.4 Example

In this section we consider a combination of a simple Event-B model and flow
expression. An emphasis is made on using sequential event composition as it is
the construct requiring the consistency proof obligations.

The example is a sluice with two doors connecting areas with dramatically
different pressures. The pressure difference makes it unsafe to open a door unless
the pressure is levelled between the areas connected by the door. The purpose
of the system is to adjust the pressure in the sluice area and control the door
locks to allow a user to get safely through the sluice.

The model has three variables: d1 ∈ DR and d2 ∈ DR are the door states;
pr ∈ PR is the current pressure in the sluice area. A door is either closed or
open: DR = {OP, CL} and pressure is low or high: PR = {HIGH, LOW}.
Initially, the doors are shut and the pressure is set to low.

A model has a number of invariants expressing the safety properties of the
system: a door may be opened only if the pressures in the locations it connects
is equalised; at most one door is open at any moment; the pressure can only be
switched on when the doors are closed. Model events control the doors and a
device regulating the sluice pressure:

open1 = when d1 = CL ∧ pr = LOW then d1 := OP end
close1 = when d1 = OP then d1 := CL end
open2 = when d2 = CL ∧ pr = HIGH then d2 := OP end
close2 = when d2 = OP then d2 := CL end
pr low = when d1 = CL ∧ d2 = CL ∧ pr = HIGH then pr := LOW end
pr high = when d1 = CL ∧ d2 = CL ∧ pr = LOW then pr := HIGH end

Finally, the following flow expression is aused. It describes a sequence of steps
needed to let a user through the sluice starting from an area adjoining door 1
(d1): pr low; open1; close1; pr high; open2; close2

Let us see how we can check that this specification is consistent with the
flow expression. For each instance of sequential composition (pr low; open1,
open1; close1 and so on) it is needed to show that condition (1) holds. For ex-
ample, for pr low; open1 it is:

d1 = CL ∧ d2 = CL
pr′ = LOW ∧ d1′ = d1 ∧ d2′ = d2

+ d1′ = CL ∧ pr′ = LOW

The condition is trivially true. Another proof obligation, generated open1; close1,
also trivially holds:

d1 = CL ∧ pr = LOW
pr′ = pr ∧ d1′ = OP ∧ d2′ = d2

+ d1′ = OP

The next case presents some difficulties. When trying to demonstrate that
event close1 always enables pr high we find that there is not enough information
to discharge the proof obligation:

d1 = OP ∧ pr′ = pr
d1′ = CL ∧ d2′ = d2

+ d1′ = CL ∧ d2′ = CL ∧ pr′ = LOW

The problem here is that event close1 is more general than it needs to be.
By strengthening its guard with the additional clauses d2 = CL ∧ pr = LOW
we are able to discharge the proof obligation. However, the guard strengthening
invalidates other flow proof obligations and requires changes to other events. This
is still not hard to do and the result is a model where all the proof obligations
are discharged automatically.

4.5 Collecting Additional Hypothesis

There is a way to discharge proof obligations like this without strengthen-
ing event guards. Indeed, by looking at the flow expression one should notice
that close1 is always preceded by pr low and thus may only be enabled when
pr = LOW . Likewise, since close1 always follows open1 and the second door
is always closed in the after-states of open1 (due to the safety invariant of the
model requiring that at most one door is open a time) it is known that the con-
dition d2 = CL is always true for states when close1 is enabled. Hence all the
information that was introduced into proofs by strengthening event guards is
already present in a model. To benefit from this information it must be collected
and added in the form of hypothesis to flow proof obligations.

Let vi−1 be a model state preceding state vi and state vn be the most recent
previous state preceding the current state v. Also, let Hi(v1, . . . , vn, v) be the
current collection of hypothesis for some event a. Then for an instance of se-
quential composition a; b the collection of hypothesis available in the after-state
of b is computed as

Hi+1 = Hi(v1, . . . , vn, vn+1) ∧ G(vn+1) ∧ S(vn+1, v)

where G and S are the guard and actions of b. It is straightforward to gen-
eralise this basic procedure to the complete flow language. However, there an
issue of filtering out irrelevant hypothesis as a large number of hypothesis slows
down some provers.

4.6 Flow Refinement

Event-B developments are constructed in a gradual manner starting with an
abstract model and arriving at a runnable specification through a number of
refinement steps. Since flow is a part of a model there must be a way to state
a refinement relation between the flow of an abstract model and the flow of a
concrete model. We use the traces refinement to define ths refinement relation.
Th traces refinement is easy to check with a tool and it turns out, in our case,
to be equivalent to demonstrating a much stronger failure-divergence refinement
condition. To keep flow events in agreement with machine events, some renaming
is applied before comparing flow traces:

fa 5 fc ⇔ traces(R∗(fc \ En)) ⊆ traces(fa)

where x \ S removes all occurrences of events from S in traces of x; En is
a set of new events introduced in machine refinement (these events refine an
implicit skip event of an abstract machine); R∗ is a function mapping concrete
event labels into the labels of abstract events.

For flows of abstract and concrete models considered in isolation the refine-
ment relation the traces refinement. However, once the consistency of a flow and
machine is taken into account and machine refinement obligations are satisfied,
a concrete model made of a flow and Event-B machine respects the failure-
divergence refinement. This is due to the fact that Event-B refinement formu-
lated in terms of traces is itself a case failure-divergence refinement [12].

4.7 Reasoning about Flows

With the addition of a flow, it is possible to reason to a certain degree about
deadlock freeness, liveness and reachability properties of a model. The Event-B
approach to deadlock freeness is to demonstrate that events guards exhaust the
model invariant. In other words, for any state permitted by invariant there is an
enabled event: I(v) =⇒ G1(v) ∨ · · · ∨ Gn(v)

The condition turns out to be too strong for larger models as it requires
formulating the strongest possible invariant and this is not always practical. On
the other hand, a flow attached to a model leads to a number of proof obligations
which satisfaction demonstrates the unfailing progress of a model through the
events of a flow expression. The only way to introduce termination in a complete
flow (a flow covering all the events of a machine) is to explicitly use event ′stop.
This makes reasoning about deadlocking and termination more intuitive.

A flow expression may be seen as a directed graph. Its vertices are model
events and edges are the transitions connecting events in a flow expression.

property definition description
eventually a F ∗ b after a eventually b
reachable ′start F ∗ b b is reachable
always reachable ∀e ·′ start F ∗ e ⇒ e F ∗ b b is always reachable
liveness ∀e ·′ start F ∗ e ⇒ ∃n · {b} = F n(e) b keeps happening

Fig. 1. Flow properties

Computing the transitive closure of such graph, it is possible to check statements
like ”after event a eventually event b” or ”event x is reachable”. Let us assume
that F is a graph constructed from a flow expression: F : Event↔Event. Then
”after event a eventually event b” may be stated as a F ∗ b and ”event x is
reachable” as ′start F ∗ x. One can also check that event x is always reachable
by stating that it can be reached from any event that in its turn is reachable
from the initialisation event: ∀e · e ∈ F ∗(′start) ⇒ e F ∗ x. One can also express
liveness properties to check that something good keeps happening throughout a
system lifetime (Figure 1).

It is important to understand how to interpret such properties. Since they
are checked at the level of a flow and a flow may have more traces than a
machine, not all flow properties automatically hold for a combination of a flow
and machine. The source of this unfortunate complication is the choice construct:
the composition with machine may eliminate some choice branches and make
events reachable in a flow unreachable in a composite system. In such situations
a help from a model checker [15] or an animator should be procured to ascertain
that each flow branch is reachable. It this light, formulating flow properties may
seem a vain exercise. However, flows give a considerable advantage in model
checking by reducing a model state space. Since validating flow properties is
computationally cheap and user gets an instant feedback, it is better to first
constrain a flow expression as much as possible and then apply more general
model checking techniques.

4.8 Convergence

One of the proof obligations of the Event-B refinement relation is the demon-
stration of the fact that all new events (machine events not refining abstract
events) converge in the sense they may not stay indefinitely enabled without
passing control to an event refining an abstract event. The technique is to find
a well-founded expression, called variant, decremented by each new event. Since
such variant must be common for all the new events it may be quite difficult to
find a suitable expression. It is not unusual to introduce auxiliary variables to
help with expressing a variant. It is even more difficult to deal with cases when,
conceptually, there are two or more loops on new events.

Since flow has an explicit notion of a loop it brings some flexibility into
demonstrating convergence of new events. For instance, if an event is not a part
of a loop in a flow then there is no need to demonstrate its convergence: the flow

proof obligations guarantee that it passes control to some other event (in this
discussion we assume that flows are not partial and cover all the model events).

The following procedure checks the convergence of a model using the in-
formation from a flow expression. The second parameter of conv is a variant
expression - in addition to having machine-level variants we propose to attach
variants to flow loops (in ∗(p) : w, w is a variant associated with loop ∗(p)):

conv(p; q, v) = conv(p) ∨ conv(q)
conv(p|q, v) = conv(p) ∧ conv(q)
conv(p‖q, v) = conv(p) ∧ conv(q)
conv(∗(p) : w, v) = conv(p, w)
conv(e, v) = true e ∈ {′skip,′ start,′ stop} ∨ inherited(e)
conv(e, v) = VAR(e, v) new(e)

Here inherited(e) states that event e refines an abstract event; new(e) re-
quires that e is a new event; VAR(e, v) is the Event-b convergence proof obliga-
tion [3] for event e with variant expression v. One can have a significant proof
economy by demonstrating convergence in this way. For example, there are no
convergence proof obligations for a flow ∗(a; b) where a is an inherited event.
Without a flow, one would still have to prove that b converges.

5 Tool Support

The proposed mechanism has been implemented as an extension of RODIN plat-
form [14]. The platform is an Eclipse-based integrated environment for construct-
ing Event-B developments. It provides means for model manipulation (editing,
pretty-printing, exporting, etc.) and verification. The platform is responsible for
generating proof obligations demonstrating model consistency and also the re-
finement obligations if a model happens to be a refinement of another model.
Proof obligations are handed over to a collection of theorem provers. Any un-
proved obligations has to be analysed in an integrated interactive prover.

We considered it essential to make the flow extension a natural part of an
Event-B development method. The flow editing is done in a new section of a
structured model editor. Flow proof obligations are automatically generated from
a flow expression attached to a machine. Syntactic checks and flow refinement
checks are also done automatically in a background while a user works with
a model. RODIN extensions, including our flow tool, are realised as Eclipse
plug-ins. There is a considerable number of plug-ins available for the platform
including model checking [15], animation, requirements analysis, UML/Event-B
integration and others [14].

A number of case studies were carried out using the tool. One of the large
ones is the development of the sluice control system related to the example given
earlier in the paper. All of the examples were based on existing and already
proved Event-B developments. The table below demonstrates the number of
proof obligations discharged automatically and manually to give a feeling of the
cost of using flows in a development.

model total E.-B auto E.-B manual E.-B total F. auto F. manual F.
doors 15 14 1 12 12 0
doors1 26 26 0 10 7 3
doors2 8 8 0 18 15 3
doors3 14 14 0 10 10 0
filecopy 12 12 0 2 1 1
lift 36 30 6 7 7 0

In the table, ” E.-B” stands for Event-B and ”F.” for flow; ”auto” are the
proof obligations discharged automatically while ”manual” ones required some
work in an interactive prover. Note that the table does not reflect the fact that
some model changes were necessary when proving flow consistency. In most
situations it was simply a case of a missing guard or invariant but, interestingly,
some refinement steps had to be altered significantly to permit formulation of
an interesting flow. This indicates that flows introduce some bias into model
construction. We plan to investigate this subject further.

6 Conclusions

In our view, the ability to reason about event ordering is a useful addition
to the Event-B method. It helps to construct models with rich control flow
properties and it also makes such models more readable. Unlike the existing work
in this area, it relies solely on theorem proving. It uses practical and scalable
proof obligations that are handled well by automated theorem provers. The
approach benefits from the existing tool support with a proof-of-the-concept
tool implemented for the RODIN platform [14].

We attempted to solve the problem of unmanageable proofs resulting from
a sequential composition of actions. For instance, in Classical B, actions within
operations and events may be composed using operator ;, e.g., a := a + 1; b :=
a + 1. This is interpreted as applying the second action in the context of the
first one. Unfortunately, the verification of sequential action composition is not
compositional and all the composed actions must be analysed as a single logical
statement. With flows, we make use of event guards to do localised reasoning
where possible. In fact, in all the case studies attempted so far, it was possible to
show flow consistency by strengthening event guards and adding new invariants
with most of the proof obligations discharged automatically. This is despite the
fact that in some example there were rather long chains of sequentially composed
events (14 for the final refinement of the sluice control). The role of guards in
analysing flow consistency is similar to the use of assertions in VDM [16] and
refinement calculus [17]. Yet in our case, guards retain their primary role in the
analysis of event feasibility, invariant preservation and refinement.

We have presented a three-step verification approach where one first estab-
lishes independently the well-formedness of a flow and consistency (and possibly
refinement) of a machine and then checks the consistency of a machine and flow
combination. In addition to the consistency condition, there is a possibility to
generate proof obligations that would ensure that a flow is suitable for deriving

an executable program. We are investigating some additional proof obligations.
For example, we would like to be able, at least for some models, to establish the
full equivalence of machine traces and flow traces. This would allow to reason
about liveness and reachability properties without an assistance from a model
checker.

The introduction of a flow is an intermediate step on the way to generating
sequential program code from Event-B models. The addition of a flow to a ma-
chine converts an event-triggered, data-driven Event-B model into a sequential,
control driven one. It is fairly straightforward to generate code from a combi-
nation of a concrete flow and a machine provided the issues of translating the
Event-B mathematical language and abstract data types are resolved. It is pos-
sible that flows could play the role of B0 intermediate language [4] of Classical
B for the Event-B method. However, instead of a single step transition into in
implementable specification language flows permit a gradual detalisation using
refinement. It remains to be investigated how successful flows mechanism would
be in this role.

One direction for further research is finding a way of finer level of integration
of flow and Event-B machine. As is stands, it is difficult to refactor an existing
development by changing a some intermediate refinement step without changing
its abstraction. In some cases, the control flow information is stored in auxiliary
variables and if these variables are also mentioned in invariants it is impossi-
ble to remove them without also refactoring abstract models. At the same time,
from our experience, in high-level models it is often easier to work with auxiliary
variables rather than flow expressions. The possibility of constructing a refine-
ment step from auxiliary variables model to a model with a flow would make the
approach more attractive.

Using auxiliary variables is the prevalent technique in defining event order-
ing in an event-based specification method. It is usually ad hoc although [18]
discusses an approach to a disciplined use of program counters. There is a sub-
stantial amount of work based on the Morgan’s [12] failure-divergence semantics
for event-based systems discussing the integration of state-based and process-
based formalisms [19–21, 8, 22]. Their main difference from our approach is that
consistency analysis is carried out with a help of process algebraic reasoning.

Our flow language lacks many constructs found in notations like CSP and
CCS. In particular there are no communication primitives. It would be hard
to justify a message passing mechanism for a single machine but it becomes
an interesting possibility should a flow be able to relate several machines. The
combination of CSP and Classical B has been investigated in [20] while the CSP
style message passing was used to compose Event-B machines[13].

References

1. J. R. Abrial and L. Mussat, “Introducing Dynamic Constraints in B,” in Second
International B Conference. LNCS 1393, Springer-Verlag, April 1998, pp. 83–128.

2. J.-R. Abrial, “Event Driven Sequential Program Construction,” 2000, available at
http://www.matisse.qinetiq.com.

3. C. Metayer, J. Abrial, and L. Voisin, Eds., Rodin Deliverable D7: Event B language.
Project IST-511599, School of Computing Science, Newcastle University, 2005.

4. J. R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 2005.

5. H.Treharne and S.Schneider, “How to Drive a B Machine,” 2000, pp. 188–208.
6. M.Butler and M.Leuschel, “Combining CSP and B for Specification and Property

Verification,” 2005, pp. 221–236.
7. C. Fischer and H. Wehrheim, “Model-Checking CSP-OZ Specifications with FDR,”

in IFM ’99: Proceedings of the 1st International Conference on Integrated Formal
Methods, K. Araki, A. Galloway, and K. Taguchi, Eds. London, UK: Springer-
Verlag, 1999, pp. 315–334.

8. J. Woodcock and A. Cavalcanti, “The Semantics of Circus,” in ZB ’02: Proceedings
of the 2nd International Conference of B and Z Users on Formal Specification and
Development in Z and B. London, UK: Springer-Verlag, 2002, pp. 184–203.

9. R.-J. Back and K. Sere, “Stepwise Refinement of Action Systems,” in Proceedings
of the International Conference on Mathematics of Program Construction, 375th
Anniversary of the Groningen University, J. L. A. van de Snepscheut, Ed. London,
UK: Springer-Verlag, 1989, pp. 115–138.

10. C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM, vol. 21,
no. 8, pp. 666–677, 1978.

11. M. Butler, “A CSP Approach to Action Systems. phd thesis.” 1992.
12. C. Morgan, “Of wp and CSP,” pp. 319–326, 1990.
13. M. Butler, “Decomposition Structures for Event-B,” in Integrated Formal Methods

iFM2009, Springer, LNCS 5423, vol. LNCS, no. 5423. Springer, February 2009.
14. “Event-B and RODIN Platform,” http://www.event-b.org, 2004.
15. M. Leuschel and M. Butler, “ProB: A model checker for B,” in FME 2003: Formal

Methods, ser. LNCS 2805, K. Araki, S. Gnesi, and D. Mandrioli, Eds. Springer-
Verlag, 2003, pp. 855–874.

16. C. B. Jones, Systematic software development using VDM. Prentice Hall Inter-
national (UK) Ltd., 1986.

17. R.-J. J. Back and J. V. Wright, Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, Inc., 1998.

18. M. J. Butler, “Event Ordering in Action Systems,” in Proc. Int. Refinement Work-
shop / Formal Methods Pacific’98, Springer Series in Discrete Mathematics and
Theoretical Computer Science, J. Grundy, M. Schwenke, and T. Vickers, Eds.
Springer-Verlag, Berlin, 1998, pp. 61–80.

19. M. Leuschel and M. Butler, “Combining CSP and B for Specification and Property
Verification,” A. T. John Fitzgerald, Ian Hayes, Ed. Springer-Verlag, LNCS 3582,
January 2005, pp. 221–236.

20. M. J. Butler, “An Approach to the Design of Distributed Systems with B AMN,”
in Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM),
LNCS 1212, J. Bowen, M. Hinchey, and D. Till, Eds. Springer-Verlag, Berlin,
April 1997, pp. 223–241.

21. S. Schneider, , S. Schneider, and H. Treharne, “Verifying Controlled Components,”
in In Proc. IFM. Springer, 2004, pp. 87–107.

22. C. Fischer, “CSP-OZ: a combination of object-Z and CSP,” in FMOODS ’97:
Proceedings of the IFIP TC6 WG6.1 international workshop on Formal methods
for open object-based distributed systems. London, UK, UK: Chapman & Hall,
Ltd., 1997, pp. 423–438.

