15. Sequential Program Development

Jean-Raymond Abrial

2009

- To present a formal approach for developing sequential programs
- To present a large number of examples:
- array programs
- pointer programs
- numerical programs
- A typical sequential program is made of :
- a number of MULTIPLE ASSIGNMENTS $(:=)$
- scheduled by means of some :
- CONDITIONAL operators (if)
- ITERATIVE operators (while)
- SEQUENTIAL operators (;)

An Example

while $j \neq m$ do
if $g(j+1)>x$ then

$$
j:=j+1
$$

elsif $k=j$ then
$k, j:=k+1, j+1$
else
$k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)$ end
end $;$
$p:=k$
while condition do statement end
if condition then statement else statement end
if condition then statement elsif ... else statement end
statement ; statement
variablelist $:=$ expression list

An Event Design Approach (1)

- Separating completely in the design:
- the individual assignments
- from their scheduling
- This approach favors:
- the distribution of computation
- over its centralization

An Event Design Approach (2)

- Each individual assignment is formalized by a guarded event made of:
- A firing condition: the guard,
- An action: the multiple assignment.
- These events are scheduled implicitly.
while $j \neq m$ do
if $g(j+1)>x$ then
$j:=j+1$
elsif $k=j$ then

$$
k, j:=k+1, j+1
$$

else

$$
k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)
$$

end
end ;
$p:=k$

$$
\begin{aligned}
& \text { when } \\
& j \neq m \\
& g(j+1)>x \\
& \text { then } \\
& j:=j+1 \\
& \text { end }
\end{aligned}
$$

while $j \neq m$ do
if $g(j+1)>x$ then
$j:=j+1$
elsif $k=j$ then

$$
k, j:=k+1, j+1
$$

else

$$
k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)
$$ end

end ;
$p:=k$

when

$$
\begin{aligned}
& j \neq m \\
& g(j+1) \leq x \\
& k=j
\end{aligned}
$$

then
$k, j:=k+1, j+1$ end
while $j \neq m$ do
if $g(j+1)>x$ then
$j:=j+1$
elsif $k=j$ then

$$
k, j:=k+1, j+1
$$

else
$k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)$
end
end ;
$p:=k$

when

$$
\begin{aligned}
& j \neq m \\
& g(j+1) \leq x \\
& k \neq j
\end{aligned}
$$

then
$k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)$ end
while $j \neq m$ do
if $g(j+1)>x$ then
$j:=j+1$
elsif $k=j$ then

$$
k, j:=k+1, j+1
$$

else
$k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)$ end
end
$p:=k$

when

$$
j=m
$$

then

$$
p:=k
$$

end
when

$$
\begin{aligned}
& j \neq m \\
& g(j+1)>x
\end{aligned}
$$

then
$j:=j+1$
end
when

$$
\begin{aligned}
& j \neq m \\
& g(j+1) \leq x \\
& k=j
\end{aligned}
$$

then
$k, j:=k+1, j+1$
end
when

$$
\begin{aligned}
& j \neq m \\
& g(j+1) \leq x \\
& k \neq j
\end{aligned}
$$

then
$k, j, g:=\ldots$
end
when

$$
j=m
$$

then
$p:=k$
end

Composing a Program from Events

- We have just decomposed a program into separate events
- Our approach will consists in doing the reverse operation
- We shall construct the events first
- And then compose our program from these events

Using Event Systems for Developing Sequential Programs

- Sequential Programs are usually specified by means of:
- A pre-condition
- and a post-condition
- It is represented with a Hoare-triple

$$
\{\text { Pre }\} \quad P \quad\{\text { Post }\}
$$

- We are given (Pre-condition)
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 . . n \rightarrow S$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 \ldots n \rightarrow S$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 \ldots n \rightarrow S$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 \ldots n \rightarrow S$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- an index r in the domain of the array: $r \in \operatorname{dom}(f)$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 \ldots n \rightarrow S$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- an index r in the domain of the array: $r \in \operatorname{dom}(f)$
- such that $f(r)=v$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-n$ is positive: $0<n$
- an array f of n elements built on a set $S: f \in 1 \ldots n \rightarrow S$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- an index r in the domain of the array: $r \in \operatorname{dom}(f)$
- such that $f(r)=v$

$$
\left\{\begin{array}{l}
n \in \mathbb{N} \\
0<n \\
f \in 1 \ldots n \rightarrow S \\
v \in \operatorname{ran}(f)
\end{array}\right\} \quad \text { search } \quad\left\{\begin{array}{l}
r \in \operatorname{dom}(f) \\
f(r)=v
\end{array}\right\}
$$

- Input parameters are constants
- The pre-condition corresponds to axioms of these constants
- Output parameters are variables
- The post-condition is in the guard of a unique event
- [When developing several programs in the same module,
- input parameters can also be variables of a special "init" event]

Encoding a Hoare-triple in an Event System

$$
\left\{\begin{array}{l}
n \in \mathbb{N} \\
0<n \\
f \in 1 \ldots n \rightarrow S \\
v \in \operatorname{ran}(f)
\end{array}\right\} \quad \text { search } \quad\left\{\begin{array}{l}
r \in \operatorname{dom}(f) \\
f(r)=v
\end{array}\right\}
$$

Encoding a Hoare-triple in an Event System

$$
\left\{\begin{array}{l}
n \in \mathbb{N} \\
0<n \\
f \in 1 \ldots n \rightarrow S \\
v \in \operatorname{ran}(f)
\end{array}\right\} \quad \text { search } \quad\left\{\begin{array}{l}
r \in \operatorname{dom}(f) \\
f(r)=v
\end{array}\right\}
$$

carrier sets: S constants: n, f, v variables: r	axm0_1: $n \in \mathbb{N}$ axm0_2: $0<n$ axm0_3: $f \in 1 \ldots n \rightarrow S$ $\operatorname{axm0} 4: ~$ $v \in \operatorname{ran}(f)$

$$
\text { inv0_1: } r \in \mathbb{N}
$$

$$
\left\{\begin{array}{l}
n \in \mathbb{N} \\
0<n \\
f \in 1 \ldots n \rightarrow S \\
v \in \operatorname{ran}(f)
\end{array}\right\} \quad \text { search } \quad\left\{\begin{array}{l}
r \in \operatorname{dom}(f) \\
f(r)=v
\end{array}\right\}
$$

carrier sets: S
constants: n, f, v
variables: r

axm0_1: $n \in \mathbb{N}$
axm0_2: $0<n$
axm0_3: $f \in 1 \ldots n \rightarrow S$
axm0_4: $v \in \operatorname{ran}(f)$

$$
\text { inv0_1: } r \in \mathbb{N}
$$

```
init
    r:\in\mathbb{N}
```

final
when
$r \in \operatorname{dom}(f)$
$f(r)=v$
then
skip
end

progress status anticipated then
$r: \in \mathbb{N}$ end

Result variable r is set to 1 initially

variant1: $n-r$

final
when

$$
f(r)=v
$$

then
skip
end

- Events refine their abstractions
- Events maintain invariants
- The exhibited variant is a natural number
- Event progress decreases the variant
- The system is deadlock free

Constructing the Final Program

We are using some Merging Rules to build the final program

final
when

$$
f(r)=v
$$

then
skip
end

- Side Conditions:
- P must be invariant under S
- The first event must have been introduced at one refinement step below the second one.
- Special Case: If \boldsymbol{P} is missing the resulting "event" has no guard

- Side Conditions:
- The disjunctive negation of the previous side conditions
- Special Case: If \boldsymbol{P} is missing the resulting "event" has no guard

Applying Rule M WHILE (special case)

progress final while $f(r) \neq v$ do

$$
r:=r+1
$$

end

- Once we have obtained an "event" without guard
- We add to it the event init by sequential composition
- We then obtain the final "program"

Example 2: The Very Classical Binary Search

- Almost the same specification as in Example 1
- It will show the usage of more merging rules
- We are given (Pre-condition)
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$

Binary Search

- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
- \boldsymbol{n} is positive: $0<n$

Binary Search

- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
- \boldsymbol{n} is positive: $0<n$
- a sorted array f of n elements built on a set \mathbb{N} : $f \in 1 . . n \rightarrow \mathbb{N}$

Binary Search

- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-\boldsymbol{n}$ is positive: $0<n$
- a sorted array f of \boldsymbol{n} elements built on a set \mathbb{N} : $f \in 1 \ldots n \rightarrow \mathbb{N}$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$

Binary Search

- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
- \boldsymbol{n} is positive: $0<n$
- a sorted array f of n elements built on a set \mathbb{N} : $f \in 1 . . n \rightarrow \mathbb{N}$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
$-\boldsymbol{n}$ is positive: $0<n$
- a sorted array f of n elements built on a set $\mathbb{N}: f \in 1 \ldots n \rightarrow \mathbb{N}$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- an index r in the domain of the array: $r \in \operatorname{dom}(f)$
- We are given (Pre-condition)
- a natural number $n: n \in \mathbb{N}$
- \boldsymbol{n} is positive: $0<n$
- a sorted array f of n elements built on a set \mathbb{N} : $f \in 1 . . n \rightarrow \mathbb{N}$
- a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
- an index r in the domain of the array: $r \in \operatorname{dom}(f)$
- such that $f(r)=v$

- Current situation

Event inc refining progress

```
inc
status
        convergent
    when
    f(r)<v
    then
    p:=r+1
    r:\inr+1..q
    end
```

- Situation encountered by event inc


```
dec
    status
        convergent
    when
        v}<\boldsymbol{f}(r
        then
        q:=r-1
        r:\inp..r - 1
    end
```

- Situation encountered by event dec

$\mathbf{1} \mathbf{p - 1}$
\mathbf{v} $\mathbf{q} \mathbf{f [p . . r - 1]}$ $\mathbf{q}+\mathbf{1}$ \mathbf{n}

final
when

$$
f(r)=v
$$

then
skip
end
inc
when

$$
f(r)<v
$$

then

$$
\begin{aligned}
& p:=r+1 \\
& r: \in r+1 \ldots q
\end{aligned}
$$

dec
when

$$
v<f(r)
$$

then

$$
\begin{aligned}
& q:=r-1 \\
& r: \in p \ldots r-1
\end{aligned}
$$

end
end

Second Refinement

- At the previous stage, inc and dec were non-deterministic
- \boldsymbol{r} was chosen arbitrarily within the interval $\boldsymbol{p} . . \boldsymbol{q}$
- We now remove the non-determinacy in inc and dec
- \boldsymbol{r} is chosen to be the middle of the interval $p \ldots q$

Reducing Non-determinacy

(abstract))inc when

$$
f(r)<v
$$

then

$$
\begin{aligned}
& \quad p:=r+1 \\
& r: \in r+1 \ldots q \\
& \text { end }
\end{aligned}
$$

(concrete_)inc when

$$
f(r)<v
$$

then

$$
\begin{aligned}
& \quad p:=r+1 \\
& r:=(r+1+q) / 2 \\
& \text { end }
\end{aligned}
$$

(concrete_)dec when

$$
f(r)<v
$$

then

$$
\begin{aligned}
& q:=r-1 \\
& r:=(p+r-1) / 2
\end{aligned}
$$

end

bin search

 wheninit

$$
\begin{aligned}
& p, q:=1, n \\
& r:=(1+n) / 2
\end{aligned}
$$

$$
f(r)=v
$$

then
skip
end
inc
when

$$
f(r)<v
$$

then

$$
p:=r+1
$$

end
dec
when

$$
v<f(r)
$$

then

$$
r:=(r+1+q) / 2
$$

$$
\begin{aligned}
& \boldsymbol{q}:=r-1 \\
& r:=(p+r-1) / 2 \\
& \text { end }
\end{aligned}
$$

inc
when

$$
\begin{aligned}
& f(r) \neq v \\
& f(r)<v
\end{aligned}
$$

then

$$
\begin{aligned}
& p:=r+1 \\
& r:=(r+1+q) / 2 \\
& \text { end }
\end{aligned}
$$

dec
when

$$
\begin{aligned}
& f(r) \neq v \\
& v \leq f(r)
\end{aligned}
$$

then

$$
\begin{aligned}
& \boldsymbol{q}:=r-1 \\
& r:=(p+r-1) / 2 \\
& \text { end }
\end{aligned}
$$

inc_dec
when
$f(r) \neq v$
then
if $\boldsymbol{f}(\boldsymbol{r})<\boldsymbol{v}$ then $p, r:=r+1,(r+1+q) / 2$
else

$$
q, r:=r-1,(p+r-1) / 2
$$

end
end
final when

$$
f(r)=v
$$

then
skip end

- Side Conditions:
- P must be invariant under S
- The first event must have been introduced at one refinement step below the second one.
- Special Case: If \boldsymbol{P} is missing the resulting "event" has no guard

```
inc_dec
when
    f(r)}\not=
then
    if f(r)<v}\mathrm{ then
        p,r:=r+1,(r+1+q)/2
    else
        q,r:=r-1,(p+r-1)/2
    end
end
```

inc_dec_final
while $f(r) \neq v$ do
if $f(r)<v$ then
$p, r:=r+1,(r+1+q) / 2$
else
$q, r:=r-1,(p+r-1) / 2$
end
end
final
when
$f(r)=v$
then
skip
end
init

$$
\begin{aligned}
& p, q:=1, n \\
& r:=(1+n) / 2
\end{aligned}
$$

Merging Events inc dec_bin search and init with Rule M INIT

```
inc_dec_final
    while f(r)\not=v do
        if f(r)<v}\mathrm{ then
            p,r:=r+1,(r+1+q)/2
        else
            q,r:=r-1,(p+r-1)/2
        end
    end
```

init
bin search program
$p, q, r:=1, n,(1+n) / 2 ;$
while $f(r) \neq v$ do

$$
\text { if } f(r)<v \text { then }
$$

$$
p, r:=r+1,(r+1+q) / 2
$$

else
end

$$
q, r:=r-1,(p+r-1) / 2
$$

end

- Given a numerical array f with n distinct elements
- Given a number \boldsymbol{x}
- We construct another numerical array \boldsymbol{g} with some constraints.

Array Partitioning: More Constraints

- \boldsymbol{g} has the same elements as f
- there exists a number \boldsymbol{k} in $\mathbf{0} \ldots \boldsymbol{n}$ such that elements of \boldsymbol{g} are:
- not greater than \boldsymbol{x} in interval $1 \ldots k$
- greater than \boldsymbol{x} in interval $\boldsymbol{k}+\mathbf{1} . . \boldsymbol{n}$

1	$\leq x$	k	$k+1$	$>x$

- Let the array f be the following:

- Let x be equal to 5
- The result \boldsymbol{g} can be the following with \boldsymbol{k} being set to 5

3	2	5	4	1	9	7	8

k

Array Partitioning: first special case

- Let the array f be the following:

- Let x be equal to 0
- The result \boldsymbol{g} can be the following with k being set to 0

3	7	2	5	8	9	4	1

k

Array Partitioning: second special case

- Let the array f be the following:

- Let \boldsymbol{x} be equal to 10
- The result \boldsymbol{g} can be the following with k being set to 8

3	7	2	5	8	9	4	1

constants: n, f, x
variables: k, g

$$
\begin{array}{ll}
\operatorname{axm0} 1: & n \in \mathbb{N} \\
\operatorname{axm0} 2: & f \in 1 \ldots n \mapsto \mathbb{N} \\
\operatorname{axm0} 3: & x \in \mathbb{N}
\end{array}
$$

```
inv0_1: }k\in\mathbb{N
inv0_2: g}\in\mathbb{N}\leftrightarrow\mathbb{N
```

$$
\begin{aligned}
& \text { init } \\
& \qquad \begin{array}{l}
k \\
\quad g
\end{array} \quad \in \mathbb{N} \\
& \boldsymbol{g}: \in \mathbb{N} \leftrightarrow \mathbb{N}
\end{aligned}
$$

final

when

$k \in 0 \ldots n$
$g \in 1 . . n \mapsto \mathbb{N}$
$\operatorname{ran}(g)=\operatorname{ran}(f)$
$\forall l \cdot l \in 1 \ldots k \Rightarrow g(l) \leq x$
$\forall l \cdot l \in k+1 \ldots n \Rightarrow \bar{g}(l)>x$
then
skip

progress status

 anticipated then$$
\begin{aligned}
& \boldsymbol{k}: \in \mathbb{N} \\
& \boldsymbol{g}: \in \mathbb{N} \leftrightarrow \mathbb{N} \\
& \text { end }
\end{aligned}
$$

Array Partitioning : First Refinement

Introducing a new variable \boldsymbol{j} ranging from 0 to \boldsymbol{n}
Current situation: array \boldsymbol{g} is partitioned from 1 to \boldsymbol{j}

1	$\leq x$	k	$k+1$	$>x$	j	$j+1$	$?$	n

Invariant

$$
k \leq j
$$

$$
\forall l \cdot l \in 1 \ldots k \Rightarrow g(l) \leq x
$$

$$
\forall l \cdot l \in k+1 \ldots j \Rightarrow g(l)>x
$$

Array Partitioning : First Refinement: the State

constants: $\quad n, f, x$

variables: $\quad k, g, j$
inv1_1: $j \in 0 . . n$
inv1_2: $k \leq j$
inv1 3: $\forall l \cdot l \in 1 . . k \Rightarrow g(l) \leq x$
inv1 4: $\forall l \cdot l \in k+1 . . j \Rightarrow g(l)>x$

Partitioning with 5

Array Partitioning : Refining Existing Events (1)

init

$$
g, j, k:=f, 0,0
$$

final
when
$j=n$
then
skip
end

Array Partitioning : New Event

1	$\leq x$	k	$k+1$	$>x$	j	$j+1$	$?$	n

progress_1 refines progress status
convergent when

$$
\begin{aligned}
& j \neq n \\
& g(j+1)>x
\end{aligned}
$$

then
$j:=j+1$
end
variant1: $\quad n-j$

1	$\leq x$	k, j	$j+1$	$?$	n

progress_2

refines

progress
sattus
convergent
when
variant1: $\quad n-j$

Array Partitioning : New Event

1	$\leq x$	k	$k+1$	$>x$	j	$j+1$	$?$	n

progress 3
progress
sattus
convergent
when

$$
\begin{aligned}
& j \neq n \\
& g(j+1) \leq x \\
& k \neq j
\end{aligned}
$$

variant1: $\quad n-j$
then

$$
\begin{aligned}
& k, j, g:=k+1, j+1, \\
& \operatorname{swap}(g, k+1, j+1)
\end{aligned}
$$

end

$$
\operatorname{swap}(g, k, j)=g \notin\{k \mapsto g(j)\} \notin\{j \mapsto g(k)\}
$$

Partitioning with 5

Partitioning with 5

Array Partitioning : Final Merging (1)

Putting together progress 2 and progress 3
progress_2
when

$$
\begin{aligned}
& j \neq n \\
& g(j+1) \leq x
\end{aligned}
$$

$$
k=j
$$

then
$k, j:=k+1, j+1$ end
progress 3
when
$j \neq n$
$g(j+1) \leq x$ $k \neq j$
then
$k, j, g:=k+1, j+1$, $\operatorname{swap}(g, k+1, j+1)$
end

Array Partitioning : Final Merging (2)

Applying Rule M_IF to progress_2 and progress_3
progress 23
when

$$
\begin{aligned}
& j \neq n \\
& g(j+1) \leq x
\end{aligned}
$$

then
if $k=j$ then
$k, j:=k+1, j+1$
else

$$
k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)
$$

end
end

Array Partitioning : Final Merging (3)

Putting together progress_1 and progress_23
progress_1 when
$j \neq n$ $g(j+1)>x$ then
$j:=j+1$ end
progress 23

when

$$
\begin{aligned}
& \boldsymbol{j} \neq \boldsymbol{n} \\
& \boldsymbol{g}(\boldsymbol{j}+1) \leq x
\end{aligned}
$$

then
if $k=j$ then

$$
k, j:=k+1, j+1
$$

else

$$
k, j, g:=k+1, j+1,
$$

$$
\operatorname{swap}(g, k+1, j+1)
$$

end
end

Array Partitioning : Final Merging (4)

Applying M_ELSIF to progress_1 and progress_23
final when
$j=n$
then
skip end
progress_123
when $j \neq n$ then
if $g(j+1)>x$ then
$j:=j+1$
elsif $k=j$ then
$k, j:=k+1, j+1$
else
$k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)$
end
end

Array Partitioning : Final Merging (6)

Applying M WHILE4 to partition and progress_123

```
progress_123_final
while \(j \neq n\) do
    if \(g(j+1)>x\) then
        \(j:=j+1\)
    elsif \(k=j\) then
        \(k, j:=k+1, j+1\)
    else
        \(k, j, g:=k+1, j+1, \operatorname{swap}(g, k+1, j+1)\)
    end
end
```


Array Partitioning : Final Program

Applying Rule M_INIT to init and progress_123_final yields
partition program

$$
\begin{aligned}
& \begin{array}{l}
g, k, j:=f, 0,0 \\
\text { while } j \neq m \text { do } \\
\text { if } g(j+1)>x
\end{array} \\
& \begin{array}{ll}
j:=j+1 & \text { init } \\
\text { elsif } k=j \text { then } & \text { progress_1 } \\
\begin{array}{ll}
k, j:=k+1, j+1 & \text { else } \\
\begin{array}{l}
k, j, g:=k+1, j+1, \\
\operatorname{swap}(g, k+1, j+1)
\end{array} & \\
\text { progress_2 } \\
\text { end } &
\end{array} \\
\text { end }
\end{array}
\end{aligned}
$$

Array Partitioning: Concluding Remarks

- The complete development requires 18 proofs.
- Among which 6 were interactive
- Given: A numerical array f
- Result is: Another numerical array g
- \boldsymbol{g} has the same elements as f
- \boldsymbol{g} is sorted in ascending order

Sorting

axm01: $n \in \mathbb{N}$
axm02: $0<n$
axm0 3: $\quad f \in 1 \ldots n \mapsto \mathbb{N}$
inv0_1: $\quad g \in \mathbb{N} \leftrightarrow \mathbb{N}$

init

$$
\boldsymbol{g}: \in \mathbb{N} \leftrightarrow \mathbb{N}
$$

final
when

$$
\begin{aligned}
& g \in 1 \ldots n \rightarrow \mathbb{N} \\
& \operatorname{ran}(g)=\operatorname{ran}(f) \\
& \forall i, j \cdot\left(\begin{array}{l}
i \in 1 \ldots n-1 \\
j \in i+1 \ldots n \\
\Rightarrow \\
g(i)<g(j)
\end{array}\right)
\end{aligned}
$$

then
progress status anticipated then

$$
\underset{\text { end }}{\boldsymbol{g}}: \in \mathbb{N} \leftrightarrow \mathbb{N}
$$

Sorting : First Refinement

- Introducing a new variable \boldsymbol{k} ranging form 1 to \boldsymbol{n}
- Current situation: array g is sorted from 1 to $k-1$

Array Sorting First Refinement: the State

- We introduce an anticipated variable l

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting


```
init
g,k:= f, 1
l:\in\mathbb{N}
```

final
when $k=n$ then skip end
progress

$$
\begin{aligned}
& \text { any } l \text { where } \\
& \quad k<n \\
& l \in k . . n \\
& \quad g(l)=\min (g[k \ldots n]) \\
& \text { then } \\
& \quad g:=g \nrightarrow\{k \mapsto g(l)\} \notin\{l \mapsto g(k)\} \\
& k:=k+1 \\
& l: \in \mathbb{N} \\
& \text { end }
\end{aligned}
$$

variant1: $n-k$

Sorting : 2nd Refinement

Introducing one new variables \boldsymbol{j} in $\boldsymbol{k} . . \boldsymbol{n}$
Current situation: $\boldsymbol{g}(\boldsymbol{l})$ is the minimum of $\boldsymbol{g}[k \ldots j]$

variables: $\quad g, k, j, l$

inv2_1: $j \in k . . n$
inv2 2: $l \in k . . j$
inv2_3: $\quad g(l)=\min (g[k . . j])$

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

final when

$$
k=n
$$

then
skip
end
progress
when

$$
\begin{aligned}
& k<\boldsymbol{n} \\
& \boldsymbol{j}=\boldsymbol{n}
\end{aligned}
$$

then

$$
\begin{aligned}
& \quad g:=g \notin\{k \mapsto g(l)\} \notin\{l \mapsto g(k)\} \\
& \quad k, j, l:=k+1, k+1, k+1 \\
& \text { end }
\end{aligned}
$$

Sorting 2nd Refinement: Adding Events Refining event "prog"
prog1
refines
prog
status
convergent
when
$\boldsymbol{k}<\boldsymbol{n}$
$\boldsymbol{j}<\boldsymbol{n}$ $g(l) \leq g(j+1)$
then
$j:=j+1$
end
prog2
refines
prog
status
convergent
when
$\boldsymbol{k}<\boldsymbol{n}$
$j<n$
$g(l)>g(j+1)$
then
$j, l:=j+1, j+1$
end
variant1: $\quad n-j$

```
sort_program
    begin
        g,k,j,l:= f, 1, 1, 1];
        while k<n do
            while j<n do
            if g(l)\leqg(j+1) then
                j:=j+1
            else
                j,l:=j+1,j+1
                end
            end;
            k,j,l,g:=k+1,k+1,k+1,\operatorname{swap}(g,k,l)}\mathrm{ progress
        end
    end
```


Sorting: Concluding Remarks

- The overall development requires 28 proofs.
- Among which 7 were interactive

carrier set: S
constants: n, f
variables: g
:---
axm0 2: $0<n$
axm0 3:

inv0_1: $\quad g \in \mathbb{N} \leftrightarrow S$

Here is an array

Here is the reverse array

8	7	9	1	4	5	2	3

An element which was at index i is now at index $8-i+1$

$$
\begin{aligned}
& \text { init } \\
& \qquad g: \in \mathbb{N} \leftrightarrow S
\end{aligned}
$$

final
when
$g \in 1 . . n \rightarrow S$
$\forall k \cdot\left(\begin{array}{l}k \in 1 \ldots n \\ \Rightarrow \\ g(k)=f(n-k+1)\end{array}\right)$
then
skip
end
progress status
anticipated then
$\boldsymbol{g}: \in \mathbb{N} \leftrightarrow S$ end

- We introduce two additional variables \boldsymbol{i} and \boldsymbol{j}, both in $1 \ldots \boldsymbol{n}$
- Initially \boldsymbol{i} is equal to 1 and \boldsymbol{j} is equal to \boldsymbol{n}
- Here is the current situation:

1	reversed	i	unchanged	j	reversed
n					

- A new event is going to exchange elements in i and j.
inv1_1: $g \in 1 . . n \rightarrow S$
inv1 2: $i \in 1 . . n$
inv1 3: $j \in 1 . . n$
inv1_4: $i+j=n+1$
inv1.5: $i \leq j+1$

Refinement: the Main Invariants

inv1 4: $\quad i+j=n+1$
inv1 5: $\quad i \leq j+1$
inv1 6: $\quad \forall k \cdot k \in 1 . . i-1 \Rightarrow g(k)=f(n-k+1)$
inv1_7: $\quad \forall k \cdot k \in i . . j \Rightarrow g(k)=f(k)$
inv1_8: $\quad \forall k \cdot k \in j+1 \ldots n \Rightarrow g(k)=f(n-k+1)$

1	reversed	i	unchanged	j	reversed	n

final
when
$\quad j \leq i$
then
skip
end
progress
status
convergent
when
$i<j$
then

$$
\begin{aligned}
& g:=g \nrightarrow\{i \mapsto g(j)\} \nrightarrow\{j \mapsto g(i)\} \\
& i, j:=i+1, j-1 \\
& \text { nd }
\end{aligned}
$$

reverse program
$i, j, g:=1, n, f ;$
while $i<j$ do
$i, j, g:=i+1, j-1, \operatorname{swap}(g, i, j)$
end

- So far, all our examples were dealing with arrays.
- This new example deals with pointers
- We want to reverse a linear chain
- A linear chain is made of nodes
- The nodes are pointing to each other by means of pointers
- To simplify, the nodes have no information fields
- Here is a linear chain:

$$
f \rightarrow \square \rightarrow \square \rightarrow \square
$$

- The first node of the chain is denoted by f
- The last node is a special node denoted by l
- We suppose that f and l are distinct
- The nodes of the chain are taken in a set \boldsymbol{S}

Formalizing the Linear Chain

The chain is represented by a bijection \boldsymbol{c}

- Given the following initial chain

$$
f \rightarrow x \rightarrow x \rightarrow z \rightarrow \square
$$

- Then the transformed chain should look like this:

$$
\boldsymbol{f} \leftarrow \boldsymbol{x} \leftarrow \ldots \leftarrow \square \boldsymbol{z} \leftarrow \square
$$

constants: $\quad d, f, l, c$
inv01: $\quad r \in S \leftrightarrow S$
reverse
$r:=c^{-1}$

We introduce two additional chains \boldsymbol{a} and \boldsymbol{b} and a pointer \boldsymbol{p}

$$
a
$$

- Node p starts both chains
- Main invariant:

$$
a \cup b^{-1}=c^{-1}
$$

```
\(a\)
```


variables: $\quad r, a, b, p$
"cl" is the irreflexive transitive closure operator
inv1_1: $p \in d$
inv1 2: $a \in\left(\mathrm{cl}\left(c^{-1}\right)[p] \cup p\right) \backslash\{f\} \nrightarrow \mathrm{cl}\left(c^{-1}\right)[p]$
inv1 3: $b \in(\mathrm{cl}(c)[p] \cup p) \backslash\{l\} \nrightarrow \mathrm{cl}(\boldsymbol{c})[p]$
inv1_4: $c=a^{-1} \cup b$

Second Refinement: the State

- We introduce a new constant nil
- We replace the chain b by the chain $b n$
- And we introduce a new pointer \boldsymbol{q}

progress
when
$q \neq n i l$
then

$$
p:=q
$$

$$
a(q):=p
$$

$q:=b n(q)$
$b n:=\{p\} \notin b n$
end

$$
\begin{aligned}
& \text { reverse } \\
& \text { when } \\
& q=\text { nil } \\
& \text { then } \\
& r:=a \\
& \text { end }
\end{aligned}
$$

init

$$
\begin{aligned}
& r: \in S \leftrightarrow S \\
& a, b n:=\varnothing, c \cup\{l \mapsto n i l\} \\
& p, q:=f, c(f)
\end{aligned}
$$

- The previous situation with two chains \boldsymbol{a} and $\boldsymbol{b} \boldsymbol{n}$

$$
a
$$

$$
f \leftarrow \ldots \leftarrow q \rightarrow q \rightarrow \square \rightarrow \square \rightarrow n i l
$$

$$
b n
$$

- The new situation with a single chain d
$f \leftarrow \ldots \leftarrow \square \rightarrow \square \rightarrow \square \rightarrow n \rightarrow \square$
variables: r, p, q, d
inv3_1: $\quad d \in S \rightarrow S$
inv32: $\quad d=(\{f\} \notin b n) \notin a$
progress when
$q \neq n i l$
then
$p:=q$
$d(q):=p$
$q:=d(q)$
end

reverse

 when$$
q=n i l
$$

then
$r:=d \ominus\{n i l\}$
end
init

$$
\begin{aligned}
& r: \in S \leftrightarrow S \\
& d:=\{f\} \notin(c \cup\{l \mapsto n i l\} \\
& p, q:=f, c(f)
\end{aligned}
$$

reverse program
$p, q, d:=f, c(f),\{f\} \notin(c \cup\{l \mapsto n i l\}) ;$ while $q \neq$ nil do

$$
p:=q
$$

$$
d(q):=p
$$

$$
q:=d(q)
$$

end;
$r:=d \nRightarrow\{n i l\}$

- The squaring function is defined on all natural numbers
- And it is injective
- Therefore the inverse function, the square root function, exists
- But is is not defined for all natural number
- We want to make it total

Integer Square Root

- The integer square root of \boldsymbol{n} by defect is a number \boldsymbol{r} such that

$$
r^{2} \leq n<(r+1)^{2}
$$

- The integer square root of 17 , is 4 since we have

$$
4^{2} \leq 17<5^{2}
$$

- The integer square root of 16 , is 4 since we have

$$
4^{2} \leq 16<5^{2}
$$

- The integer square root of 15 , is 3 since we have

$$
3^{2} \leq 15<4^{2}
$$

$$
\text { axm0_1: } \quad n \in \mathbb{N}
$$

$$
\text { inv01: } \quad r \in \mathbb{N}
$$

variant1: $n-r^{2}$
inv1 1: $\quad r^{2} \leq n$
init

$$
r:=0
$$

square_root when
progress status convergent when
$(r+1)^{2} \leq n$ then

$$
r:=r+1
$$

end

Program after First Refinement

We obtain the following program:
square_root_program
$r:=0$;
while $(r+1)^{2} \leq n$ do
$r:=r+1$
end

- We do not want to compute $(r+1)^{2}$ at each step
- We observe the following

$$
\begin{aligned}
& ((r+1)+1)^{2}=(r+1)^{2}+(2 r+3) \\
& 2(r+1)+3=(2 r+3)+2
\end{aligned}
$$

- We introduce two numbers a and b such that

$$
\begin{aligned}
& a=(r+1)^{2} \\
& b=2 r+3
\end{aligned}
$$

$$
\begin{array}{ll}
\text { inv2_1: } & a=(r+1)^{2} \\
\text { inv2_2: } & b=2 r+3
\end{array}
$$

progress when

$$
\boldsymbol{a} \leq \boldsymbol{n}
$$

then

$$
r:=r+1
$$

$$
a:=a+b
$$

$$
b:=b+2
$$

end

We obtain the following program:
square root program
$r, a, b:=0,1,3 ;$
while $a \leq n$ do
$r, a, b:=r+1, a+b, b+2$
end

- Same problem as in previous example but more general
- We are given a total numerical function f
- The function f is supposed to be strictly increasing
- Hence it is injective
- We want to compute its inverse by defect
- We shall borrow ideas form the binary search development

progress status
anticipated
then
$r: \in \mathbb{N}$
end
- We are supposedly given two constant numbers a and b such that

$$
f(a) \leq n<f(b+1)
$$

- We are thus certain that our result is within the interval $a \ldots b$
- We try to make this interval narrower
- We introduce a constant \boldsymbol{q} such that:

$$
f(r) \leq n<f(q+1)
$$

constants: $\quad f, n, a, b$
variables: $\quad r, q$
axm1_1: $\quad a \in \mathbb{N}$
axm1_2: $\quad b \in \mathbb{N}$
axm1_3: $\quad f(a) \leq n$
axm1 4: $\quad n<f(b+1)$

$$
\begin{array}{ll}
\text { inv1 1: } & q \in \mathbb{N} \\
\text { inv1 2: } & r \leq q \\
\text { inv1 3: } & f(r) \leq n \\
\text { inv1_4: } & n<f(q+1)
\end{array}
$$

final
when
$r=q$
then
skip
end
dec
refines
progress
status
convergent
any x where
$r \neq \boldsymbol{q}$
$x \in r+1 \ldots q$
$n<f(x)$
then
$q:=x-1$
end
inc refines progress status convergent any x where
$\boldsymbol{r} \neq \boldsymbol{q}$
$x \in r+1 \ldots q$
$f(x) \leq n$ then

$$
r:=x
$$ end

variant1: $q-r$

Second Refinement: the Events

- We reduce the non-determinacy
dec
when

$$
\begin{aligned}
& r \neq q \\
& n<f((r+1+q) / 2)
\end{aligned}
$$

then

$$
\underset{\text { end }}{q}:=(r+1+q) / 2-1
$$

inc
when

$$
\begin{aligned}
& \quad r \neq q \\
& \quad f((r+1+q) / 2) \leq n \\
& \text { then } \\
& \quad r:=(r+1+q) / 2 \\
& \text { end }
\end{aligned}
$$

inverse program
$r, q:=a, b ;$
while $r \neq q$ do
if $n<f((r+1+q) / 2)$ then
$q:=(r+1+q) / 2-1$ else

$$
\begin{aligned}
& \qquad r:=(r+1+q) / 2 \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Genericity

- The development made in this example is generic
- We can consider that the constants $\boldsymbol{f}, \boldsymbol{a}$, and \boldsymbol{b} are parameters
- By instantiating them we obtain some new programs almost for free
- But we have to prove the properties of the instantiated constants: In our case we have to prove:
- axm01: f is a total function
- axm0 2: f is increasing
- axm1_3 and axm1_4: $f(a) \leq n<f(b+1)$
- f is instantiated to the squaring function
- \boldsymbol{a} and \boldsymbol{b} are instantiated to 0 and \boldsymbol{n} since we have

$$
0^{2} \leq n<(n+1)^{2}
$$

- We shall obtain an integer square root program
square_root program
$r, q:=0, n ;$
while $r \neq \boldsymbol{q}$ do
if $n<((r+1+q) / 2)^{2}$ then $q:=(r+1+q) / 2-1$
else

$$
r:=(r+1+q) / 2
$$

end
end

- f is instantiated to the function which "multiply by m "
- a and b are instantiated to 0 and \boldsymbol{n} since we have

$$
m \times 0 \leq n<m \times(n+1)
$$

- We shall obtain an integer division program: $\boldsymbol{n} / \boldsymbol{m}$
integer division program

$$
r, q:=0, n
$$

while $p \neq q$ do
if $n<m \times(r+1+q) / 2)$ then
$q:=(r+1+q) / 2-1$ else

$$
r:=(r+1+q) / 2
$$

end
end

