15. Sequential Program Development

Jean-Raymond Abrial

2009

- To present a formal approach for developing sequential programs

1

- To present a large number of examples:
 - array programs
 - pointer programs
 - numerical programs

- A typical sequential program is made of :
 - a number of MULTIPLE ASSIGNMENTS (:=)
 - scheduled by means of some :
 - CONDITIONAL operators (if)
 - ITERATIVE operators (while)
 - SEQUENTIAL operators (;)

An Example

```
while j \neq m do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end

end ;

p := k
```

while condition do statement end

if condition then statement else statement end

if condition then statement elsif ... else statement end

statement; statement

 $variable_list := expression_list$

- Separating completely in the design:
 - the individual assignments
 - from their scheduling
- This approach favors:
 - the distribution of computation
 - over its centralization

- Each individual assignment is formalized by a guarded event made of:
 - A firing condition: the guard,
 - An action: the multiple assignment.
- These events are scheduled implicitly.

```
while j \neq m do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, \text{swap} (g, k+1, j+1)

end

end ;

p := k
```

when
i - m
$j \neq m$
g(j+1) > x
then
i := i + 1
ond
enu

```
while j \neq m do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end

end ;

p := k
```

```
when

j \neq m

g(j+1) \leq x

k = j

then

k, j := k+1, j+1

end
```

```
while j \neq m do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end

end ;

p := k
```

```
when

j \neq m

g(j+1) \leq x

k \neq j

then

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end
```

```
while j \neq m do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end

end ;

p := k
```

when
j=m then
p:=kend


```
when

j \neq m

g(j+1) \leq x

k = j

then

k, j := k+1, j+1

end
```

when

$$j
eq m$$

 $g(j+1) \leq x$
 $k \neq j$
then
 $k, j, g := \dots$
end

when
$$j=m$$

then
 $p:=k$
end

- We have just decomposed a program into separate events
- Our approach will consists in doing the reverse operation
- We shall construct the events first
- And then compose our program from these events

- Sequential Programs are usually specified by means of:
 - A pre-condition
 - and a post-condition
- It is represented with a Hoare-triple

$$\{Pre\}$$
 P $\{Post\}$

- We are given (Pre-condition)

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set S: $f \in 1..n \rightarrow S$

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set S: $f \in 1..n \rightarrow S$
 - a value v known to be in the array: $v \in ran(f)$

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set $S: f \in 1...n \rightarrow S$
 - a value v known to be in the array: $v \in ran(f)$
- We are looking for (Post-condition)

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set $S: f \in 1...n \rightarrow S$
 - a value v known to be in the array: $v \in ran(f)$
- We are looking for (Post-condition)
 - an index r in the domain of the array: $r \in \text{dom}(f)$

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set $S: f \in 1...n \rightarrow S$
 - a value v known to be in the array: $v \in ran(f)$
- We are looking for (Post-condition)
 - an index r in the domain of the array: $r \in \text{dom}(f)$
 - such that f(r) = v

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - n is positive: 0 < n
 - an array f of n elements built on a set $S: f \in 1...n \rightarrow S$
 - a value v known to be in the array: $v \in ran(f)$
- We are looking for (Post-condition)
 - an index r in the domain of the array: $r \in \text{dom}(f)$
 - such that f(r) = v

$$\left\{\begin{array}{l} n \in \mathbb{N} \\ 0 < n \\ f \in 1 \dots n \to S \\ v \in \operatorname{ran}(f) \end{array}\right\} \text{ search } \left\{\begin{array}{l} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$$

- Input parameters are constants
- The pre-condition corresponds to axioms of these constants
- Output parameters are variables
- The post-condition is in the guard of a unique event
- [When developing several programs in the same module,
- input parameters can also be variables of a special "init" event]

Encoding a Hoare-triple in an Event System

$$\left\{\begin{array}{l} n \in \mathbb{N} \\ 0 < n \\ f \in 1 \dots n \to S \\ v \in \operatorname{ran}(f) \end{array}\right\} \quad \text{search} \quad \left\{\begin{array}{l} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$$

Encoding a Hoare-triple in an Event System

$$\left\{\begin{array}{l} n \in \mathbb{N} \\ 0 < n \\ f \in 1 \dots n \to S \\ v \in \operatorname{ran}(f) \end{array}\right\} \quad \text{search} \quad \left\{\begin{array}{l} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$$

operior potor C	axm0_1: $n \in \mathbb{N}$	
carrier sets. 5	axm0_2: 0 < n	
variables: n, j, v	axm0_3: $f \in 1 n \rightarrow S$	$IIIVO_{-}I. \ r \in \mathbb{N}$
	axm0_4: $v \in \operatorname{ran}(f)$	

Encoding a Hoare-triple in an Event System

$$\left\{\begin{array}{l} n \in \mathbb{N} \\ 0 < n \\ f \in 1 \dots n \to S \\ v \in \operatorname{ran}(f) \end{array}\right\} \quad \text{search} \quad \left\{\begin{array}{l} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$$

init $r:\in\mathbb{N}$

final when $r \in \operatorname{dom}(f)$ f(r) = vthen skip end

Result variable r is set to 1 initially


```
inv1_1: r \in 1..n
```

```
inv1_2: v \notin f[1 \dots r - 1]
```

variant1:
$$n-r$$

progress status convergent when $f(r) \neq v$ then r := r + 1end

final when f(r) = v then skip end

- Events refine their abstractions
- Events maintain invariants
- The exhibited variant is a natural number
- Event progress decreases the variant
- The system is deadlock free

We are using some Merging Rules to build the final program

- Side Conditions:
 - ${m P}$ must be invariant under ${m S}$
 - The first event must have been introduced at one refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard

- Side Conditions:

- The disjunctive negation of the previous side conditions

- Special Case: If P is missing the resulting "event" has no guard

progress_final
while
$$f(r)
eq v$$
 do
 $r := r + 1$
end
- Once we have obtained an "event" without guard

- We add to it the event init by sequential composition
- We then obtain the final "program"

init
$$r:=1$$

progress_final while $f(r) \neq v$ do r := r + 1end

 $\left\{egin{array}{l} n \in \mathbb{N} \ 0 < n \ f \in 1 \dots n
ightarrow S \ v \in \mathrm{ran}(f) \end{array}
ight\}$

search_program

$$r:=1;$$

while $f(r) \neq v$ do
 $r:=r+1$
end

 $\left\{ egin{array}{l} r \in \operatorname{dom}(f) \ f(r) = v \end{array}
ight\}$

- Almost the same specification as in Example 1
- It will show the usage of more merging rules

- We are given (Pre-condition)

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$

- We are given (Pre-condition)
 - a natural number $n: n \in \mathbb{N}$
 - *n* is positive: 0<n

- We are given (Pre-condition)
 - a natural number n: $n \in \mathbb{N}$
 - n is positive: 0 < n
 - a sorted array f of n elements built on a set \mathbb{N} : $f \in 1...n \rightarrow \mathbb{N}$

- We are given (Pre-condition)
 - a natural number n: $n \in \mathbb{N}$
 - n is positive: 0 < n
 - a sorted array f of n elements built on a set \mathbb{N} : $f \in 1...n \rightarrow \mathbb{N}$
 - a value v known to be in the array: $v \in \operatorname{ran}(f)$

- We are given (Pre-condition)
 - a natural number n: $n \in \mathbb{N}$
 - n is positive: 0 < n
 - a sorted array f of n elements built on a set \mathbb{N} : $f \in 1...n \rightarrow \mathbb{N}$
 - a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)

- We are given (Pre-condition)
 - a natural number n: $n \in \mathbb{N}$
 - n is positive: 0 < n
 - a sorted array f of n elements built on a set \mathbb{N} : $f \in 1..n \rightarrow \mathbb{N}$
 - a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)

- an index r in the domain of the array: $r \in \text{dom}(f)$

- We are given (Pre-condition)
 - a natural number n: $n \in \mathbb{N}$
 - n is positive: 0 < n
 - a sorted array f of n elements built on a set \mathbb{N} : $f \in 1..n \rightarrow \mathbb{N}$
 - a value v known to be in the array: $v \in \operatorname{ran}(f)$
- We are looking for (Post-condition)
 - an index r in the domain of the array: $r \in \operatorname{dom}(f)$
 - such that f(r) = v

Binary Search: the State

constants: n, f, vvariables: r

inv0_1: $r \in \mathbb{N}$

axm0_1:
$$n \in \mathbb{N}$$

axm0_2: $0 < n$
axm0_3: $f \in 1 \dots n \to \mathbb{N}$
axm0_4: $\forall i, j \cdot \begin{pmatrix} i \in 1 \dots n \\ j \in 1 \dots n \\ i \leq j \\ \Rightarrow \\ f(i) \leq f(j) \end{pmatrix}$
axm0_5: $v \in \operatorname{ran}(f)$

constants: n, f, vvariables: r, p, q

p

 inv1_1:
 $p \in 1 \dots n$

 inv1_2:
 $q \in 1 \dots n$

 inv1_3:
 $v \in f[p \dots q]$

 inv1_4:
 $r \in p \dots q$

- Current situation

1	р — 1	r	q+1	n
		v : f[pq]		

q

variant1: q-p

- Situation encountered by event inc

variant1:
$$q-p$$

- Situation encountered by event dec

init
$$p:=1$$

 $q:=n$
 $r:\in 1 \dots n$

final when
$$f(r) = v$$
 then skip end

dec when v < f(r)then q := r - 1 $r :\in p \dots r - 1$ end

- At the previous stage, inc and dec were non-deterministic
- r was chosen arbitrarily within the interval $p \ldots q$
- We now remove the non-determinacy in inc and dec
- r is chosen to be the middle of the interval $p \ldots q$

(concrete_)inc when f(r) < vthen p := r + 1 r := (r + 1 + q)/2end

(concrete_)dec when f(r) < vthen q := r - 1r := (p + r - 1)/2end

init
$$p,q:=1,n$$
 $r:=(1+n)/2$

$$bin_search$$
 $when$ $f(r) = v$ $then$ $skip$ end

inc
when
$$f(r) < v$$

then
 $p := r + 1$
 $r := (r + 1 + q)/2$
end

dec when v < f(r)then q := r - 1r := (p + r - 1)/2end

inc
when

$$f(r) \neq v$$

 $f(r) < v$
then
 $p := r + 1$
 $r := (r + 1 + q)/2$
end
dec
when
 $f(r) \neq v$
 $v \leq f(r)$
then
 $q := r - 1$

q:=r-1r:=(p+r-1)/2end inc_dec when f(r)
eq vthen if f(r) < v then p,r := r+1, (r+1+q)/2else q, r := r - 1, (p + r - 1)/2end end final when f(r) = vthen skip end

- Side Conditions:
 - ${m P}$ must be invariant under ${m S}$
 - The first event must have been introduced at one refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard

```
inc_dec

when

f(r) \neq v

then

if f(r) < v then

p,r := r + 1, (r + 1 + q)/2

else

q,r := r - 1, (p + r - 1)/2

end

end
```

```
inc_dec_final

while f(r) \neq v do

if f(r) < v then

p, r := r + 1, (r + 1 + q)/2

else

q, r := r - 1, (p + r - 1)/2

end

end
```


init
$$p,q:=1,n$$
 $r:=(1+n)/2$

```
inc_dec_final

while f(r) \neq v do

if f(r) < v then

p,r := r + 1, (r + 1 + q)/2

else

q,r := r - 1, (p + r - 1)/2

end

end
```

init
$$p,q:=1,n \ r:=(1+n)/2$$

 $\begin{array}{l} \text{bin_search_program} \\ p,q,r:=1,n,(1+n)/2; \\ \text{while } f(r) \neq v \text{ do} \\ \text{ if } f(r) < v \text{ then} \\ p,r:=r+1,(r+1+q)/2 \\ \text{ else} \\ q,r:=r-1,(p+r-1)/2 \\ \text{ end} \\ \text{ end} \end{array}$

- Given a numerical array f with n distinct elements
- Given a number x
- We construct another numerical array g with some constraints.

- g has the same elements as f
- there exists a number k in $0 \dots n$ such that elements of g are:
 - not greater than x in interval $1 \dots k$
 - greater than x in interval $k+1 \dots n$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$\leq x$	${m k}$	k+1	> x	n
--	---	----------	---------	-----	-----	---

- Let the array f be the following:

3	7	2	5	8	9	4	1
---	---	---	---	---	---	---	---

- Let x be equal to 5
- The result g can be the following with k being set to 5

3	2	5	4	1	9	7	8

- Let the array f be the following:

|--|

- Let x be equal to 0
- The result g can be the following with k being set to 0

3	7	2	5	8	9	4	1

- Let the array f be the following:

3	7	2	5	8	9	4	1

- Let x be equal to 10
- The result g can be the following with k being set to 8

3	7	2	5	8	9	4	1

60

 $axm0_1: n \in \mathbb{N}$ $axm0_2: f \in 1 ... n \rightarrow \mathbb{N}$ $axm0_3: x \in \mathbb{N}$

inv0_1: $k \in \mathbb{N}$ inv0_2: $g \in \mathbb{N} \leftrightarrow \mathbb{N}$

```
initk:\in \mathbb{N}g:\in \mathbb{N} \leftrightarrow \mathbb{N}
```


progress status anticipated then $k:\in\mathbb{N}$ $g:\in\mathbb{N}\leftrightarrow\mathbb{N}$ end Introducing a new variable j ranging from 0 to nCurrent situation: array g is partitioned from 1 to j

$$1 \leq x \quad k \quad k+1 \quad > x \quad j \quad j+1 \quad ? \quad n$$

Invariant

$$egin{aligned} k &\leq j \ orall eta eta & eta eta & eta &$$

```
constants: n, f, x
```

variables: k, g, j

 $\begin{array}{lll} \mathsf{inv1_1:} & j \in 0 \dots n \\ \\ \mathsf{inv1_2:} & k \leq j \\ \\ \mathsf{inv1_3:} & \forall l \cdot l \in 1 \dots k \Rightarrow g(l) \leq x \\ \\ \\ \mathsf{inv1_4:} & \forall l \cdot l \in k+1 \dots j \Rightarrow g(l) > x \end{array}$

Partitioning with 5

3 7	2 5	8 9	4 1
-----	-----	-----	-----

Partitioning with 5

3	7	2	5	8	9	4	1
---	---	---	---	---	---	---	---

Partitioning with 5

3 7 2	5 8	9	4 1		
-------	-----	---	-----		
3 2 7	5	8	9	4	1
-------	---	---	---	---	---
-------	---	---	---	---	---

3 2 5	7 8	9 4	1
-------	-----	-----	---

3	2	5	7	8	9	4	1
---	---	---	---	---	---	---	---

3 2	5 7	8	9	4	1
-----	-----	---	---	---	---

3 2 5	4 8	9	7	1
-------	-----	---	---	---

3 2 3	5 4 1	9 7	8
-------	-------	-----	---

```
initg,j,k:=f,0,0
```


1	$\leq x$	k	k+1	> x	j	j+1	?	n
---	----------	---	-----	-----	---	-----	---	---

variant1: n-j

$$1 \leq x \quad k, j \quad j+1 \quad ? \quad n$$

variant1:
$$n-j$$

 $\mathsf{swap}\,(g,k,j)\ =\ g \mathrel{\Leftrightarrow} \{k \mapsto g(j)\} \mathrel{\Leftrightarrow} \{j \mapsto g(k)\}$

3 2	5 7	8	9	4	1
-----	-----	---	---	---	---

3 2 5	4 8	9	7	1
-------	-----	---	---	---

Putting together progress_2 and progress_3

progress_2
when

$$j \neq n$$

 $g(j+1) \leq x$
 $k = j$
then
 $k, j := k+1, j+1$
end

progress_3
when

$$j \neq n$$

 $g(j+1) \leq x$
 $k \neq j$
then
 $k, j, g := k+1, j+1,$
 $swap(g, k+1, j+1)$
end

Applying Rule M_IF to progress_2 and progress_3

```
progress_23
  when
   j \neq n
   g(j+1) \leq x
  then
    if k = j then
      k,j := k+1, j+1
    else
      k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
    end
  end
```

Putting together progress_1 and progress_23

end

when P when $\neg Q$ P Q if R then Q if R then T S elseend U endend	when P then if Q then S \sim elsif R then T else U end end	M_ELSIF
---	--	---------

Applying M_ELSIF to progress_1 and progress_23

Applying M_WHILE4 to partition and progress_123


```
progress_123_final

while j \neq n do

if g(j+1) > x then

j := j+1

elsif k = j then

k, j := k+1, j+1

else

k, j, g := k+1, j+1, swap (g, k+1, j+1)

end

end
```

Applying Rule M_INIT to init and progress_123_final yields

- The complete development requires 18 proofs.
- Among which 6 were interactive

• Given: A numerical array f

• Result is: Another numerical array g

• g has the same elements as f

• g is sorted in ascending order

3	7	2	5	8	9	4	1
1	2	3	4	5	7	8	9

constants: n, f

axm0_1: $n \in \mathbb{N}$ axm0_2:0 < naxm0_3: $f \in 1 \dots n \rightarrowtail \mathbb{N}$

variables: g

inv0_1: $g \in \mathbb{N} \leftrightarrow \mathbb{N}$

```
initg:\in \mathbb{N} \leftrightarrow \mathbb{N}
```


progress status anticipated then $g:\in \mathbb{N} \leftrightarrow \mathbb{N}$ end

- Introducing a new variable k ranging form 1 to n
- Current situation: array g is sorted from 1 to k-1

1 sorted and
$$\leq k-1$$
 k? n

inv1_1: $g \in 1 \dots n
ightarrow \mathbb{N}$ inv1_2: ran(g) = ran(f)inv1_3: $k \in 1 ... n$ variables: g, k, linv1_4: $\forall i, j \cdot \begin{pmatrix} i \in 1 \dots k - 1 \\ j \in i + 1 \dots n \\ \Rightarrow \\ g(i) < g(j) \end{pmatrix}$ inv1_5: $l \in \mathbb{N}$

- We introduce an anticipated variable l

3 ′	7 2	5	8	9	4	1
-----	-----	---	---	---	---	---

1 7 2 5	8 9	4 3	
---------	-----	-----	--

1	2	7	5	8	9	4	3
---	---	---	---	---	---	---	---

1 2	3	5	8	9	4	7
-----	---	---	---	---	---	---

1 2 3 4	8 9	5 7	7
---------	-----	-----	---

1	2	3	4	5	9	8	7
---	---	---	---	---	---	---	---

1	2	3	4	5	7	8	9
---	---	---	---	---	---	---	---
--							

progress
any
$$l$$
 where
 $k < n$
 $l \in k .. n$
 $g(l) = \min(g[k .. n])$
then
 $g := g \Leftrightarrow \{k \mapsto g(l)\} \Leftrightarrow \{l \mapsto g(k)\}$
 $k := k + 1$
 $l :\in \mathbb{N}$
end

variant1: n-k

Introducing one new variables j in $k \dots n$

Current situation: g(l) is the minimum of $g[k \dots j]$

1	sorted	and	\leq	k-1	${m k}$?	j	j+1	?	n
---	--------	-----	--------	-----	---------	---	---	-----	---	---

variables: g, k, j, l

inv2_1:
$$j \in k ... n$$

inv2_2: $l \in k ... j$
inv2_3: $g(l) = \min(g[k ... j])$

|--|

1 7 2 5	8 9	4 3
---------	-----	-----

1	7	2	5	8	9	4	3
---	---	---	---	---	---	---	---

1 2 7	5	8	9	4	3
-------	---	---	---	---	---

1 2	3	5	8	9	4	7
-----	---	---	---	---	---	---

1 2	3	5	8	9	4	7
-----	---	---	---	---	---	---

1	2	3	4	8	9	5	7
---	---	---	---	---	---	---	---

1	2	3	4	8	9	5	7
---	---	---	---	---	---	---	---

|--|
1	2	3	4	5	7	8	9
---	---	---	---	---	---	---	---

1	2	3	4	5	7	8	9
---	---	---	---	---	---	---	---

|--|

progress
when

$$k < n$$

 $j = n$
then
 $g := g \Leftrightarrow \{k \mapsto g(l)\} \Leftrightarrow \{l \mapsto g(k)\}$
 $k, j, l := k + 1, k + 1, k + 1$
end

Sorting 2nd Refinement: Adding Events Refining event "prog" 88

variant1: n-j

- The overall development requires 28 proofs.
- Among which 7 were interactive

inv0_1: $g \in \mathbb{N} \leftrightarrow S$

Here is an array

3	2	5	4	1	9	7	8

Here is the reverse array

8	7	9	1	4	5	2	3
---	---	---	---	---	---	---	---

An element which was at index i is now at index 8 - i + 1

progress status anticipated then $g:\in \mathbb{N} \leftrightarrow S$ end

- We introduce two additional variables i and j, both in $1 \ldots n$
- Initially i is equal to 1 and j is equal to n
- Here is the current situation:

1	reversed	i	unchanged	j	reversed	n
---	----------	---	-----------	---	----------	---

- A new event is going to exchange elements in i and j.

variables: g, i, j

inv1_1: $g \in 1 ... n \to S$ inv1_2: $i \in 1 ... n$ inv1_3: $j \in 1 ... n$ inv1_4: i + j = n + 1inv1_5: $i \leq j + 1$

$$inv1_4: i + j = n + 1$$

$$inv1_5: i \le j + 1$$

$$inv1_6: \forall k \cdot k \in 1 \dots i - 1 \Rightarrow g(k) = f(n - k + 1)$$

$$inv1_7: \forall k \cdot k \in i \dots j \Rightarrow g(k) = f(k)$$

$$inv1_8: \forall k \cdot k \in j + 1 \dots n \Rightarrow g(k) = f(n - k + 1)$$

1 reversed <i>i</i> unchanged	j	reversed	n
-------------------------------	---	----------	---

variant1:
$$j-i$$


```
reverse_program i, j, g := 1, n, f;
while i < j do
i, j, g := i + 1, j - 1, swap(g, i, j)
end
```

- So far, all our examples were dealing with arrays.
- This new example deals with pointers
- We want to reverse a linear chain
- A linear chain is made of nodes
- The nodes are pointing to each other by means of pointers
- To simplify, the nodes have no information fields

- Here is a linear chain:

$$f
ightarrow \dots
ightarrow
ightarrow
ightarrow \dots
ightarrow
ig$$

- The first node of the chain is denoted by $m{f}$
- The last node is a special node denoted by \boldsymbol{l}
- We suppose that f and l are distinct
- The nodes of the chain are taken in a set ${old S}$

The chain is represented by a bijection c

carrier set: S

constants: d, f, l, c

 $axm0_1: d \subseteq S$ $axm0_2: f \in d$ $axm0_3: l \in d$ $axm0_4: f \neq l$ $axm0_5: c \in d \setminus \{l\} \rightarrow d \setminus \{f\}$ $axm0_6: \forall T \cdot T \subseteq c[T] \Rightarrow T = \emptyset$

- Given the following initial chain

- Then the transformed chain should look like this:

inv0_1:
$$r \in S \leftrightarrow S$$

init
$$r:\in S \leftrightarrow S$$

reverse
$$r:=c^{-1}$$

We introduce two additional chains a and b and a pointer p

- Node p starts both chains
- Main invariant: $a \cup b^{-1} = c^{-1}$


```
variables: r, a, b, p
```

"cl" is the irreflexive transitive closure operator

$$inv1_l: p \in d$$

$$inv1_2: a \in (cl(c^{-1})[p] \cup p) \setminus \{f\} \rightarrowtail cl(c^{-1})[p]$$

$$inv1_3: b \in (cl(c)[p] \cup p) \setminus \{l\} \rightarrowtail cl(c)[p]$$

$$inv1_4: c = a^{-1} \cup b$$

init

$$r :\in S \leftrightarrow S$$

$$a, b, p := \emptyset, c, f$$

$$r := a$$
end

- We introduce a new constant nil
- We replace the chain b by the chain bn
- And we introduce a new pointer q

constants: f, l, c, nil

axm2_1: $nil \in S$ axm2_2: $nil \notin d$

variables: r, a, bn, p, q

inv2_1: $bn = b \cup \{l \mapsto nil\}$ inv2_2: q = bn(p)

reverse when q = nilthen r := aend

$$egin{aligned} & ext{init} \ & r:\in S \leftrightarrow S \ & a, bn:= arnothing, c \cup \{l \mapsto nil\} \ & p,q:=f,c(f) \end{aligned}$$

- The previous situation with two chains a and bn

- The new situation with a single chain d

variables: r, p, q, d

inv3_1:
$$d \in S \Rightarrow S$$

inv3_2: $d = (\{f\} \lhd bn) \Leftrightarrow a$

init
$$r:\in S \leftrightarrow S \ d:=\{f\} ext{ } (c \cup \{l \mapsto nil\} \ p,q:=f,c(f)$$

reverse_program

$$p, q, d := f, c(f), \{f\} \triangleleft (c \cup \{l \mapsto nil\});$$

while $q \neq nil$ do
 $p := q$
 $d(q) := p$
 $q := d(q)$
end;
 $r := d \triangleright \{nil\}$

- The squaring function is defined on all natural numbers
- And it is injective
- Therefore the inverse function, the square root function, exists
- But is is not defined for all natural number
- We want to make it total

- The integer square root of n by defect is a number r such that

$$r^2 \leq n < (r+1)^2$$

- The integer square root of 17, is 4 since we have

$$4^2 \le 17 < 5^2$$

- The integer square root of 16, is 4 since we have

$$4^2 \le 16 < 5^2$$

- The integer square root of 15, is 3 since we have

$$3^2 \le 15 < 4^2$$

First Refinement

We obtain the following program:

```
square_root_program r:=0;
while (r+1)^2 \leq n do r:=r+1 end
```

- We do not want to compute $(r+1)^2$ at each step
- We observe the following

$$((r+1)+1)^2 = (r+1)^2 + (2r+3)$$

 $2(r+1)+3 = (2r+3)+2$

- We introduce two numbers *a* and *b* such that

$$a = (r+1)^2$$

 $b = 2r+3$

We obtain the following program:

```
square_root_program r, a, b := 0, 1, 3;
while a \leq n do r, a, b := r + 1, a + b, b + 2
end
```

- Same problem as in previous example but more general
- We are given a total numerical function f
- The function f is supposed to be strictly increasing
- Hence it is injective
- We want to compute its inverse by defect
- We shall borrow ideas form the binary search development

axm0_1:constants:
$$f, n$$
variables: r axm0_2:inv0_1: $r \in \mathbb{N}$ axm0_3:thm0_1:

axm0_1:
$$f \in \mathbb{N} \to \mathbb{N}$$
axm0_2: $\forall i, j \cdot \begin{pmatrix} i \in \mathbb{N} \\ j \in \mathbb{N} \\ i < j \\ \Rightarrow \\ f(i) < f(j) \end{pmatrix}$ axm0_3: $n \in \mathbb{N}$ thm0_1: $f \in \mathbb{N} \to \mathbb{N}$

progress status
anticipateu
then
$r:\in\mathbb{N}$
end

- We are supposedly given two constant numbers a and b such that

$$f(a) \leq n < f(b+1)$$

- We are thus certain that our result is within the interval $a \ldots b$
- We try to make this interval narrower
- We introduce a constant q such that:

$$f(r) ~\leq~ n ~<~ f(q+1)$$

constants: f, n, a, b

variables: r, q

axm1_1:	$a~\in~\mathbb{N}$
axm1_2:	$b \in \mathbb{N}$
axm1_3:	$f(a)~\leq~n$
axm1_4:	$n \ < \ f(b+1)$

inv1_1:	$q~\in~\mathbb{N}$
inv1_2:	$r~\leq~q$
inv1_3:	$f(r)~\leq~n$
inv1_4:	$n \ < \ f(q+1)$

variant1: q - r

- We reduce the non-determinacy

dec when $r \neq q$ n < f((r+1+q)/2)then q := (r+1+q)/2 - 1end inc when $r \neq q$ $f((r+1+q)/2) \leq n$ then r := (r+1+q)/2end

```
inverse_program

r,q := a,b;

while r \neq q do

if n < f((r+1+q)/2) then

q := (r+1+q)/2 - 1

else

r := (r+1+q)/2

end

end
```

- The development made in this example is generic
- We can consider that the constants f, a, and b are parameters
- By instantiating them we obtain some new programs almost for free
- But we have to prove the properties of the instantiated constants:
 In our case we have to prove:
 - $axm0_1$: f is a total function
 - **axm0_2**: *f* is increasing
 - axm1_3 and axm1_4: $f(a) \leq n < f(b+1)$

- f is instantiated to the squaring function
- a and b are instantiated to 0 and n since we have

$$0^2 \leq n < (n+1)^2$$

- We shall obtain an integer square root program

```
square_root_program

r,q := 0, n;

while r \neq q do

if n < ((r+1+q)/2)^2 then

q := (r+1+q)/2 - 1

else

r := (r+1+q)/2

end

end
```

- f is instantiated to the function which "multiply by m"
- a and b are instantiated to 0 and n since we have

$$m imes 0 \ \leq \ n \ < \ m imes (n+1)$$

- We shall obtain an integer division program: n/m

integer_division_program r, q := 0, n;while $p \neq q$ do if $n < m \times (r + 1 + q)/2)$ then q := (r + 1 + q)/2 - 1else r := (r + 1 + q)/2end end