
15. Sequential Program Development

Jean-Raymond Abrial

2009

Purpose of this Lecture 1

- To present a formal approach for developing sequential programs

- To present a large number of examples:

- array programs

- pointer programs

- numerical programs

1

Introduction to Sequential Program Development 2

- A typical sequential program is made of :

- a number of MULTIPLE ASSIGNMENTS (:=)

- scheduled by means of some :

- CONDITIONAL operators (if)

- ITERATIVE operators (while)

- SEQUENTIAL operators (;)

2

An Example 3

while j 6= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

3

Statements for a Pidgin Programming Language 4

while condition do statement end

if condition then statement else statement end

if condition then statement elsif . . . else statement end

statement ; statement

variable list := expression list

4

An Event Design Approach (1) 5

- Separating completely in the design:

- the individual assignments

- from their scheduling

- This approach favors:

- the distribution of computation

- over its centralization

5

An Event Design Approach (2) 6

- Each individual assignment is formalized by a guarded event

made of:

- A firing condition: the guard,

- An action: the multiple assignment.

- These events are scheduled implicitly.

6

while j 6= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

when
j 6= m
g(j + 1) > x

then
j := j + 1

end

7

while j 6= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

when
j 6= m
g(j + 1) ≤ x
k = j

then
k, j := k + 1, j + 1

end

8

while j 6= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

when
j 6= m
g(j + 1) ≤ x
k 6= j

then
k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)

end

9

while j 6= m do
if g(j + 1) > x then

j := j + 1
elsif k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end ;
p := k

when
j = m

then
p := k

end

10

The Various Events of our Program 7

when
j 6= m
g(j + 1) > x

then
j := j + 1

end

when
j 6= m
g(j + 1) ≤ x
k = j

then
k, j := k + 1, j + 1

end

when
j 6= m
g(j + 1) ≤ x
k 6= j

then
k, j, g := . . .

end

when
j = m

then
p := k

end

11

Composing a Program from Events 8

- We have just decomposed a program into separate events

- Our approach will consists in doing the reverse operation

- We shall construct the events first

- And then compose our program from these events

12

Principles of the Event Approach 9

Specification Phase • initial event: Specification
↙ ↓ ↘

• • •
. . .

Design Phase . . . new events: Refinements
. . .

• • •
Merging Phase ↘ ↓ ↙

• final event: Program

13

Using Event Systems for Developing Sequential Programs 10

- Sequential Programs are usually specified by means of:

- A pre-condition

- and a post-condition

- It is represented with a Hoare-triple

{Pre} P {Post}

14

Example 1: The search Program 11

15

Example 1: The search Program 12

- We are given (Pre-condition)

16

Example 1: The search Program 13

- We are given (Pre-condition)
- a natural number n: n ∈ N

17

Example 1: The search Program 14

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n

18

Example 1: The search Program 15

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S

19

Example 1: The search Program 16

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S
- a value v known to be in the array: v ∈ ran(f)

20

Example 1: The search Program 17

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S
- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)

21

Example 1: The search Program 18

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S
- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: r ∈ dom(f)

22

Example 1: The search Program 19

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S
- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: r ∈ dom(f)
- such that f(r) = v

23

Example 1: The search Program 20

- We are given (Pre-condition)
- a natural number n: n ∈ N
- n is positive: 0 < n
- an array f of n elements built on a set S: f ∈ 1 ..n→S
- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: r ∈ dom(f)
- such that f(r) = v

n ∈ N
0 < n
f ∈ 1 .. n→ S
v ∈ ran(f)

 search

{
r ∈ dom(f)
f(r) = v

}

24

Encoding a Hoare-triple in an Event System 21

- Input parameters are constants

- The pre-condition corresponds to axioms of these constants

- Output parameters are variables

- The post-condition is in the guard of a unique event

- [When developing several programs in the same module,

- input parameters can also be variables of a special "init" event]

25

Encoding a Hoare-triple in an Event System 22

n ∈ N
0 < n
f ∈ 1 .. n→ S
v ∈ ran(f)

 search

{
r ∈ dom(f)
f(r) = v

}

26

Encoding a Hoare-triple in an Event System 23

n ∈ N
0 < n
f ∈ 1 .. n→ S
v ∈ ran(f)

 search

{
r ∈ dom(f)
f(r) = v

}

carrier sets: S

constants: n, f, v

variables: r

axm0 1: n ∈ N

axm0 2: 0 < n

axm0 3: f ∈ 1 .. n→ S

axm0 4: v ∈ ran(f)

inv0 1: r ∈ N

27

Encoding a Hoare-triple in an Event System 24

n ∈ N
0 < n
f ∈ 1 .. n→ S
v ∈ ran(f)

 search

{
r ∈ dom(f)
f(r) = v

}

carrier sets: S

constants: n, f, v

variables: r

axm0 1: n ∈ N

axm0 2: 0 < n

axm0 3: f ∈ 1 .. n→ S

axm0 4: v ∈ ran(f)

inv0 1: r ∈ N

init
r :∈ N

final
when

r ∈ dom(f)
f(r) = v

then
skip

end

progress
status

anticipated
then

r :∈ N
end

28

Ideas for a Refinement 25

Result variable r is set to 1 initially

?
situation

Current
f

1 n

not found

f

1 n

Initially?

r

f[1..r−1]

r−1 r

29

Development of the search Program: Refinement 26

inv1 1: r ∈ 1 .. n

inv1 2: v /∈ f [1 .. r − 1]
variant1: n− r

init
r := 1

progress
status

convergent
when

f(r) 6= v
then

r := r + 1
end

final
when

f(r) = v
then

skip
end

30

To be Proved (as usual) 27

- Events refine their abstractions

- Events maintain invariants

- The exhibited variant is a natural number

- Event progress decreases the variant

- The system is deadlock free

31

Constructing the Final Program 28

We are using some Merging Rules to build the final program

init
r := 1

progress
when

f(r) 6= v
then

r := r + 1
end

final
when

f(r) = v
then

skip
end

32

Merging Rule (1) 29

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
while Q do

S
end;
T

end

M WHILE

- Side Conditions:

- P must be invariant under S

- The first event must have been introduced at one

refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard
33

Merging Rule (2) 30

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M IF

- Side Conditions:

- The disjunctive negation of the previous side conditions

- Special Case: If P is missing the resulting "event" has no guard

34

Applying Rule M WHILE (special case) 31

progress
when

f(r) 6= v
then

r := r + 1
end

final
when

f(r) = v
then

skip
end

progress final
while f(r) 6= v do

r := r + 1
end

35

Final Rule M INIT 32

- Once we have obtained an “event” without guard

- We add to it the event init by sequential composition

- We then obtain the final “program”

36

Applying Rule M INIT 33

init
r := 1

progress final
while f(r) 6= v do

r := r + 1
end

n ∈ N
0 < n
f ∈ 1 .. n→ S
v ∈ ran(f)

search program

r := 1;
while f(r) 6= v do

r := r + 1
end

{
r ∈ dom(f)
f(r) = v

}

37

Example 2: The Very Classical Binary Search 34

- Almost the same specification as in Example 1

- It will show the usage of more merging rules

38

Binary Search 35

- We are given (Pre-condition)

39

Binary Search 36

- We are given (Pre-condition)

- a natural number n: n ∈ N

40

Binary Search 37

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

41

Binary Search 38

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

- a sorted array f of n elements built on a set N: f ∈ 1 ..n→N

42

Binary Search 39

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

- a sorted array f of n elements built on a set N: f ∈ 1 ..n→N

- a value v known to be in the array: v ∈ ran(f)

43

Binary Search 40

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

- a sorted array f of n elements built on a set N: f ∈ 1 ..n→N

- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)

44

Binary Search 41

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

- a sorted array f of n elements built on a set N: f ∈ 1 ..n→N

- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)

- an index r in the domain of the array: r ∈ dom(f)

45

Binary Search 42

- We are given (Pre-condition)

- a natural number n: n ∈ N

- n is positive: 0<n

- a sorted array f of n elements built on a set N: f ∈ 1 ..n→N

- a value v known to be in the array: v ∈ ran(f)

- We are looking for (Post-condition)

- an index r in the domain of the array: r ∈ dom(f)

- such that f(r) = v

46

Binary Search: the State 43

constants: n, f, v

variables: r

inv0 1: r ∈ N

axm0 1: n ∈ N

axm0 2: 0 < n

axm0 3: f ∈ 1 .. n→ N

axm0 4: ∀ i, j ·

i ∈ 1 .. n
j ∈ 1 .. n
i ≤ j
⇒
f(i) ≤ f(j)

axm0 5: v ∈ ran(f)

init
r :∈ N

final
when

r ∈ dom(f)
f(r) = v

then
skip

end

progress
status

anticipated
then

r :∈ N
end

47

First Refinement: the State 44

constants: n, f, v

variables: r, p, q

inv1 1: p ∈ 1 .. n

inv1 2: q ∈ 1 .. n

inv1 3: v ∈ f [p .. q]

inv1 4: r ∈ p .. q

- Current situation

nq+1

q

1

p

p −1

v : f[p..q]

r

48

Event inc refining progress 45

inc
status

convergent
when

f(r) < v
then

p := r + 1
r :∈ r + 1 .. q

end

variant1: q − p

- Situation encountered by event inc

nq+1

q

1

p

p −1 r

r+1

v:f[r+1..q]

49

Event dec refining progress 46

dec
status

convergent
when

v < f(r)
then

q := r − 1
r :∈ p .. r − 1

end

variant1: q − p

- Situation encountered by event dec

nq+1

q

1

p

p −1

v:f[p..r−1]

r −1

r

50

First Refinement: the Events 47

init
p := 1
q := n
r :∈ 1 .. n

final
when

f(r) = v
then

skip
end

inc
when

f(r) < v
then

p := r + 1
r :∈ r + 1 .. q

end

dec
when

v < f(r)
then

q := r − 1
r :∈ p .. r − 1

end

51

Second Refinement 48

- At the previous stage, inc and dec were non-deterministic

- r was chosen arbitrarily within the interval p .. q

- We now remove the non-determinacy in inc and dec

- r is chosen to be the middle of the interval p .. q

52

Reducing Non-determinacy 49

(abstract)inc
when

f(r) < v
then

p := r + 1
r :∈ r + 1 .. q

end

(concrete)inc
when

f(r) < v
then

p := r + 1
r := (r + 1 + q)/2

end

(abstract)dec
when

f(r) < v
then

q := r − 1
r :∈ p .. r − 1

end

(concrete)dec
when

f(r) < v
then

q := r − 1
r := (p + r − 1)/2

end

53

Second Refinement: the Events 50

init
p, q := 1, n
r := (1 + n)/2

bin search
when

f(r) = v
then

skip
end

inc
when

f(r) < v
then

p := r + 1
r := (r + 1 + q)/2

end

dec
when

v < f(r)
then

q := r − 1
r := (p + r − 1)/2

end

54

Merging Rule M IF 51

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M IF

55

Merging Events inc and dec by means of Rule M IF 52

inc
when

f(r) 6= v
f(r) < v

then
p := r + 1
r := (r + 1 + q)/2

end

dec
when

f(r) 6= v
v ≤ f(r)

then
q := r − 1
r := (p + r − 1)/2

end

inc dec
when

f(r) 6= v
then

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

final
when

f(r) = v
then

skip
end

56

Merging Rule M WHILE 53

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
while Q do

S
end;
T

end

M WHILE

- Side Conditions:

- P must be invariant under S

- The first event must have been introduced at one

refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard
57

Merging Events inc dec and bin search with Rule M WHILE 54

inc dec
when

f(r) 6= v
then

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

final
when

f(r) = v
then

skip
end

inc dec final
while f(r) 6= v do

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

init
p, q := 1, n
r := (1 + n)/2

58

Merging Events inc dec bin search and init with Rule M INIT 55

inc dec final
while f(r) 6= v do

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

init
p, q := 1, n
r := (1 + n)/2

bin search program
p, q, r := 1, n, (1 + n)/2;
while f(r) 6= v do

if f(r) < v then
p, r := r + 1, (r + 1 + q)/2

else
q, r := r − 1, (p + r − 1)/2

end
end

59

Example 3: Array Partitioning 56

- Given a numerical array f with n distinct elements

- Given a number x

- We construct another numerical array g with some constraints.

60

Array Partitioning: More Constraints 57

- g has the same elements as f

- there exists a number k in 0 .. n such that elements of g are:

- not greater than x in interval 1 .. k

- greater than x in interval k + 1 .. n

1 ≤ x k k + 1 > x n

61

Example 58

- Let the array f be the following:

3 7 2 5 8 9 4 1

- Let x be equal to 5

- The result g can be the following with k being set to 5

3 2 5 4 1 9 7 8

k
62

Array Partitioning: first special case 59

- Let the array f be the following:

3 7 2 5 8 9 4 1

- Let x be equal to 0

- The result g can be the following with k being set to 0

3 7 2 5 8 9 4 1

k
63

Array Partitioning: second special case 60

- Let the array f be the following:

3 7 2 5 8 9 4 1

- Let x be equal to 10

- The result g can be the following with k being set to 8

3 7 2 5 8 9 4 1

k
64

Array Partitioning: the Initial State 61

constants: n, f, x

variables: k, g

axm0 1: n ∈ N

axm0 2: f ∈ 1 .. n � N

axm0 3: x ∈ N

inv0 1: k ∈ N

inv0 2: g ∈ N↔ N

65

Array Partitioning: the Initial Events 62

init
k :∈ N
g :∈ N↔ N

final
when

k ∈ 0 .. n
g ∈ 1 .. n � N
ran (g) = ran (f)
∀l · l ∈ 1 .. k ⇒ g(l) ≤ x
∀l · l ∈ k + 1 .. n ⇒ g(l) > x

then
skip

end

progress
status

anticipated
then

k :∈ N
g :∈ N↔ N

end

66

Array Partitioning : First Refinement 63

Introducing a new variable j ranging from 0 to n

Current situation: array g is partitioned from 1 to j

1 ≤ x k k + 1 > x j j + 1 ? n

Invariant

k ≤ j

∀ l · l ∈ 1 .. k ⇒ g(l) ≤ x

∀ l · l ∈ k + 1 .. j ⇒ g(l) > x

67

Array Partitioning : First Refinement: the State 64

constants: n, f, x

variables: k, g, j

inv1 1: j ∈ 0 .. n

inv1 2: k ≤ j

inv1 3: ∀ l · l ∈ 1 .. k ⇒ g(l) ≤ x

inv1 4: ∀ l · l ∈ k + 1 .. j ⇒ g(l) > x

68

3 7 2 5 8 9 4 1

Partitioning with 5

69

3 7 2 5 8 9 4 1

Partitioning with 5

70

3 7 2 5 8 9 4 1

Partitioning with 5

71

3 2 7 5 8 9 4 1

Partitioning with 5

72

3 2 5 7 8 9 4 1

Partitioning with 5

73

3 2 5 7 8 9 4 1

Partitioning with 5

74

3 2 5 7 8 9 4 1

Partitioning with 5

75

3 2 5 4 8 9 7 1

Partitioning with 5

76

3 2 5 4 1 9 7 8

Partitioning with 5

77

Array Partitioning : Refining Existing Events (1) 65

init
g, j, k := f, 0, 0

final
when

j = n
then

skip
end

78

Array Partitioning : New Event 66

1 ≤ x k k + 1 > x j j + 1 ? n

progress 1
refines

progress
status

convergent
when

j 6= n
g(j + 1) > x

then
j := j + 1

end

variant1: n− j

79

Array Partitioning : New Event 67

1 ≤ x k, j j + 1 ? n

progress 2
refines

progress
sattus

convergent
when

j 6= n
g(j + 1) ≤ x
k = j

then
k, j := k + 1, j + 1

end

variant1: n− j

80

Array Partitioning : New Event 68

1 ≤ x k k + 1 > x j j + 1 ? n

progress 3
progress

sattus
convergent

when
j 6= n
g(j + 1) ≤ x
k 6= j

then
k, j, g := k + 1, j + 1,

swap (g, k + 1, j + 1)
end

variant1: n− j

swap (g, k, j) = g �− {k 7→ g(j)} �− {j 7→ g(k)}

81

3 2 5 7 8 9 4 1

Partitioning with 5

82

3 2 5 4 8 9 7 1

Partitioning with 5

83

Array Partitioning : Final Merging (1) 69

Putting together progress 2 and progress 3

progress 2
when

j 6= n
g(j + 1) ≤ x
k = j

then
k, j := k + 1, j + 1

end

progress 3
when

j 6= n
g(j + 1) ≤ x
k 6= j

then
k, j, g := k + 1, j + 1,

swap (g, k + 1, j + 1)
end

84

Merging Rule (2) 70

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M IF

85

Array Partitioning : Final Merging (2) 71

Applying Rule M IF to progress 2 and progress 3

progress 23
when

j 6= n
g(j + 1) ≤ x

then
if k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
end

end

86

Array Partitioning : Final Merging (3) 72

Putting together progress 1 and progress 23

progress 1
when

j 6= n
g(j + 1) > x

then
j := j + 1

end

progress 23
when

j 6= n
g(j + 1) ≤ x

then
if k = j then

k, j := k + 1, j + 1
else

k, j, g := k + 1, j + 1,
swap (g, k + 1, j + 1)

end
end

87

Merging Rule (3) 73

when
P
Q

then
S

end

when
P
¬Q
then

if R then
T

else
U

end
end

;

when
P

then
if Q then

S
elsif R then

T
else

U
end

end

M ELSIF

88

Array Partitioning : Final Merging (4) 74

Applying M ELSIF to progress 1 and progress 23

final
when

j = n
then

skip
end

progress 123
when j 6= n then

if g(j + 1) > x then
j := j + 1

elsif k = j then
k, j := k + 1, j + 1

else
k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)

end
end

89

Merging Rule M WHILE (special case) 75

when
Q

then
S

end

when
¬Q
then

skip
end

;
while Q do

S
end

M WHILE

90

Array Partitioning : Final Merging (6) 76

Applying M WHILE4 to partition and progress 123

init
g := f
j := 0
k := 0

progress 123 final
while j 6= n do

if g(j + 1) > x then
j := j + 1

elsif k = j then
k, j := k + 1, j + 1

else
k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)

end
end

91

Array Partitioning : Final Program 77

Applying Rule M INIT to init and progress 123 final yields

partition program
g, k, j := f, 0, 0 ; init

while j 6= m do
if g(j + 1) > x then

j := j + 1 progress 1
elsif k = j then

k, j := k + 1, j + 1 progress 2
else

k, j, g := k + 1, j + 1,
swap (g, k + 1, j + 1)

progress 3

end
end

92

Array Partitioning: Concluding Remarks 78

- The complete development requires 18 proofs.

- Among which 6 were interactive

93

Example 4: Array Sorting 79

• Given: A numerical array f

• Result is: Another numerical array g

• g has the same elements as f

• g is sorted in ascending order

94

3 7 2 5 8 9 4

Sorting

1

1 2 3 4 5 7 8 9

95

Sorting Initial State 80

constants: n, f

axm0 1: n ∈ N

axm0 2: 0 < n

axm0 3: f ∈ 1 .. n � N

variables: g inv0 1: g ∈ N↔ N

96

Sorting Initial Events 81

init
g :∈ N↔ N

final
when

g ∈ 1 .. n→ N
ran (g) = ran (f)

∀ i, j ·

i ∈ 1 .. n− 1
j ∈ i + 1 .. n
⇒
g(i) < g(j)

then

skip
end

progress
status

anticipated
then

g :∈ N↔ N
end

97

Sorting : First Refinement 82

- Introducing a new variable k ranging form 1 to n

- Current situation: array g is sorted from 1 to k − 1

1 sorted and ≤ k − 1 k ? n

98

Array Sorting First Refinement: the State 83

variables: g, k, l

inv1 1: g ∈ 1 .. n � N

inv1 2: ran(g) = ran(f)

inv1 3: k ∈ 1 .. n

inv1 4: ∀ i, j ·

 i ∈ 1 .. k − 1
j ∈ i + 1 .. n
⇒
g(i) < g(j)

inv1 5: l ∈ N

- We introduce an anticipated variable l

99

3 7 2 5 8 9 4

Sorting

1

100

1 7 2 5 8 9 4 3

Sorting

101

1 2 7 5 8 9 4 3

Sorting

102

1 2 3 5 8 9 4 7

Sorting

103

1 2 3 4 8 9 5 7

Sorting

104

1 2 3 4 5 9 8 7

Sorting

105

1 2 3 4 5 7 8 9

Sorting

106

1 2 3 4 5 7 8 9

Sorting

107

1 2 3 4 5 7 8 9

Sorting

108

First Refinement: Events 84

init
g, k := f, 1
l :∈ N

final
when k = n then skip end

progress
any l where

k < n
l ∈ k .. n
g(l) = min(g[k .. n])

then
g := g �− {k 7→ g(l)} �− {l 7→ g(k)}
k := k + 1
l :∈ N

end

prog
status

anticipated
then

l :∈ N
end

variant1: n− k

109

Sorting : 2nd Refinement 85

Introducing one new variables j in k .. n

Current situation: g(l) is the minimum of g[k .. j]

1 sorted and ≤ k − 1 k ? j j + 1 ? n

110

Array Sorting Second Refinement: the State 86

variables: g, k, j, l

inv2 1: j ∈ k .. n

inv2 2: l ∈ k .. j

inv2 3: g(l) = min(g[k .. j])

111

7 2 5 8 9 4

Sorting

13

112

7 2 5 8 9 4

Sorting

13

113

7 2 5 8 9 4

Sorting

13

114

7 2 5 8 9 4

Sorting

13

115

7 2 5 8 9 4

Sorting

13

116

7 2 5 8 9 4

Sorting

13

117

7 2 5 8 9 4

Sorting

13

118

7 2 5 8 9 4

Sorting

13

119

1 7 2 5 8 9 4 3

Sorting

120

1 7 2 5 8 9 4 3

Sorting

121

1 7 2 5 8 9 4 3

Sorting

122

1 7 2 5 8 9 4 3

Sorting

123

1 7 2 5 8 9 4 3

Sorting

124

1 7 2 5 8 9 4 3

Sorting

125

1 7 2 5 8 9 4 3

Sorting

126

1 2 7 5 8 9 4 3

Sorting

127

1 2 7 5 8 9 4 3

Sorting

128

1 2 7 5 8 9 4 3

Sorting

129

1 2 7 5 8 9 4 3

Sorting

130

1 2 7 5 8 9 4 3

Sorting

131

1 2 7 5 8 9 4 3

Sorting

132

1 2 3 5 8 9 4 7

Sorting

133

1 2 3 5 8 9 4 7

Sorting

134

1 2 3 5 8 9 4 7

Sorting

135

1 2 3 5 8 9 4 7

Sorting

136

1 2 3 5 8 9 4 7

Sorting

137

1 2 3 4 8 9 5 7

Sorting

138

1 2 3 4 8 9 5 7

Sorting

139

1 2 3 4 8 9 5 7

Sorting

140

1 2 3 4 8 9 5 7

Sorting

141

1 2 3 4 5 9 8 7

Sorting

142

1 2 3 4 5 9 8 7

Sorting

143

1 2 3 4 5 9 8 7

Sorting

144

1 2 3 4 5 7 8 9

Sorting

145

1 2 3 4 5 7 8 9

Sorting

146

1 2 3 4 5 7 8 9

Sorting

147

1 2 3 4 5 7 8 9

Sorting

148

Sorting 2nd Refinement: Refining Existing Events 87

init
g, k := f, 1
j, l := 1, 1

final
when

k = n
then

skip
end

progress
when

k < n
j = n

then
g := g �− {k 7→ g(l)} �− {l 7→ g(k)}
k, j, l := k + 1, k + 1, k + 1

end

149

Sorting 2nd Refinement: Adding Events Refining event "prog"
88

prog1
refines

prog
status

convergent
when

k < n
j < n
g(l) ≤ g(j + 1)

then
j := j + 1

end

prog2
refines

prog
status

convergent
when

k < n
j < n
g(l) > g(j + 1)

then
j, l := j + 1, j + 1

end

variant1: n− j

150

Final Program: Applying Merging Rule 89

sort program
begin

g, k, j, l := f, 1, 1, 1 ; init
while k < n do

while j < n do
if g(l) ≤ g(j + 1) then

j := j + 1 prog1
else

j, l := j + 1, j + 1 prog2
end

end;
k, j, l, g := k + 1, k + 1, k + 1, swap (g, k, l) progress

end
end

151

Sorting: Concluding Remarks 90

- The overall development requires 28 proofs.

- Among which 7 were interactive

152

Example 5: In Place Reversing of an Array 91

carrier set: S

constants: n, f

variables: g

axm0 1: n ∈ N

axm0 2: 0 < n

axm0 3: f ∈ 1 .. n→ N

inv0 1: g ∈ N↔ S

153

In Place Reversing of an Array: Example 92

Here is an array

3 2 5 4 1 9 7 8

Here is the reverse array

8 7 9 1 4 5 2 3

An element which was at index i is now at index 8− i + 1

154

In Place Reversing of an Array: Events 93

init
g :∈ N↔ S

final
when

g ∈ 1 .. n→ S

∀k ·
(

k ∈ 1 .. n
⇒
g(k) = f(n− k + 1)

)
then

skip
end

progress
status

anticipated
then

g :∈ N↔ S
end

155

In Place Reversing of an Array: Refinement 94

- We introduce two additional variables i and j, both in 1 .. n

- Initially i is equal to 1 and j is equal to n

- Here is the current situation:

1 reversed i unchanged j reversed n

- A new event is going to exchange elements in i and j.

156

Refinement: the New State 95

variables: g, i, j

inv1 1: g ∈ 1 .. n→ S

inv1 2: i ∈ 1 .. n

inv1 3: j ∈ 1 .. n

inv1 4: i + j = n + 1

inv1 5: i ≤ j + 1

157

Refinement: the Main Invariants 96

inv1 4: i + j = n + 1

inv1 5: i ≤ j + 1

inv1 6: ∀k · k ∈ 1 .. i− 1 ⇒ g(k) = f(n− k + 1)

inv1 7: ∀k · k ∈ i .. j ⇒ g(k) = f(k)

inv1 8: ∀k · k ∈ j + 1 .. n ⇒ g(k) = f(n− k + 1)

1 reversed i unchanged j reversed n

158

Refinement: the Events 97

init
i := 1
j := n
g := f

final
when

j ≤ i
then

skip
end

variant1: j − i

progress
status

convergent
when

i < j
then

g := g �− {i 7→ g(j)} �− {j 7→ g(i)}
i, j := i + 1, j − 1

end

159

Final Program 98

reverse program
i, j, g := 1, n, f ;
while i < j do

i, j, g := i + 1, j − 1, swap(g, i, j)
end

160

Example 6: Reversing a Linear Chain 99

- So far, all our examples were dealing with arrays.

- This new example deals with pointers

- We want to reverse a linear chain

- A linear chain is made of nodes

- The nodes are pointing to each other by means of pointers

- To simplify, the nodes have no information fields

161

A Linear Chain 100

- Here is a linear chain:

f → → . . . → → l

- The first node of the chain is denoted by f

- The last node is a special node denoted by l

- We suppose that f and l are distinct

- The nodes of the chain are taken in a set S

162

Formalizing the Linear Chain 101

The chain is represented by a bijection c

carrier set: S

constants: d, f, l, c

axm0 1: d ⊆ S

axm0 2: f ∈ d

axm0 3: l ∈ d

axm0 4: f 6= l

axm0 5: c ∈ d \ {l}�� d \ {f}

axm0 6: ∀T · T ⊆ c[T] ⇒ T = ∅

163

Reversing the Chain 102

- Given the following initial chain

f → x → . . . → z → l

- Then the transformed chain should look like this:

f ← x ← . . . ← z ← l

164

Initial Model: the Events 103

constants: d, f, l, c inv0 1: r ∈ S↔ S

init
r :∈ S↔ S

reverse
r := c−1

165

First Refinement 104

We introduce two additional chains a and b and a pointer p

a

————————————-

f ← . . . ← p → → . . . → l

————————————————-

b

- Node p starts both chains

- Main invariant: a ∪ b−1 = c−1

166

Progressing 105

a

————————————-

f ← . . . ← p → → . . . → l

————————————————-

b

a

—————————————————

f ← . . . ← ← p → . . . → l

————————————-

b

167

First Refinement: the State (1) 106

variables: r, a, b, p

"cl" is the irreflexive transitive closure operator

inv1 1: p ∈ d

inv1 2: a ∈ (cl(c−1)[p] ∪ p) \ {f}�� cl(c−1)[p]

inv1 3: b ∈ (cl(c)[p] ∪ p) \ {l}�� cl(c)[p]

inv1 4: c = a−1 ∪ b

168

First Refinement: the Events 107

init
r :∈ S↔ S
a, b, p := ∅, c, f

reverse
when

b = ∅
then

r := a
end

progress
when

p ∈ dom(b)
then

p := b(p)
a(b(p)) := p
b := {p} �− b

end

169

Second Refinement: the State 108

- We introduce a new constant nil

- We replace the chain b by the chain bn

- And we introduce a new pointer q

constants: f, l, c, nil

variables: r, a, bn, p, q

axm2 1: nil ∈ S

axm2 2: nil /∈ d

inv2 1: bn = b ∪ {l 7→ nil}

inv2 2: q = bn(p)

170

Second Refinement: the Events 109

progress
when

q 6= nil
then

p := q
a(q) := p
q := bn(q)
bn := {p} �− bn

end

reverse
when

q = nil
then

r := a
end

init
r :∈ S↔ S
a, bn := ∅, c ∪ {l 7→ nil}
p, q := f, c(f)

171

Third Refinement 110

- The previous situation with two chains a and bn

a

————————————–

f ← . . . ← p → q → . . . → l → nil

———————————————————————

bn

- The new situation with a single chain d

f ← . . . ← p q → . . . → l → nil

————————————————————————————————

d
172

Third Refinement: the State 111

variables: r, p, q, d

inv3 1: d ∈ S 7→ S

inv3 2: d = ({f} �− bn) �− a

173

Third Refinement: the Events 112

progress
when

q 6= nil
then

p := q
d(q) := p
q := d(q)

end

reverse
when

q = nil
then

r := d �− {nil}
end

init
r :∈ S↔ S
d := {f} �− (c ∪ {l 7→ nil}
p, q := f, c(f)

174

Merging 113

reverse program
p, q, d := f, c(f), {f} �− (c ∪ {l 7→ nil});
while q 6= nil do

p := q
d(q) := p
q := d(q)

end;
r := d �− {nil}

175

Example 7: Integer Square root 114

- The squaring function is defined on all natural numbers

- And it is injective

- Therefore the inverse function, the square root function, exists

- But is is not defined for all natural number

- We want to make it total

176

Integer Square Root 115

- The integer square root of n by defect is a number r such that

r2 ≤ n < (r + 1)2

177

Integer Square Root (cont’d) 116

- The integer square root of 17, is 4 since we have

42 ≤ 17 < 52

- The integer square root of 16, is 4 since we have

42 ≤ 16 < 52

- The integer square root of 15, is 3 since we have

32 ≤ 15 < 42

178

Integer Square Root: Initial State and Events 117

constants: n

variables: r

axm0 1: n ∈ N

inv0 1: r ∈ N

init
r :∈ N

final
when

r2 ≤ n
n < (r + 1)2

then
skip

end

progress
status

anticipated
then

r :∈ N
end

179

First Refinement 118

inv1 1: r2 ≤ n variant1: n− r2

init
r := 0

square root
when

n < (r + 1)2

then
skip

end

progress
status

convergent
when

(r + 1)2 ≤ n
then

r := r + 1
end

180

Program after First Refinement 119

We obtain the following program:

square root program
r := 0;
while (r + 1)2 ≤ n do

r := r + 1
end

181

Second Refinement 120

- We do not want to compute (r + 1)2 at each step

- We observe the following

((r + 1) + 1)2 = (r + 1)2 + (2r + 3)

2(r + 1) + 3 = (2r + 3) + 2

- We introduce two numbers a and b such that

a = (r + 1)2

b = 2r + 3

182

Second Refinement: State and Events 121

constants: n

variables: r, a, b

inv2 1: a = (r + 1)2

inv2 2: b = 2r + 3

init
r := 0
a := 1
b := 3

final
when

n < a
then

skip
end

progress
when

a ≤ n
then

r := r + 1
a := a + b
b := b + 2

end

183

Program after Second Refinement 122

We obtain the following program:

square root program
r, a, b := 0, 1, 3;
while a ≤ n do

r, a, b := r + 1, a + b, b + 2
end

184

Example 8: Inverse of an Injective Numerical Function 123

- Same problem as in previous example but more general

- We are given a total numerical function f

- The function f is supposed to be strictly increasing

- Hence it is injective

- We want to compute its inverse by defect

- We shall borrow ideas form the binary search development

185

Inverse of an Injective Numerical Function: the State 124

constants: f, n

variables: r

inv0 1: r ∈ N

axm0 1: f ∈ N→ N

axm0 2: ∀i, j ·

i ∈ N
j ∈ N
i < j
⇒
f(i) < f(j)

axm0 3: n ∈ N

thm0 1: f ∈ N � N

186

Inverse of an Injective Numerical Function: the Events 125

init
r :∈ N

final
when

f(r) ≤ n < f(r + 1)
then

skip
end

progress
status

anticipated
then

r :∈ N
end

187

First Refinement 126

- We are supposedly given two constant numbers a and b such that

f(a) ≤ n < f(b + 1)

- We are thus certain that our result is within the interval a .. b

- We try to make this interval narrower

- We introduce a constant q such that:

f(r) ≤ n < f(q + 1)

188

First Refinement: the State (1) 127

constants: f, n, a, b

variables: r, q

axm1 1: a ∈ N

axm1 2: b ∈ N

axm1 3: f(a) ≤ n

axm1 4: n < f(b + 1)

189

First Refinement: the State (2) 128

inv1 1: q ∈ N

inv1 2: r ≤ q

inv1 3: f(r) ≤ n

inv1 4: n < f(q + 1)

190

First Refinement: the Events (1) 129

init
r, q := a, b

final
when

r = q
then

skip
end

191

First Refinement: the Events (2) 130

dec
refines

progress
status

convergent
any x where

r 6= q
x ∈ r + 1 .. q
n < f(x)

then
q := x− 1

end

inc
refines

progress
status

convergent
any x where

r 6= q
x ∈ r + 1 .. q
f(x) ≤ n

then
r := x

end

variant1: q − r

192

Second Refinement: the Events 131

- We reduce the non-determinacy

dec
when

r 6= q
n < f((r + 1 + q)/2)

then
q := (r + 1 + q)/2− 1

end

inc
when

r 6= q
f((r + 1 + q)/2) ≤ n

then
r := (r + 1 + q)/2

end

193

Final Program 132

inverse program
r, q := a, b;
while r 6= q do

if n < f((r + 1 + q)/2) then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end

194

Genericity 133

- The development made in this example is generic

- We can consider that the constants f , a, and b are parameters

- By instantiating them we obtain some new programs almost for free

- But we have to prove the properties of the instantiated constants:

In our case we have to prove:

- axm0 1: f is a total function

- axm0 2: f is increasing

- axm1 3 and axm1 4: f(a) ≤ n < f(b + 1)

195

First Instantiation (1) 134

- f is instantiated to the squaring function

- a and b are instantiated to 0 and n since we have

02 ≤ n < (n + 1)2

- We shall obtain an integer square root program

196

First Instantiation (2) 135

square root program
r, q := 0, n;
while r 6= q do

if n < ((r + 1 + q)/2)2 then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end

197

Second Instantiation (1) 136

- f is instantiated to the function which “multiply by m”

- a and b are instantiated to 0 and n since we have

m× 0 ≤ n < m× (n + 1)

- We shall obtain an integer division program: n/m

198

Second Instantiation (2) 137

integer division program
r, q := 0, n;
while p 6= q do

if n < m× (r + 1 + q)/2) then
q := (r + 1 + q)/2− 1

else
r := (r + 1 + q)/2

end
end

199

