
Towards Automated Refinement: Patterns in Event B

Alexei Iliasov1, Elena Troubitsyna2, Linas Laibinis2, and Alexander Romanovsky1

1 Newcastle University, UK
2 Åbo Akademi University, Finland

{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk
{linas.laibinis, elena.troubitsyna}@abo.fi

Abstract. Formal modelling is indispensable for engineering highly dependable
systems. However, a wider acceptance of formal methods is hindered by their in-
sufficient usability and scalability. In this paper, we aim at assisting developers in
rigorous modelling and design by increasing automation of development steps.
We introduce a notion of refinement patterns – generic representations of typi-
cal correctness-preserving model transformations. Our definition of a refinement
pattern contains a description of syntactic model transformations, as well as the
pattern applicability conditions and proof obligations for verification of correct-
ness preservation. This establishes a basis for building a tool supporting formal
system development via pattern reuse and instantiation. Wepresent a prototype of
such a tool and some examples of refinement patterns for automated development
in the Event B formalism.

1 Introduction

System development by stepwise refinement is aformalmodel-driven development ap-
proach that advocates development of systems correct by construction. Development
starts from an abstract model, which is gradually transformed into implementation.
Each model transformation step, called arefinementstep, allows a designer to incor-
porate implementation details into the model. Correctnessof each refinement step is
validated by proofs.

The refinement approach supports verification and clear traceability of system prop-
erties through various abstraction levels. However, it is still poorly integrated into exist-
ing software engineering process. Among the main reasons hindering its application are
complexity of carrying proofs, lack of expertise in abstract modelling, and insufficient
scalability.

In this paper we propose an approach that aims at facilitating integration of formal
methods into the existing development practice by leveraging automation of refinement
process and increasing reuse of models and proofs. We aim at automating certain model
transformation steps via instantiation and reuse of prefabricated solutions, which we
call refinement patterns. Such patterns generalise certain typical model transformations
reoccurring in a particular development method. They can bethought of as ”refinement
rules in large”.

In general, a refinement pattern is a generic model transformer. Essentially it con-
sists of three parts. The first part is the pattern applicability conditions, i.e., the syntactic
and semantic conditions that should be fulfilled by the modelfor a refinement pattern
to be applicable. The second part contains definition of syntactic manipulations over
the model to be transformed. Finally, the third part consists of the proof obligations

that should be discharged to verify that the performed modeltransformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hencesome large model trans-
formation steps can be represented by a certain combinationof refinement patterns, and
therefore can also be seen as refinement patterns per se. A possibility to compose pat-
terns significantly improves scalability of formal modelling. Moreover, a representation
of a refinement step by a number of syntactic manipulations over a model provides a
basis for automation. Finally, our approach supports extensive reuse of not only models
but also proofs. Indeed, by proving that an application of a generic pattern produces a
valid refinement of a generic model, we at the same time verifythe correctness of such
a transformation for any of its instances. This allows us to significantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns presented in this paper estab-
lished a basis for building a prototype tool for automating refinement process in Event
B[10]. The tool has been developed as a plug-in for the RODIN platform [1] – an open
toolset for supporting modelling and refinement in the EventB framework. We be-
lieve that by creating a large library of refinement patternsand providing automated
tool support for pattern matching and instantiation, we will make formal modelling and
verification more accessible for software engineers and hence facilitate integration of
formal methods into software engineering practice.

The paper is organised as follows: in Section 2 we give a briefintroduction into our
modelling framework – Event B. In Section 3 we define a notion of a transformation
rule and its special case – a refinement pattern, as well as a language for constructing
transformation rules. In Section 4 we describe how to compose patterns. In Section 5
we construct a rather complex pattern for introducing well-known fault tolerance mech-
anism – triple modular redundancy and discuss the prototypetool for documenting and
using patterns in Event B development. Finally, in Section 6we give some concluding
remarks and discuss related work.

2 Modelling and Refinement in Event B

2.1 Introduction into Event B

Event B [2] is an extension of the B Method [3] to model parallel, distributed and
reactive systems. The Rodin platform [1] provides automated tool support for modelling
and verification in Event B.

Event B uses the Abstract Machine Notation for constructingand verifying models.
An abstract machine encapsulates a state (the variables) ofthe model and provides
operations on its state. A simple abstract machine has the following general form:

SYSTEM AM

VARIABLES v

INVARIANT I

INITIALISATION INIT
EVENTS

E1

. . .

EN

The machine is uniquely identified by its nameAM. The state variables of the machine,
v, are declared in theVARIABLES clause and initialised inINIT as defined in the
INITIALISATION clause. The variables are strongly typed by constraining predicates
of the machine invariantI given in theINVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates and the predicates defining the
properties of the system that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events specified
in theEVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where the guardg is conjunction of predicates over the state variablesv, and the action
S is an assignment to the state variables.

The occurrence of events represents the observable behaviour of the system. The
guard defines the conditions under which the action can be executed, i.e., when the
event isenabled. The action can be either a deterministic assignment to the state vari-
ables or a non-deterministic assignment from a given set or an assignment according
to a given postcondition. These assignments are denoted as:=, :∈ and:| correspond-
ingly. If several events are enabled then any of them can be chosen for execution non-
deterministically. If none of the events is enabled then thesystem deadlocks.

The Event B models are formally defined using the weakest precondition seman-
tics [7]. The weakest precondition semantics provides us with a foundation for estab-
lishing correctness of specifications and verifying refinements between them. For in-
stance, we verify correctness of a specification by proving that its initialization and all
events establish the invariant.

The basic idea underlying formal stepwise development by refinement is to de-
sign the system implementation gradually, by a number of correctness preserving steps,
calledrefinements. The refinement process starts from creating an abstract, albeit unim-
plementable, specification and finishes with generating executable code. The interme-
diate stages yield the specifications containing a mixture of abstract mathematical con-
structs and executable programming artifacts.

Assume that the refinement machineAM ′ is a result of refinement of the abstract
machineAM:

SYSTEM AM ′

VARIABLES v′

INVARIANT I ′

INITIALISATION INIT′

EVENTS

E1

. . .

EN

The machineAM ′ might contain new variables as well as replace the abstract data
structures ofAM with the concrete ones. The invariant ofAM ′ – I ′ – defines not only
the invariant properties of the refined model, but also the connection between the state
spaces ofAM andAM ′. For a refinement step to be valid, every possible execution
of the refined machine must correspond (viaI ′) to some execution of the abstract ma-
chine. To demonstrate this, we should prove thatINIT ′ is a valid refinement ofINIT,
each event ofAM ′ is a valid refinement of its counterpart inAM and that the refined
specification does not introduce additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,

I ∧ I ′ ∧ g′

i ⇒ gi ∧ wp(S′,¬wp(S,¬InvC)), and
I ∧ I ′ ∧ gi ⇒

W

N

i
g′

i

2.2 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B modelas a syntactic math-
ematical object. For brevity, we omit representations of some model elements here,
though they are supported in our tool implementation [10]. Asubset of Event-B models
used in this paper can be described by the following data structure:

model :: var : VAR∗

inv : PRED∗

evt : event∗

event :: name : EVENT
param : PARAM∗

guards : PRED∗

actions : action∗

action :: var : VAR
style : STYLE
expr : EXPR

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressions,event names and parameters.
An event is represented by a tuple containing the event name,(a list of) its parameters,
guards, and actions. The reserved event nameinit denotes the initialisation event. An
action, in its turn, is a tuple containing a variable, an action style and an expression. An
action style denotes one of the assignment types : i.e.,STYLE = {:=, :∈, :|}.

Sub-elements of a model element can be accessed by using the dot operator:act.style

is the style of an actionact. Instances of the models, events and actions are constructed
using a special notation〈a1 | · · · | an〉. The following example shows how an Event B
model can be represented as a syntactic object in our notation:

SYSTEM m0
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

〈 〈x〉 |
〈”x ∈ Z”〉 |

〈 〈init | − | − | 〈x |:=| ”0”〉〉,

〈count | − | − | 〈x |:=| ”x + 1”〉〉〉〉

In the example,x is an element ofVAR, init and count are event names from
EVENT, ”x ∈ Z” is a predicate, and”0”, ”x + 1” are model expressions.

Now we have set a scene for a formal definition of refinement patterns that aim at
automating refinement process Event B.

3 Refinement Patterns

3.1 Transformation Rules and Refinement Patterns

Usually a refinement step in Event B results in introducing several changes in all clauses
of a refined model. Then we verify by proofs that these changesindeed result in a
correct model refinement. Often a refinement step can be seen as a composition of
”standard” (frequently reoccurring) localized transformations distributed all over the
model. However, in general it is unclear how to reuse the models and proofs constructed
previously and possibly automate execution of these transformations.

In this paper we propose to tackle this problem via definitionand reuse of refinement
patterns. Our definition of refinement patterns builds on theidea of refinement rules [4,
13]. A refinement pattern in general is a model transformer. Unlike design patterns [8], a
refinement pattern is ”dynamic” in a sense that it takes a model as an input and produces
a new model as an output. To define a refinement pattern we first give a more general
definition of a transformation rule

Definition 1. LetS be a set of all well-formed Event B models. Then a transformation
rule T is a function computing a new model for a given input model:

T : S × C 7→ S

whereC contains a set of all possible configurations (i.e., additional parameters) of a
transformation rule.

Note thatT is defined as a partial function, i.e., it produces a new modelonly for some
acceptable input modelss and configurationsc, i.e., when(s, c) ∈ dom(T).

Definition 2. A refinement pattern is a transformation ruleP : S × C 7→ S that, for
any acceptable input model and configuration, constructs a model refinement:

∀ s, c.(s, c) ∈ dom(P) ⇒ s ⊑ P (s, c)

where⊑ denotes a refinement relation.

Our definition of a refinement pattern consists of three parts. The first part is the
pattern applicability conditions, i.e., the syntactic andsemantic conditions that should
be fulfilled by the model for a refinement pattern to be applicable. The second part
contains definition of syntactic manipulations on the modelto be transformed. Finally,
the third part consists of the proof obligations that shouldbe discharged to verify that
the performed model transformation is indeed a refinement step. It is easy to see, that a
refinement pattern manipulates a model on both syntactic andsemantic level.

We believe that the main benefit of refinement patterns is in possibility to construct
large transformation rules that potentially automate certain domain-specific model trans-
formations. Examples of such transformations could be integrating certain fault toler-
ance mechanisms or introducing communication protocols etc. We propose a special
language for constructing larger transformation rules.

3.2 The Language of Transformations

Our language contains basic transformation rules as well asthe constructs allowing to
compose complex rules from the simpler ones. For instance, arefinement pattern is usu-
ally composed from several basic transformation rules. These rules themselves might
not be refinement patterns. However, by attaching to them additional proof obligations,
we can verify that their composition constitutes a refinement pattern.

The structure of the basic rules reflects the way a transformation rule or a refine-
ment pattern is applied. First, rule applicability for a given input model and configura-
tion parameters is checked. The applicability condition tobe checked can contain both
syntactic and semantic constraints on input models and configurations. Mathematically,
for a transformation ruleT , its applicability condition corresponds todom(T). Then,

the input models for the given configurationc is syntactically transformed into the
output model calculated as the function applicationT (s, c). Finally, in case of a refine-
ment pattern, the resultT (s, c) should be demonstrated to be a refinement of the input
models, i.e.,s ⊑ T (s, c). The last expression, using the proof theory of Event B, can
be simplified to the specific proof obligations on model elements to be verified.

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO1(c, s)
. . .

proof obligation POn(c, s)

Herename and c are correspondingly the rule name and list of its parameters. The
predicateQ(c, s) defines the rule application context (applicability conditions), where
s is the model being transformed. The effect functionE(c, s) computes a new model
from the current models and the parametersc. The proof obligation part contains a list
of theorems to be discharged to establish that the rule is a (part of) refinement pattern
and not just a transformation rule. From now on, we writecontext(r), effect(r) and
proof obligations(r) to refer to the context, the effect computation function, and the
collection of proof obligations of the ruler.

As an example, let us consider two primitive transformationrules. Below we define
a transformation rule that allows us to introduce one or morenew variables into the
model:

rule newvar(vv)
context vv ∩ s.var = ∅

effect 〈s.var ∪ vv | s.inv | s.evt〉
proof obligation ∀ v ∈ vv · (∃ a · a ∈ s.init.action ∧ v ∈ a.var)

The rule applicability condition requires that the new variables have fresh names for the
input model. The effect function simply adds the new variables to the model structure.
The rule also has a single proof obligation requiring that the variable(s) is assigned in
the initialisation action. Such an action would have to be added by some other basic
rule for the same refinement step.

Next example is the rule for adding new model invariant(s).

rule newinv(ii)
context ii ⊆ PRED ∧ ∀ i ∈ ii · FV (ii) ⊆ s.var

effect 〈s.var | inv ∪ ii | evt〉
proof obligation

∀(e, v, v′) · e ∈ s.evt ∧
Inv(v) ∧ Guardse(v) ∧ BA(v, v′) ⇒ Inv(v′)

proof obligation ∃ v · lnv(v)

HereFV (x) is set of free variables inx, Inv stands for (
∧

i∈s.inv∪ii i), andGuardse

is defined as (
∧

g∈e.guards g). Moreover,BA is the before-after relation describing the
action execution in terms of the before and after values of the model variables. Both
proof obligations are taken directly from the Event-B semantics (i.e., the correspond-
ing proof obligation rules). The first obligation requires to show that the new invariant
is preserved by all model events, while the second one checksfeasibility of such an

p(c) = basic(c) primitive rule
| p; q sequential composition
| p‖q parallel composition
| if Q(c, s) then p end conditional rule
| conf i : Q(i, c, s) do p(i ∪ c) end parameterised rule
| par i : Q(i, c, s) do p(i ∪ c) end generalised parallel composition

Fig. 1.The language of transformation rules

addition by asking to prove that the new invariant is not contradictory. This example
illustrates how the underlying Event B semantics is used to derive proof obligations for
refinement patterns.

The table below lists the basic rules for the chosen subset ofEvent B. There are
two classes of rules – for adding new elements and for removing existing ones. All
the rules implicitly take an additional argument – the modelbeing transformed. A
double-character parameter name signifies that a rule accepts a set of elements, e.g.,
newgrd(e, gg) adds all the guards from a given setgg to an evente.

rule newvar(vv) rule delvar(vv)
rule newinv(ii) rule delinv(ii)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)
rule newactexp(e, a, p)

To construct more complex transformations, we introduce a number of composition
operators into our language. They include the sequential,p; q, and parallel,p‖q, com-
position constructs. In addition, there is the conditionalrule construct,if c thenp end, as
well as a construct allowing to introduce additional rule parameters -conf i : Q dop(i) end.
Finally, to handle rule repetitions, generalised parallelcomposition is introduced in the
form of a loop construct:par c : Q do p(c) end. The language summary is given in
Figure 1.

3.3 Constructing and Using Patterns: Examples

Below we present a couple of simple refinement patterns constructed using the proposed
language.

Example 1 (New Variable).A refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is added to the list of model variables.
Second, the typing invariant is added to the model. Finally,an initialisation action is
provided for the variable. The following refinement patternadds a new variable de-
clared to be a natural number and initalised with zero:

conf v : ¬ (v ∈ s.var) do
newvar({v});
(newinv({”v ∈ N”}, s) ‖ newact(init, {〈v |:=| ”0”〉}))

end

The only pattern parameter (apart from the implicit inputs) is some fresh name for the
new model variable.

A pattern application example is given below. On the left-hand side there is an input
model and the right-hand side there is the refined model constructed via applying the
pattern ”New Variable”. Here the variable nameq instantiate the parameterv.

SYSTEM m0
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

SYSTEM m1
VARIABLES x, q

INVARIANT x ∈ Z ∧ q ∈ N

INITIALISATION x := 0‖q := 0
EVENTS

count = BEGIN x := x + 1 END

A more general (and also useful) pattern version could also accept a typing predicate
and initialisation action as additional pattern parameters.

Example 2 (Action Split).In Event B, we often refine an abstract event into a choice
between two or more concrete events, each of which must be a refinement of the abstract
event. A simple case of such a refinement is captured by the refinement pattern below.
The pattern creates a copy of an abstract event and adds a new guard and its negation to
the original and new events. The guard expression is supplied as a pattern parameter.

conf e, en : e ∈ s.evt ∧ ¬ (en ∈ s.evt) do
newevt(en, s);
newgrd(en, e.guard) ‖
newact(en, e.action);
conf g : g ∈ PRED ∧ FV (g) ⊆ s.var

do newgrd(e, g) ‖ newgrd(en,¬g) end
end

The pattern configuration requires three parameters. The parametere refers to the event
to be refined from the input models, en is some fresh event name, andg is a predicate
on the model variables.

The pattern is applicable to models with at least one event. The result is a model
with an additional event and a constrained guard of the original event. To exemplify
pattern application, lets take the model from the previous example as an input model.

SYSTEM m1
VARIABLES x

INVARIANT x ∈ Z

INITIALISATION x := 0
EVENTS

count = WHEN x mod 2 = 0 THEN x := x + 1 END

inc = WHEN ¬(x mod 2 = 0) THEN x := x + 1 END

Here, the pattern parameters are instantiated as follows:e ascount, en asinc, andx as
x mod 2 = 0.

In this section we have defined refinement patterns together with the language for
constructing transformations and shown small examples of pattern application. To make
our approach scalable, in the next section we formally definepattern composition.

4 Pattern Composition

In the previous section we defined the notion of a basic transformation rule as a combi-
nation of the applicability conditions, transformation (effect) function, and refinement
proof obligations. Moreover, In Figure 1, we also introduced various composition con-
structs for creating complex transformation rules. In thissection we will show how to
inductively define the applicability conditions, effect, and proof obligations for com-
posed rules.

4.1 Rule Applicability Conditions

As we discussed previously, for a basic rule, the rule applicability condition is defined
in its contextclause. To define applicability conditions for more complexrules, we first
introduce a functionscope. This function returns a pair of lists, containing the model
elements that the rule updates or depends on. We can compute an intersection of rule
scopes: for two transformation rules it is an intersection of the elements updated by
these rules and the pair-wise intersection of elements thatare affected by one rule and
relied upon by another.

For a complex rule (constructed using the proposed languageof transformation
rules), the rule applicability is derived inductively according to the following defini-
tion:

app(basic)(c, s) = context(basic)(c, s)
app(p; q)(c, s) = app(p)(c, s) ∧ app(q)(c, eff(p)(c, s))
app(p‖q)(c, s) = app(p)(c, s) ∧ app(q)(c, s) ∧

inter(scope(p), scope(q)) = ⊘
app(if G(c, s) then p end)(c, s) = G(c, s) ⇒ app(p)(c, s)
app(conf i : Q(i, c, s) do p(i) end)(c, s) = ∀ i · Q(i, c, s) ⇒ app(p(i))(c, s)
app(par i : Q(i, c, s) do p(i) end)(c, s) = ∀ i · Q(i, c, s) ⇒ app(p(i))(c, s) ∧

∀(i, j) · Q(i, c, s) ∧ Q(j, c, s) ∧ i 6= j ⇒
inter(scope(p(i)), scope(p(j))) = ⊘

The conditions for the sequential composition, conditional and parameterised rules are
quite standard. Two rules can be applied in parallel if they are working on disjoint
scopes. For instance, a rule transforming an event (e.g., adding a new guard) cannot
be composed with another rule transforming the same event. Asimilar requirement is
formulated for the loop rule, since it is realised as generalised parallel composition.

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an output model can be syntactically
constructed in a compositional way. For a basic rule, the effect function is directly ap-
plied to transform an input model. For more complex rules, a new model is constructed
according to an inductive definition of the functioneff given below.

eff(basic)(c, s) = effect(basic)(c, s)
eff(p; q)(c, s) = eff(q)(c, eff(p)(c, s))
eff(p‖q)(c, s) = eff(q)(c, eff(p)(c, s)), or

= eff(p)(c, eff(q)(c, s))
eff(if G(c, s) then p end)(c, s) = eff(p)(c, s), if G(c, s)

= s, otherwise
eff(conf i : Q(i, c, s) do p(i) end)(c, s) = eff(p(i))(c, s), if Q(i, c, s)

= s, otherwise
eff(par i : Q(i, c, s) do p(i) end)(c, s) = (‖i ∈ Q(i, s, c) · eff(p(i))(c, s)),

if ∃(i, c, s) · Q(i, c, s)
= s, otherwise

Not supprisingly, the result of sequential composition of two rules is computed by ap-
plying the second rule to the result produced by the first one.For the parallel compo-
sition, the result is computed similarly. However, here theorder of the rule application
should not affect the final result. The model resulting from an application of the loop
construct is computed as a generalised parallel composition of an indexed family of
transformation rules. Finally, the last three cases dependon some additional application
conditions (i.e.,G(c, s) or Q(i, c, s)). If these conditions are not satisfied then the rule
application leaves the input model unchanged.

The rule application procedure based on the presented definition can be easily au-
tomated. Probably the only non-trivial detail here is to provide the input values for the
rule parameters. In our prototype tool implementing the ideas described in this paper,
the user is requested to give the parameter values during therule instantiation, while
appropriate contextual hints and descriptions are provided by the tool.

4.3 Pattern Proof Obligations

The modest complex part of our approach is to define proof obligations needed to
demonstrate that a transformation rule is actually a refinement pattern. To achieve this,
in general we have to discharge all the proof obligations of individual basic rules con-
stituting the pattern. These proof obligations cannot be discharged without considering
the context produced by the neighboring rules. The following inductive definition shows
how the list of proof obligations is built for a particular refinement pattern. The context
information for each proof obligation is accumulated whiletraversing the structure of
a pattern. It forms a set of additional hypotheses that latercan be used in automated
proofs.

po(Γ, basic)(c, s) = {Γ |= proof obligations(basic)}
po(Γ, p; q)(c, s) = po(Γ ∪ {s′ = eff(p; q)(c, s)}, p(c, s′)) ∪

po(Γ ∪ {s′ = eff(p; q)(c, s)}, q(c, s′))
po(Γ, p‖q)(c, s) = po(Γ, p) ∪ po(Γ, q)
po(Γ, if G(c, s) then p end)(c, s) = po(Γ ∪ {G(c, s)}, p)
po(Γ, conf i : Q(i, c, s) do p(i) end)(c, s) =

S

i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))
po(Γ, par i : Q(i, c, s) do p(i) end)(c, s) =

S

i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))

HereΓ is a set of accumulated hypothesis containing pattern parametersc and the
initial model s as free variables. For each basic rule, we formulate a theorem whose
right-hand side is a list of the rule proof obligations and the left-hand side is a set of
hypotheses containing the knowledge about the context in which the rule is applied.

4.4 Assertions

The described procedure of building a list of proof obligations for a refinement pattern
aims at including all available information as a proof obligation hypothesis. This can
be very complex for larger patterns, since the large number of accumulated hypotheses
makes a proof obligation intractable. To circumvent this problem, in the tool implemen-
tation we allow a modeller to manually add fitting hypotheses, called assertions, that can
be inferred from the context they appear in. On the one side, typically an assertion is
simple enough to be discharged automatically by a theorem prover. On the other hand,
it can be used to assist in demonstrating the proof obligations of the rule immediately
following the assertion.

An assertion is written asassert(A(c, s)) and is delimited from the neighboring
rules by semicolons. An assertion has no effect on rule instantiation and application.
The following additional cases of thepo definition are used to generate additional proof
obligations for assertions as well as insert an asserted knowledge into the set of collected
hypotheses of a refinement pattern.

po(Γ, p; assert(A(c, s)))(c, s) = Γ ∪ {s′ = eff(p)(c, s)} |= A(c, s′)
po(Γ, assert(A(c, s)); p)(c, s) = po(Γ ∪ {A(c, s)}, p)(c, s)

Pattern composition enables construction of large refinement patterns. We believe
that a promising area of pattern application is in product-line developments. Indeed, a
product-line development significantly relies on reuse of certain design solutions. Re-
finement patterns can be collected and composed to formally define these solutions. By
discharging proof obligations for a general pattern representation, we enhance the reuse
not only on the modelling but also on verification level.

To demonstrate scalability of our approach, next we demonstrate how to construct
a rather complex refinement pattern allowing to introduce a well-known fault tolerance
mechanism into a model.

5 Towards Refinement Automation: Case Study and Tool Support

5.1 Case Study: Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) is a fault-tolerance mechanism in which the results
of three similar components are processed by a voting element to produce a single out-
put [12]. The purpose of the mechanism is to mask a single component failure. In this
section we will demonstrate how a refinement step that introduces the TMR arrange-
ment into a model can be generalized as a refinement pattern.

Our initial specification should have a variable representing the output of a compo-
nent for which TMR will be introduced. Moreover, it should have an event that models
the behaviour of a component by non-deterministically updating this variable. Non-
determinism is used here to model unpredictable (possibly faulty) results produced by
the component. We do not make any assumptions about the variable type. Furthermore,
the event can contain some additional actions on other variables. Finally, our initial
model should also contain a special event handling a failure(abort) of the component.

In the refined model, we replace the single abstract component with three similar
components. The outputs of the new components are modelled by fresh variables. The
variable types and initialisation of these variables are simply copied from their abstract
counterpart in the initial specification.

The TMR pattern we define uses a number of configuration parameters. The param-
eters identifies a variable modelling the output of a component;u is an event updating
the variables (in addition to possible update of other variables);zz is an event han-
dling a failure of the component modelled byu; finally, a is an action fromu updating
variables.

Also, as a result of pattern application, the new variablesph, si andri are introduced
into the refined model. The variableph keeps track of the current phase in the TMR
implementation – reading from the new components, voting onthem, or delivering the
final result; the variablessi, i = 1..3, are used to record the outputs from the three new
components introduced by the pattern; finally, the flagsri reflect availability of new
outputs in the respective output variablessi.

conf s, u, zz, a :
s ∈ var ∧ u ∈ evt ∧ zz ∈ evt ∧ u 6= zz ∧
a ∈ u.actions ∧ a.style 6= (:=) ∧ {s} = a.var

do
conf ph, s1, s2, s3, r1, r2, r3 :

{s1, s2, s3, r1, r2, r3, ph} ⊆ (VAR − var) ∧
part({{s1}, {s2}, {s3}, {r1}, {r2}, {r3}, {ph}})

do
variables ; events ; voter ; abort ; invariant

end
end

The pattern is made of four major parts: the rules declaring the types and initialisation
of new models variables; the definition of new events; the refinement rules for trans-
forming a single abstract event representing the functioning of a sole component into
the voter event; and, finally, the addition of an invariant characterising the behaviour of
a TMR block. The condition using the operatorpart simply states that its arguments
are disjoint sets.

variables
df
=

(newinv(”ph ∈ BOOL”); newini(〈ph |:=| ”FALSE”〉)) ‖
(newinv(”s1 ∈ s.type”);newini(〈s1 | init(s).style | init(s).expr〉))‖
(newinv(”r1 ∈ BOOL”); newini(〈r1 |:=| ”FALSE”〉))
. . .

Each new variable definition should come with a typing invariant and an initialisation
action. These are normally grouped together so that the related proof obligation rules
would work with a smaller context. In the above,. . . stand for the omitted rules defining
the types and initialisation for the variabless2, s3 and r2, r3. The shortcut notation
newini(a) used in the pattern description stands for declaration of the initialisation
action:newini(a)

df
= newact(init, a). The shortcutinit(v) refers to an action of the

initialisation event assigning to the variablev.

The refined model constructed by the pattern would contain three copies of a com-
ponent modelled in the abstract model. As we have made an assumption that a com-
ponent is represented by a single event, the component copies are modelled by adding
three new events into the refined model. A component copy has the guard of an abstract
component, conjuncted with an an additional condition ensuring that it is executed be-
fore passing control to a voter, and an action that is the copyof the selected action of
an abstract component (the pattern parametera) except for saving the result intosi (for
the copyi) instead. In addition, a component copy also assigns tori to indicate the
availability of result insi.

events
df
=

conf u1, u2, u3 :
{u1, u2, u3} ⊂ EVENT \ s.evt ∧ part({{u1}, {u2}, {u3}})

do
copy1 ‖ copy2 ‖ copy3

end
The above creates three component copies, each constructedaccording to the fol-

lowing rule.

copy1

df
=

newevt(〈u1 | − | {”r1 = FALSE”} ∪ u.guards |
〈s1 | a.style | a.expression〉, 〈r1 |:=| ”TRUE”〉, 〈ph |:=| ”FALSE”〉〉

. . .

The rule〈s1 | a.style | a.expression〉 above constructs an action from the abstract
actiona in such a way that it would have the same effect but update a newvariable
s1. Sincea.style is one of non-deterministic substitution styles (see the top-level rule
above), a further refinement steps could diversify component specification.

The voter event is simply a refined version of the event modelling the abstract com-
ponent. Whereas the abstracted version was computing results itself, its refined coun-
terpart votes on the results of component copies. The voter is enabled once all the com-
ponents have produced a result (which is ensured by the first guard in the rule below).
The final result is computed according to a simple majority voting protocol. The event
parameterrr is set to the voting outcome in the second guard.

voter
df
=

newpar(u, ”rr”);
newgrd(u, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(u, ”(s1 = s2 ∨ s1 = s3 ∧ rr = s1) ∨ (s2 = s1 ∨ s2 = s3 ∧ rr = s2”);
(delact(u, a);newact(u, 〈s |:=| ”rr”〉);
(newact(u, 〈r1 |:=| ”FALSE”〉) ‖

newact(u, 〈r2 |:=| ”FALSE”〉) ‖
newact(u, 〈r3 |:=| ”FALSE”〉));

newact(u, 〈ph |:=| ”TRUE”〉)

The abstract actiona of the component is removed, replaced by a deterministic assign-
ment (to the same variables) of the result of the winning component. The flagsri and
ph are reset in the preparation for a next iteration.

In case all the component copies disagree, no final result maybe computed. This
corresponds to anabort event of the abstract specification. The refined model simply
constraints the guard of the event so it only gets enabled in the situations when the
voting has failed.

abort
df
=

newgrd(zz, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(zz, ”s1 6= s2 ∧ s2 6= s3 ∧ s1 6= s3”);

A new invariant is added to the refined model to characterise the state of a refined
system after the voting is completed. It summarises the cases when the majority voting
on component results succeeds.

invariants
df
=

newinv(”ph = TRUE ∧ (s1 = s2 ∨ s2 = s3)) ⇒ s = s1”);
newinv(”ph = TRUE ∧ s2 = s3) ⇒ s = s2”)

Application of the pattern to a simple abstract model (two events, two variables) saves a
user from analysing 14 proof obligations, three of which would have to be done manu-

ally in an interactive theorem prover. For input larger model or a more elaborate pattern,
the benefits are even greater.

5.2 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for Event B has been imple-
mented as a plug-in to the RODIN Platform [1]. The plug-in seamlessly integrates with
the RODIN Platform interface so that a user does not have to switch between differ-
ent tools and environments while applying patterns in an Event B development. The
input and output models of the tool are fully semantically and syntactically compatible
with their representation in the RODIN Platform. It allows adeveloper to interleave
automated and manual refinement steps and proofs.

The core of the tool is the pattern instantiation engine. Theengine uses an Event B
input model and a pattern, from the pattern library, to produce a model refinement.

The process of a pattern instantiation is controlled by the pattern instantiation wiz-
ard. The wizard is an interactive tool which inputs pattern configuration from a user. It
validates user input and provides hints on selecting configuration values. Pattern con-
figuration is constructed in a succession of steps: the values entered at a previous step
influence the restrictions imposed on the values of a currentstep configuration.

The result of a successful pattern instantiation is a new model and, possibly, a set of
instantiation proof obligations - additional conditions that must be verified every time
when a pattern is applied. The output model is added to a current development as a
refinement of the input model.

The tool is equipped with a pattern editor and the pattern library. Patterns in the
library are organised in a catalogue tree, according to the categories stated in pattern
specifications. A user can browse through the library catalogue using a graphical dia-
logue. This dialogue is used to select a pattern for instantiation or editing.

The current version of the tool is freely available from our web site [10]. Several
patterns developed with this tool were applied during formal modelling of the Ambient
Campus case study of the RODIN Project [11].

6 Conclusions

In this paper we proposed an approach for automation of refinement process in Event B.
We introduced the notion of refinement patterns – model transformers that generically
represent typical refinement steps. Refinement patterns allow us to replace a process
of devising a refined model and discharging proof obligations by a process of pattern
instantiation. While instantiating refinement patterns, we reuse not only models but also
proofs. All together, this establishes a basis for automation of formal development. In
this paper we also described a prototype tool allowing us to automate refinement steps
in Event B.

Our work was inspired by several works on automation of refinement process. The
Refinement Calculator tool [6] has been developed to supportprogram development
using the Refinement Calculus theory by R.Back and J. von Wright. [4] The theory was
formalised in the HOL theorem prover, while specific refinement rules were proved
as HOL theorems. The HOL Window Inference library[9] has been used to facilitate
transformational reasoning. The library allows us to focuson a particular part of a model

and transform it, while guaranteeing that the transformation, if applicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (called tactics) and the tool
support for their application has been developed by Oliveira, Cavalcanti, and Wood-
cock [14]. The framework (called ArcAngel) provides support for the C.Morgan’s ver-
sion of the Refinement Calculus. The obvious disadvantage ofboth these frameworks is
that the refinement rules that can be applied usually describe small, localised transfor-
mations. An attempt to perform several transformations on independent parts of the
model at once, would require deriving and discharging additional proof obligations
about the context surrounding transformed parts, that are rather hard to generalise.
However, while implementing our tool, we found the idea of using the transformational
approach for model refinement very useful.

Probably the closest to our tool is the proprietary domain-specific automatic refiner
tool created by Siemens/Matra [5]. The tool automatically produces an implementable
model in B0 language (a variant of implementable B) by applying the predefined rewrite
rules. A large library of such rules has been created specifically to handle the specifica-
tions of train systems. The use of this proprietary tool resulted in significant growth of
developer productivity. Our work aims at creating a similartool yet publicly available
and domain-independent.

Obviously the idea to use refinement patterns to facilitate the refinement process
was inspired by the famous collection of software design patterns [8]. However in our
approach the patterns are not only descriptions of the best engineering practice but
rather ”active” model transformers that allow a designer torefine the model by reusing
and instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the theoretical aspects of proof
reuse in the proposed approach as well as extend the existingcollection of patterns.
Obviously, this work will go hand-in-hand with the tool development. We believe that
by building a sufficiently large library of patterns and providing designers with an auto-
matic tool supporting refinement process, we will facilitate better acceptance of formal
methods in practice.

Acknowledgements

This work is supported by IST FP7 DEPLOY project.

References

1. RODIN Event-B Platform.http://rodin-b-sharp.sourceforge.net/, 2007.
2. J. R. Abrial. Extending B without changing it (for developing distributed systems). In

H. Habrias, editor,1st Conference on the B method, pages 169–190. IRIN Institut de
recherche en informatique de Nantes, 1996.

3. J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

4. R. Back and J. von Wright.Refinement Calculus: A Systematic Introduction. Springer, 1998.
5. L. Burdy and J.-M. Meynadier. Automatic Refinement.Workshop on Applying B in an

industrial context : Tools, Lessons and Techniques - Toulouse, FM’99, 1999.
6. M. Butler, J. Grundy, T. Løangbacka, R. Rukšenas, and J. von Wright. The Refinement

Calculator: Proof Support for Program Refinement.Proc. of Formal Methods Pacific, 1997.

7. E.W. Dijkstra.A Discipline of Programming. Prentice-Hall International, 1976.
8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns. Addison-

Wesley. ISBN 0-201-63361-2, 1995.
9. J. Grundy. Transformational Hierarchical Reasoning.The Computer Journal, 39(4):291–

302, 1996.
10. A. Iliasov. Finer Plugin.http://finer.iliasov.org, 2008.
11. Alexei Iliasov, Alexander Romanovsky, Budi Arief, Linas Laibinis, and Elena Troubitsyna.

On Rigorous Design and Implementation of Fault Tolerant Ambient Systems. InISORC
’07: Proceedings of the 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pages 141–145, Washington, DC, USA, 2007.
IEEE Computer Society.

12. R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve Com-
puter Reliability.IBM Journal, pages 200–209, April 1962.

13. Carroll Morgan.Programming From Specifications. Prentice Hall International (UK) Ltd.,
1994.

14. Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Arcangel: a tactic language for refine-
ment.Formal Asp. Comput., 15(1):28–47, 2003.

