Towards Automated Refinement: Patterns in Event B

Alexei lliasoV', Elena Troubitsyng Linas Laibinig, and Alexander Romanovsky

1 Newcastle University, UK
2 Abo Akademi University, Finland
{al exei .iliasov, al exander.romanovsky}@cl.ac. uk
{l'inas.laibinis, elena.troubitsyna}@bo.fi

Abstract. Formal modelling is indispensable for engineering higrépenhdable

systems. However, a wider acceptance of formal methodsidehed by their in-

sufficient usability and scalability. In this paper, we ainassisting developers in
rigorous modelling and design by increasing automationevetbpment steps.
We introduce a notion of refinement patterns — generic reptations of typi-

cal correctness-preserving model transformations. Ofimitien of a refinement

pattern contains a description of syntactic model tramsédions, as well as the
pattern applicability conditions and proof obligations ferification of correct-

ness preservation. This establishes a basis for buildinglesupporting formal

system development via pattern reuse and instantiatiomprééent a prototype of
such a tool and some examples of refinement patterns for atedrdevelopment
in the Event B formalism.

1 Introduction

System development by stepwise refinementfarmal model-driven development ap-
proach that advocates development of systems correct tstraotion. Development

starts from an abstract model, which is gradually transéatrimto implementation.

Each model transformation step, calledefinementstep, allows a designer to incor-
porate implementation details into the model. Correctrds=ach refinement step is
validated by proofs.

The refinement approach supports verification and cleagatzlity of system prop-
erties through various abstraction levels. However, itillsgorly integrated into exist-
ing software engineering process. Among the main reasoidehing its application are
complexity of carrying proofs, lack of expertise in abstraodelling, and insufficient
scalability.

In this paper we propose an approach that aims at facilifatiregration of formal
methods into the existing development practice by levaggutomation of refinement
process and increasing reuse of models and proofs. We aimaahating certain model
transformation steps via instantiation and reuse of prafated solutions, which we
call refinement patternsSuch patterns generalise certain typical model transitioms
reoccurring in a particular development method. They cathbeght of as "refinement
rules in large”.

In general, a refinement pattern is a generic model trangforfassentially it con-
sists of three parts. The first part is the pattern appligglgibnditions, i.e., the syntactic
and semantic conditions that should be fulfilled by the mdadea refinement pattern
to be applicable. The second part contains definition ofatitt manipulations over
the model to be transformed. Finally, the third part cossigtthe proof obligations

that should be discharged to verify that the performed mwdekformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hes@me large model trans-
formation steps can be represented by a certain combinatr@finement patterns, and
therefore can also be seen as refinement patterns per sesidifitysto compose pat-
terns significantly improves scalability of formal modetii Moreover, a representation
of a refinement step by a number of syntactic manipulatiors aumodel provides a
basis for automation. Finally, our approach supports esiwterreuse of not only models
but also proofs. Indeed, by proving that an application oéaegic pattern produces a
valid refinement of a generic model, we at the same time vérécorrectness of such
a transformation for any of its instances. This allows uddaificantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns preskint this paper estab-
lished a basis for building a prototype tool for automatiefimement process in Event
B[10]. The tool has been developed as a plug-in for the ROD&{¥qrm [1] — an open
toolset for supporting modelling and refinement in the Ev@rftamework. We be-
lieve that by creating a large library of refinement patteand providing automated
tool support for pattern matching and instantiation, we mihke formal modelling and
verification more accessible for software engineers anddéarcilitate integration of
formal methods into software engineering practice.

The paper is organised as follows: in Section 2 we give a brtedduction into our
modelling framework — Event B. In Section 3 we define a notiba ¢ransformation
rule and its special case — a refinement pattern, as well aggadge for constructing
transformation rules. In Section 4 we describe how to compadterns. In Section 5
we construct a rather complex pattern for introducing weliwn fault tolerance mech-
anism — triple modular redundancy and discuss the protdtggidor documenting and
using patterns in Event B development. Finally, in Sectiamebgive some concluding
remarks and discuss related work.

2 Modelling and Refinement in Event B

2.1 Introduction into Event B

Event B [2] is an extension of the B Method [3] to model pataltistributed and
reactive systems. The Rodin platform [1] provides autochtdel support for modelling
and verification in Event B.

Event B uses the Abstract Machine Notation for construcding verifying models.
An abstract machine encapsulates a state (the variabldleahodel and provides
operations on its state. A simple abstract machine has tlosvfng general form:

SYSTEM AM
VARIABLES v
INVARIANT [
INITIALISATION INIT
EVENTS

£y

En

The machine is uniquely identified by its namBl. The state variables of the machine,
v, are declared in th&#ARIABLES clause and initialised inNIT as defined in the
INITIALISATION clause. The variables are strongly typed by constrainiadipates
of the machine invariant given in theINVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates lamgredicates defining the
properties of the system that should be preserved durinigraysxecution.

The dynamic behaviour of the system is defined by the set ofiatevents specified
intheEVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where the guard is conjunction of predicates over the state varialjemnd the action
Sis an assignment to the state variables.

The occurrence of events represents the observable behafithe system. The
guard defines the conditions under which the action can beut@, i.e., when the
event isenabled The action can be either a deterministic assignment tottte gari-
ables or a non-deterministic assignment from a given seh@saignment according
to a given postcondition. These assignments are denoted,as and:| correspond-
ingly. If several events are enabled then any of them can bsechfor execution non-
deterministically. If none of the events is enabled therstfstem deadlocks.

The Event B models are formally defined using the weakestopiditon seman-
tics [7]. The weakest precondition semantics provides uk wifoundation for estab-
lishing correctness of specifications and verifying refieats between them. For in-
stance, we verify correctness of a specification by prouag its initialization and all
events establish the invariant.

The basic idea underlying formal stepwise development fipement is to de-
sign the system implementation gradually, by a number okeotness preserving steps
calledrefinementsThe refinement process starts from creating an abstrheif ahim-
plementable, specification and finishes with generatingadle code. The interme-
diate stages yield the specifications containing a mixtéebetract mathematical con-
structs and executable programming artifacts.

Assume that the refinement machiA@/’ is a result of refinement of the abstract
machineAM:

SYSTEM AM’
VARIABLES '
INVARIANT [’
INITIALISATION INIT’
EVENTS
Ey
En
The machined M’ might contain new variables as well as replace the abstiatet d
structures oAM with the concrete ones. The invariant4f/’ — I’ — defines not only
the invariant properties of the refined model, but also theeaction between the state
spaces ofAM and AM’. For a refinement step to be valid, every possible execution
of the refined machine must correspond (ijpto some execution of the abstract ma-
chine. To demonstrate this, we should prove thslit/'7” is a valid refinement ofNIT,

each event oA’ is a valid refinement of its counterpartAM and that the refined
specification does not introduce additional deadlocks, i.e

wp(INIT', ~wp(INIT,~I")) = true,
IANT Ag; = gi ANwp(S', —wp(S, =InvC)), and
INTI'ANg: = DY g)

2.2 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B nasdelsyntactic math-
ematical object. For brevity, we omit representations oheanodel elements here,
though they are supported in our tool implementation [10§ufset of Event-B models
used in this paper can be described by the following datatstre:

model :: var : VAR” event :: name : EVENT action :: var : VAR

inv : PRED* param : PARAM style : STYLE

evt : event” guqrds : PRED* expr : EXPR
actions : action

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressievsnt names and parameters.
An event is represented by a tuple containing the event n@tist of) its parameters,
guards, and actions. The reserved event name denotes the initialisation event. An
action, in its turn, is a tuple containing a variable, an@tstyle and an expression. An
action style denotes one of the assignment types STIEY,.LE = {:=,:€,:|}.
Sub-elements of a model element can be accessed by usingf thygedlatoract. style
is the style of an actionct. Instances of the models, events and actions are constructe
using a special notatiofu; | - - - | a,,). The following example shows how an Event B
model can be represented as a syntactic object in our notatio

SYSTEM m0
VARIABLES = ((z) |
INVARIANT 2 € Z ("xeZ’) |
INITIALISATION 2 :=0 ({dnit | — | = | (z |:=]70")),
EVENTS
count = BEGIN z := x + 1 END (count | — | — | (x |:=| " + 17))))

In the examplex is an element ofVAR, init and count are event names from
EVENT,”z € 7 is a predicate, ant”, ”z + 17 are model expressions.

Now we have set a scene for a formal definition of refinemenéepa that aim at
automating refinement process Event B.

3 Refinement Patterns

3.1 Transformation Rules and Refinement Patterns

Usually a refinement step in Event B results in introducingsa changes in all clauses
of a refined model. Then we verify by proofs that these chamygsed result in a
correct model refinement. Often a refinement step can be seancamposition of
"standard” (frequently reoccurring) localized transfations distributed all over the
model. However, in general it is unclear how to reuse the risaated proofs constructed
previously and possibly automate execution of these toamsftions.

In this paper we propose to tackle this problem via definiéind reuse of refinement
patterns. Our definition of refinement patterns builds oridea of refinement rules [4,
13]. Arefinement pattern in general is a model transformelikd design patterns [8], a
refinement pattern is "dynamic” in a sense that it takes a fraxian input and produces
a new model as an output. To define a refinement pattern we iffressagmore general
definition of a transformation rule

Definition 1. Let S be a set of all well-formed Event B models. Then a transfaonat
rule T'is a function computing a new model for a given input model:

T:5xC-+ S

whereC' contains a set of all possible configurations (i.e., additibparameters) of a
transformation rule.

Note thatT" is defined as a partial function, i.e., it produces a new modigi for some
acceptable input modejsand configurations, i.e., when(s, ¢) € dom(T").

Definition 2. A refinement pattern is a transformation rute: S x C -+ S that, for
any acceptable input model and configuration, construct®dehrefinement:

Vs, c.(s,¢) € dom(P) = sC P(s,c)
whereC denotes a refinement relation.

Our definition of a refinement pattern consists of three pdite first part is the
pattern applicability conditions, i.e., the syntactic amanantic conditions that should
be fulfilled by the model for a refinement pattern to be applieaThe second part
contains definition of syntactic manipulations on the madédde transformed. Finally,
the third part consists of the proof obligations that shdaéddischarged to verify that
the performed model transformation is indeed a refinemept #tis easy to see, that a
refinement pattern manipulates a model on both syntacticsamdntic level.

We believe that the main benefit of refinement patterns is gsipdity to construct
large transformation rules that potentially automateaieidomain-specific model trans-
formations. Examples of such transformations could begnatitng certain fault toler-
ance mechanisms or introducing communication protocals\We propose a special
language for constructing larger transformation rules.

3.2 The Language of Transformations

Our language contains basic transformation rules as wétleasonstructs allowing to
compose complex rules from the simpler ones. For instanedireement pattern is usu-
ally composed from several basic transformation ruless&éhales themselves might
not be refinement patterns. However, by attaching to theritiaddl proof obligations,
we can verify that their composition constitutes a refinenpattern.

The structure of the basic rules reflects the way a transfitomaule or a refine-
ment pattern is applied. First, rule applicability for agivinput model and configura-
tion parameters is checked. The applicability conditiobeéachecked can contain both
syntactic and semantic constraints on input models andgumafions. Mathematically,
for a transformation ruld’, its applicability condition corresponds tom(7"). Then,

the input models for the given configuratior is syntactically transformed into the
output model calculated as the function applicafiis, ¢). Finally, in case of a refine-
ment pattern, the resuli(s, ¢) should be demonstrated to be a refinement of the input
models, i.e.,s C T'(s,c). The last expression, using the proof theory of Event B, can
be simplified to the specific proof obligations on model elatado be verified.

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO (c, s)

proof obligation PO, (c, s)

Here name and ¢ are correspondingly the rule name and list of its parameférs
predicateQ)(c, s) defines the rule application context (applicability coimtis), where
s is the model being transformed. The effect functifr, s) computes a new model
from the current moded and the parameters The proof obligation part contains a list
of theorems to be discharged to establish that the rule is ¢f) refinement pattern
and not just a transformation rule. From now on, we weitatext(r), effect(r) and
proof_obligations(r) to refer to the context, the effect computation functiord #me
collection of proof obligations of the rule

As an example, let us consider two primitive transformatidas. Below we define
a transformation rule that allows us to introduce one or nmew variables into the
model:

rule newvar(vv)
context vv N s.var = &
effect (s.var Uvv | s.inv | s.evt)
proof_obligation Vv € vv - (Fa-a € s.init.action A v € a.var)

The rule applicability condition requires that the new ghtes have fresh names for the
input model. The effect function simply adds the new vagalib the model structure.
The rule also has a single proof obligation requiring that\vhriable(s) is assigned in
the initialisation action. Such an action would have to bdeatlby some other basic
rule for the same refinement step.

Next example is the rule for adding new model invariant(s).

rule newinv(iz)
context it C PRED A Vi € ii - FV (ii) C s.var
effect (s.var | inv Ui | evt)
proof obligation
V(e,v,0") - e € s.evt A
Inv(v) A Guardse(v) A BA(v,v") = Inv(v')
proof_obligation Jv - Inv(v)

Here 'V (x) is set of free variables im, Inv stands for {\,.. ;,...:;), andGuards.

is defined asA\ ,c. ,uaras 9)- Moreover,BA is the before-after relation describing the
action execution in terms of the before and after values efmtlodel variables. Both
proof obligations are taken directly from the Event-B setitan(i.e., the correspond-
ing proof obligation rules). The first obligation requiresshow that the new invariant
is preserved by all model events, while the second one cHeelsibility of such an

p(c) = basic(c) primitive rule

| piq sequential composition
| plla parallel composition
| if Q(c,s) thenpend conditional rule

| confi: Q(i,c,s)dop(iUc) end parameterised rule
| pari: Q(i,c,s)dop(i Uc) end generalised parallel composition

Fig. 1. The language of transformation rules

addition by asking to prove that the new invariant is not cadittory. This example
illustrates how the underlying Event B semantics is usectovd proof obligations for
refinement patterns.

The table below lists the basic rules for the chosen subsevenft B. There are
two classes of rules — for adding new elements and for rengogiisting ones. All
the rules implicitly take an additional argument — the mobeing transformed. A
double-character parameter name signifies that a rule &caeget of elements, e.g.,
newgrd(e, gg) adds all the guards from a given getto an event.

rule newvar(vv) rule delvar(vv)
rule newinv(ii rule delinv(ii)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)

rule newactexp(e, a,p)

To construct more complex transformations, we introduceralyer of composition
operators into our language. They include the sequential,and parallelp||q, com-
position constructs. In addition, there is the condition constructif ¢ then p end, as
well as a construct allowing to introduce additional rulegmaeters eonfi : Q dop(i) end.
Finally, to handle rule repetitions, generalised paraitehposition is introduced in the
form of a loop constructpar ¢ : @ do p(c) end. The language summary is given in
Figure 1.

3.3 Constructing and Using Patterns: Examples

Below we present a couple of simple refinement patterns asstet using the proposed
language.

Example 1 (New VariableA refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is addededish of model variables.
Second, the typing invariant is added to the model. Finalfyjnitialisation action is
provided for the variable. The following refinement pattexds a new variable de-
clared to be a natural number and initalised with zero:

confv : = (v € s.war) do

newvar({v});

(newinv({"v € N}, s) || newact(init, {{v |:=] 707)}))
end

The only pattern parameter (apart from the implicit inpuis some fresh name for the
new model variable.

A pattern application example is given below. On the leftdhaide there is an input
model and the right-hand side there is the refined model ngted via applying the
pattern "New Variable”. Here the variable namp@stantiate the parameter

SYSTEM m0 SYSTEM m1
VARIABLES x VARIABLES xz,q
INVARIANT z € Z INVARIANT = € Z A q < N
INITIALISATION 2 :=0 INITIALISATION z:=0|q:=0
EVENTS EVENTS

count = BEGIN x :=x + 1 END count = BEGIN x := x + 1 END

A more general (and also useful) pattern version could atsefat a typing predicate
and initialisation action as additional pattern paranseter

Example 2 (Action Splitin Event B, we often refine an abstract event into a choice
between two or more concrete events, each of which must mameent of the abstract
event. A simple case of such a refinement is captured by threeraéint pattern below.
The pattern creates a copy of an abstract event and adds auaesivamd its negation to
the original and new events. The guard expression is supatie pattern parameter.

confe,en : e € s.evt A = (en € s.evt) do
newevt(en, s);
newgrd(en, e.guard) ||
newact(en, e.action);
confg : g € PRED A FV(g) C s.var
donewgrd(e, g) || newgrd(en,—g) end
end

The pattern configuration requires three parameters. Ttaenedere refers to the event
to be refined from the input mode] en is some fresh event name, anis a predicate
on the model variables.

The pattern is applicable to models with at least one evdme.r€sult is a model
with an additional event and a constrained guard of the maigévent. To exemplify
pattern application, lets take the model from the previo@s®le as an input model.

SYSTEM ml
VARIABLES x
INVARIANT z € Z
INITIALISATION z:=0

EVENTS
count = WHEN x mod 2 = 0 THEN z :=x + 1 END
inc = WHEN —(x mod 2 = 0) THEN z := x + 1 END

Here, the pattern parameters are instantiated as folloascount, en asinc, andx as
x mod 2 = 0.

In this section we have defined refinement patterns togettiprtiae language for
constructing transformations and shown small exampleattém application. To make
our approach scalable, in the next section we formally defateern composition.

4 Pattern Composition

In the previous section we defined the notion of a basic toansdtion rule as a combi-
nation of the applicability conditions, transformatioffféet) function, and refinement
proof obligations. Moreover, In Figure 1, we also introddizarious composition con-
structs for creating complex transformation rules. In #@stion we will show how to
inductively define the applicability conditions, effechcaproof obligations for com-
posed rules.

4.1 Rule Applicability Conditions

As we discussed previously, for a basic rule, the rule appllity condition is defined
in its contextclause. To define applicability conditions for more compldes, we first
introduce a functiorscope This function returns a pair of lists, containing the model
elements that the rule updates or depends on. We can compirteesection of rule
scopes: for two transformation rules it is an intersectibthe elements updated by
these rules and the pair-wise intersection of elementsatieaaffected by one rule and
relied upon by another.

For a complex rule (constructed using the proposed langoageansformation
rules), the rule applicability is derived inductively acdimg to the following defini-
tion:

app(basic)(c, s) = context(basic)(c, s)

app(p; g)(c, s) = app(p)(c,s) A app(q)(c, eff(p)(c, s))

app(pllg)(c, s) = app(p)(c,s) A app(g)(c, s) A
inter(scopép),scopéq)) = @

app(if G(c, s) thenp end)(c, s) = G(c, s) = app(p)(c, s)

app(confi : Q(i,c, s) dop(i) end)(c, s) = Vi- Q(i, c, s) = app(p(i))(c, s)

app(par i : Q(i, c,s) dop(i) end)(c,s) =Vi-Q(i,c,s) = app(p(i))(c,s) A
V(i §) - Qlic,8) A Q(j,c,8) Ni# j =
inter(scopédp(i)), scopép(j))) = @

The conditions for the sequential composition, conditi@mal parameterised rules are
quite standard. Two rules can be applied in parallel if they sorking on disjoint
scopes. For instance, a rule transforming an event (e.din@é new guard) cannot
be composed with another rule transforming the same evesitnflar requirement is
formulated for the loop rule, since it is realised as genszdlparallel composition.

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an outputiel@an be syntactically
constructed in a compositional way. For a basic rule, thecéfunction is directly ap-
plied to transform an input model. For more complex rulesg\a model is constructed
according to an inductive definition of the functieff given below.

eff(basic)(c, s)
eff(p; g)(c, s)
eff(pllq)(c, s)

eff(if G(c, s) thenp end)(c,)

effect(basic)(c, s)

eff(q)(c, eff(p)(c, 5))

eff(q)(c, eff(p)(c, s)), or

eff(p)(c, eff(q)(c, 5))

eff(p)(c, s), if G(c, s)

s, otherwise

eff(p(2))(c, s), if Q(i,c,s)

s, otherwise

(Ili € Q(i, s,) - eff(p(i)) (c, 5)),
if 3(i,¢,8)-Qi,¢,8)

= s, otherwise

eff(confi : Q(i, ¢, s) dop(i) end)(c, s)

eff(par i : Q(i, ¢, s) dop(i) end)(c, s)

Not supprisingly, the result of sequential compositionved trules is computed by ap-
plying the second rule to the result produced by the first &nethe parallel compo-
sition, the result is computed similarly. However, heredhgger of the rule application
should not affect the final result. The model resulting frama@plication of the loop
construct is computed as a generalised parallel compositi@an indexed family of
transformation rules. Finally, the last three cases deparsbme additional application
conditions (i.e.G(c, s) or Q(i, ¢, s)). If these conditions are not satisfied then the rule
application leaves the input model unchanged.

The rule application procedure based on the presentedtitafican be easily au-
tomated. Probably the only non-trivial detail here is toyide the input values for the
rule parameters. In our prototype tool implementing thesddescribed in this paper,
the user is requested to give the parameter values duringibbénstantiation, while
appropriate contextual hints and descriptions are pravigethe tool.

4.3 Pattern Proof Obligations

The modest complex part of our approach is to define proofyabtins needed to

demonstrate that a transformation rule is actually a refergmattern. To achieve this,
in general we have to discharge all the proof obligationsdividual basic rules con-

stituting the pattern. These proof obligations cannot setdirged without considering
the context produced by the neighboring rules. The follgvimmductive definition shows

how the list of proof obligations is built for a particularfirement pattern. The context
information for each proof obligation is accumulated whikeversing the structure of
a pattern. It forms a set of additional hypotheses that led@rbe used in automated
proofs.

po(I, basic)(c, s) = {I" = proof_obligations(basic) }
po(I, p; q)(c, s) = po(I"U{s" = eff(p;q)(c,s)}, p(c,s")) U
po(I" U {s" = eff(p; q)(c, 5)}, q(c, s"))

po(I’, pllg)(c, s) = po(I',p) U po(I,q)

po(I,if G(c, s) thenp end)(c, s) po(I"U{G(c,s)},p)
po(
po(

I',confi: Q(i,¢,s) dop(i) end)(c,s) = Ui € Qi,¢,s) - po(I" U{Q(%,¢c,s)}, p(i))
I'ipari:Q(i,c, s)dop(i) end)(c,s) =i € Qi,c,s)-po(I"U{Q(i,c,)}, pi))

Herel is a set of accumulated hypothesis containing pattern peteasa and the
initial model s as free variables. For each basic rule, we formulate a theereose
right-hand side is a list of the rule proof obligations and t&ft-hand side is a set of
hypotheses containing the knowledge about the context iohathe rule is applied.

4.4 Assertions

The described procedure of building a list of proof obligas for a refinement pattern
aims at including all available information as a proof obtign hypothesis. This can
be very complex for larger patterns, since the large numbacaumulated hypotheses
makes a proof obligation intractable. To circumvent thisigpem, in the tool implemen-
tation we allow a modeller to manually add fitting hypothesa#ied assertions, that can
be inferred from the context they appear in. On the one syghécdlly an assertion is
simple enough to be discharged automatically by a theoreweprOn the other hand,
it can be used to assist in demonstrating the proof obligatad the rule immediately
following the assertion.

An assertion is written aasser{ A(c, s)) and is delimited from the neighboring
rules by semicolons. An assertion has no effect on rule ntistzon and application.
The following additional cases of the definition are used to generate additional proof
obligations for assertions as well as insert an assertedlkdge into the set of collected
hypotheses of a refinement pattern.

po(I, p;asser{A(c, s)))(c,s) = I'U{s = eff(p)(c,s)} = Alc,s")
po(I’; asser(A(c, s)); p)(c, s) = po(I"U {A(c,)}, p)(c, 5)

Pattern composition enables construction of large refimtipatterns. We believe
that a promising area of pattern application is in produ-tevelopments. Indeed, a
product-line development significantly relies on reuseeartain design solutions. Re-
finement patterns can be collected and composed to formafilyedthese solutions. By
discharging proof obligations for a general pattern regméstion, we enhance the reuse
not only on the modelling but also on verification level.

To demonstrate scalability of our approach, next we dennateshow to construct
a rather complex refinement pattern allowing to introducesB-kinown fault tolerance
mechanism into a model.

5 Towards Refinement Automation: Case Study and Tool Support

5.1 Case Study: Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) is a fault-tolerance metdkm in which the results
of three similar components are processed by a voting eletmg@noduce a single out-
put [12]. The purpose of the mechanism is to mask a single oot failure. In this
section we will demonstrate how a refinement step that inited the TMR arrange-
ment into a model can be generalized as a refinement pattern.

Our initial specification should have a variable representine output of a compo-
nent for which TMR will be introduced. Moreover, it shouldvezan event that models
the behaviour of a component by non-deterministically tipdathis variable. Non-
determinism is used here to model unpredictable (possiulifyf) results produced by
the component. We do not make any assumptions about thdleatype. Furthermore,
the event can contain some additional actions on otherhlagaFinally, our initial
model should also contain a special event handling a faalvert) of the component.

In the refined model, we replace the single abstract compaviém three similar
components. The outputs of the new components are modsllgdsh variables. The
variable types and initialisation of these variables amgp$y copied from their abstract
counterpart in the initial specification.

The TMR pattern we define uses a number of configuration paeaméd he param-
eters identifies a variable modelling the output of a componerns; an event updating
the variables (in addition to possible update of other variables);is an event han-
dling a failure of the component modelled byfinally, a is an action from: updating
variables.

Also, as a result of pattern application, the new variaples; andr; are introduced
into the refined model. The variab}é keeps track of the current phase in the TMR
implementation — reading from the new components, votinthem, or delivering the
final result; the variables;, i = 1..3, are used to record the outputs from the three new
components introduced by the pattern; finally, the flagseflect availability of new
outputs in the respective output variables

confs,u,zz,a :

sEvar Nu € evt N\ zz € evt ANu # zz N\
a € u.actions A a.style # (:=) A {s} = a.var
do
confph, s1, s2,83,71,72,73 :
{s1, 82, 83,71, 72,73, ph} C (VAR —var) A
; part({{s1}, {s2}, {ss}, {r1}, {r2}, {rs}, {ph}})
]
variables; events; voter; abort; invariant
end

end
The pattern is made of four major parts: the rules declafiegypes and initialisation
of new models variables; the definition of new events; thenesfient rules for trans-
forming a single abstract event representing the funatipoif a sole component into
the voter event; and, finally, the addition of an invariardrettterising the behaviour of
a TMR block. The condition using the operagarrt simply states that its arguments
are disjoint sets.

. df
variables =

(newinv("ph € BOOL”); newini({ph |:==|? FALSE"))) ||
(newinv(”s1 € s.type”);newini((s1 | init(s).style | init(s).expr)))||
(newinv("r1 € BOOL”); newini({ry |:=| " FALSE”)))

Each new variable definition should come with a typing inatiand an initialisation
action. These are normally grouped together so that théetefaroof obligation rules
would work with a smaller context. In the above, stand for the omitted rules defining
the types and initialisation for the variables, s3 and rs, r3. The shortcut notation
newini(a) used in the pattern description stands for declaration efittitialisation
action:newini(a) = newact(init,a). The shortcuinit(v) refers to an action of the
initialisation event assigning to the variahle

The refined model constructed by the pattern would conta@ethopies of a com-
ponent modelled in the abstract model. As we have made amassm that a com-
ponent is represented by a single event, the componentcamenodelled by adding
three new events into the refined model. A component copyheagutard of an abstract
component, conjuncted with an an additional condition enguhat it is executed be-
fore passing control to a voter, and an action that is the cdplye selected action of
an abstract component (the pattern parametexcept for saving the result intg (for
the copyi) instead. In addition, a component copy also assigns to indicate the
availability of result ins;.

df

events =
confuy,ue, us :

{u1,u2,us} C EVENT \ s.evt A part({{ui}, {uz2}, {us}})
do

copys || copyz || copys
end
The above creates three component copies, each constagtedling to the fol-

lowing rule.
df

copy; =
newevt({(uy | — | {"r1 = FALSE” } U u.guards |
(s1] a.style | a.expression), (r1 |:==|” TRUE"), (ph |:=| " FALSE”))

The rule(sy | a.style | a.expression) above constructs an action from the abstract
actiona in such a way that it would have the same effect but update avaeable
s1. Sincea.style is one of non-deterministic substitution styles (see thpelével rule
above), a further refinement steps could diversify compbsyecification.

The voter event is simply a refined version of the event madgthe abstract com-
ponent. Whereas the abstracted version was computinggéself, its refined coun-
terpart votes on the results of component copies. The vwtrabled once all the com-
ponents have produced a result (which is ensured by the tiestign the rule below).
The final result is computed according to a simple majorityngpprotocol. The event
parameterr is set to the voting outcome in the second guard.

voter s

newpar(u,”rr’);
newgrd(u,”r1 = TRUE Aro = TRUE ANrs = TRUE”);
newgrd(u,”(s1 = s2Vs1 =s3 Arr=51)V (s2 =81V $2 = s3 A rr = 827);

(delact(u, a); newact(u, (s |:=| "rr”));

(newact(u, (r1 |:=| ?FALSE")) ||
newact(u, (r2 |:=| " FALSE”)) ||
newact(u, (r3 |:=| " FALSE”)));

newact(u, (ph |:=| ” TRUE"))

The abstract action of the component is removed, replaced by a deterministigrss
ment (to the same variablg of the result of the winning component. The flagand
ph are reset in the preparation for a next iteration.

In case all the component copies disagree, no final resultbeagomputed. This
corresponds to aabort event of the abstract specification. The refined model simply
constraints the guard of the event so it only gets enabletiérsituations when the
voting has failed.

abort £

newgrd(zz,”r1 = TRUE ANro = TRUE Ar3 = TRUE”);

newgrd(zz,”s1 # s2 A s2 # $3 A s1 # s37);
A new invariant is added to the refined model to charactetisestate of a refined
system after the voting is completed. It summarises thescaben the majority voting
on component results succeeds.

invariants =

newinv("ph = TRUE A (s1 =s2V s2 =83)) = s =51");

newinv("ph = TRUE A s2 = s3) = s = s27)
Application of the pattern to a simple abstract model (twergs, two variables) saves a
user from analysing 14 proof obligations, three of which lddwave to be done manu-

ally in an interactive theorem prover. For input larger madte more elaborate pattern,
the benefits are even greater.

5.2 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for Bv8 has been imple-
mented as a plug-in to the RODIN Platform [1]. The plug-inreksssly integrates with
the RODIN Platform interface so that a user does not have itclswetween differ-
ent tools and environments while applying patterns in annEBedevelopment. The
input and output models of the tool are fully semanticallg agntactically compatible
with their representation in the RODIN Platform. It allowslaveloper to interleave
automated and manual refinement steps and proofs.

The core of the tool is the pattern instantiation engine. 8igine uses an Event B
input model and a pattern, from the pattern library, to poeda model refinement.

The process of a pattern instantiation is controlled by thi#epn instantiation wiz-
ard. The wizard is an interactive tool which inputs pattesnfiguration from a user. It
validates user input and provides hints on selecting cordigan values. Pattern con-
figuration is constructed in a succession of steps: the sadugered at a previous step
influence the restrictions imposed on the values of a custeptconfiguration.

The result of a successful pattern instantiation is a newatrauld, possibly, a set of
instantiation proof obligations - additional conditiomat must be verified every time
when a pattern is applied. The output model is added to a mudevelopment as a
refinement of the input model.

The tool is equipped with a pattern editor and the pattenatib Patterns in the
library are organised in a catalogue tree, according to #itegories stated in pattern
specifications. A user can browse through the library cgtadausing a graphical dia-
logue. This dialogue is used to select a pattern for instiati or editing.

The current version of the tool is freely available from owrbnsite [10]. Several
patterns developed with this tool were applied during fdmmadelling of the Ambient
Campus case study of the RODIN Project [11].

6 Conclusions

In this paper we proposed an approach for automation of renéprocess in Event B.
We introduced the notion of refinement patterns — model foanmeers that generically
represent typical refinement steps. Refinement patterow ai$ to replace a process
of devising a refined model and discharging proof obligatiby a process of pattern
instantiation. While instantiating refinement patterns,reuse not only models but also
proofs. All together, this establishes a basis for autoonadif formal development. In
this paper we also described a prototype tool allowing usitoraate refinement steps
in Event B.

Our work was inspired by several works on automation of refieet process. The
Refinement Calculator tool [6] has been developed to sugpogram development
using the Refinement Calculus theory by R.Back and J. voniW!jig] The theory was
formalised in the HOL theorem prover, while specific refinaineiles were proved
as HOL theorems. The HOL Window Inference library[9] hasrbased to facilitate
transformational reasoning. The library allows us to fomusa particular part of a model

and transform it, while guaranteeing that the transforomaif applicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (calledtics) and the tool
support for their application has been developed by Olyearavalcanti, and Wood-
cock [14]. The framework (called ArcAngel) provides supgdor the C.Morgan'’s ver-
sion of the Refinement Calculus. The obvious disadvantagetbfthese frameworks is
that the refinement rules that can be applied usually dessritall, localised transfor-
mations. An attempt to perform several transformationsnatependent parts of the
model at once, would require deriving and discharging @altii proof obligations
about the context surrounding transformed parts, that atteer hard to generalise.
However, while implementing our tool, we found the idea dhgghe transformational
approach for model refinement very useful.

Probably the closest to our tool is the proprietary domaieesfic automatic refiner
tool created by Siemens/Matra [5]. The tool automaticattydoices an implementable
model in BO language (a variant of implementable B) by apygyhe predefined rewrite
rules. A large library of such rules has been created spaltyfim handle the specifica-
tions of train systems. The use of this proprietary tool lteslin significant growth of
developer productivity. Our work aims at creating a simitaol yet publicly available
and domain-independent.

Obviously the idea to use refinement patterns to facilitagerefinement process
was inspired by the famous collection of software desigiepas [8]. However in our
approach the patterns are not only descriptions of the begheering practice but
rather "active” model transformers that allow a designeefine the model by reusing
and instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the thécaéaspects of proof
reuse in the proposed approach as well as extend the exdillggtion of patterns.
Obviously, this work will go hand-in-hand with the tool déepment. We believe that
by building a sufficiently large library of patterns and piding designers with an auto-
matic tool supporting refinement process, we will faciétaetter acceptance of formal
methods in practice.

Acknowledgements

This work is supported by IST FP7 DEPLOY project.

References

=

RODIN Event-B Platformht t p: / / r odi n- b- shar p. sour cef or ge. net/, 2007.

2. J. R. Abrial. Extending B without changing it (for develog distributed systems). In
H. Habrias, editor,1st Conference on the B methogages 169-190. IRIN Institut de
recherche en informatique de Nantes, 1996.

3. J. R. Abrial. The B-Book: Assigning Programs to MeaningSambridge University Press,
2005.

4. R.Back and J. von WrighRefinement Calculus: A Systematic IntroductiBpringer, 1998.

5. L. Burdy and J.-M. Meynadier. Automatic Refinemeorkshop on Applying B in an
industrial context : Tools, Lessons and Techniques - TagpEM’99 1999.

6. M. Butler, J. Grundy, T. Lgangbacka, R. RukSenas, anad.Wright. The Refinement

Calculator: Proof Support for Program Refinemé®roc. of Formal Methods Pacifid 997.

~

10.
11.

12.

13.

14.

. E.W. Dijkstra.A Discipline of ProgrammingPrentice-Hall International, 1976.
. Erich Gamma, Richard Helm, Ralph Johnson, and John Wésdbesign PatternsAddison-

Wesley. ISBN 0-201-63361-2, 1995.

. J. Grundy. Transformational Hierarchical Reasonifitne Computer JournalB9(4):291—

302, 1996.

A. lliasov. Finer Pluginhttp://finer.iliasov. org,2008.

Alexei lliasov, Alexander Romanovsky, Budi Arief, Lmaaibinis, and Elena Troubitsyna.
On Rigorous Design and Implementation of Fault Tolerant AmbSystems. IHSORC
'07: Proceedings of the 10th IEEE International SymposiumQbject and Component-
Oriented Real-Time Distributed Computimuages 141-145, Washington, DC, USA, 2007.
IEEE Computer Society.

R. E. Lyons and W. Vanderkulk. The Use of Triple-Moduladindancy to Improve Com-
puter Reliability.IBM Journal pages 200-209, April 1962.

Carroll Morgan.Programming From Specification®rentice Hall International (UK) Ltd.,
1994.

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Agal: a tactic language for refine-
ment. Formal Asp. Comput15(1):28-47, 2003.

