
Structuring Specifications with Modes
Alexei Iliasov

Newcastle University
Email: alexei.iliasov@newcastle.ac.uk

Fernando L. Dotti
Newcastle University/PUCRS-Brazil
Email: fernando.dotti@pucrs.br

Alexander Romanovsky
Newcastle University

Email: alexander.romanovsky@newcastle.ac.uk

Abstract—The two dependability means considered in this
paper are rigorous design and fault tolerance. It can be complex
to rigorously design some classes of systems, including fault
tolerant ones, therefore appropriate abstractions are needed to
better support system modelling and analysis. The abstraction
proposed in this paper for this purpose is the notion of operation
mode. Modes are formalised and their relation to a state-based
formalism in a refinement approach is established. The use of
modes for fault tolerant systems is then discussed and a case study
presented. Using modes in state-based modelling allows us to
improve system structuring, the elicitation of system assumptions
and expected functionality, as well as requirement traceability.

I. INTRODUCTION
Systems are dependable if they deliver service that can be

justifiably trusted [1]. Building such systems is a challenging
task, typically conducted by employing various dependability
means. In this paper we are particularly interested in the means
of two types: rigorous design and fault tolerance.
Rigorous design (or fault prevention) is often used to justify

system trustworthiness by preventing introduction of faults
into system. This can be done by employing formal modelling
and analysis. The known problem with this approach is its
scalability. A way to improve it is through the development
of abstractions and formal techniques tailored to classes of
systems.
System dependability cannot be achieved by only trying to

build perfect systems, any critical system has to face abnormal
situations (including malfunctioning devices, wearing hard-
ware and software defects) and deal with them properly. This is
achieved by integrating appropriate fault tolerance means into
the system. Unfortunately the situation is not satisfactory here:
as reported by F. Cristian [2], field experience with telephone
switching systems showed that up to two thirds of system
failures were due to design faults in exception handling or
recovery algorithms. Other evidences of inadequate use or
construction of fault-tolerance mechanisms are reported in [3].
Several authors have investigated fault-tolerance modelling

using different specification formalisms and verification ap-
proaches (see surveys [4], [5]). However, the identification
and support of suitable abstractions for formal design of fault
tolerant systems is still an open area. Such abstractions have to,
at the one side, be amenable to representation using a formal
specification language, and, on the other side, offer the way
to model and reason about (i) states - the characterization

This work is partially supported by the ICT DEPLOY IP and the
EPSRC/UK TrAmS platform grant. Fernando L. Dotti is supported by
CNPq/Brazil grant 200806/2008-4. This is a REGULAR PAPER.

of normal and erroneous states, and state manipulation to
reach consistency are inherent to fault tolerant systems; (ii)
structure - separation of normal and abnormal (fault tolerant)
behaviour is to be supported, as well as the representation
of control structures for different fault tolerance mechanisms;
and (iii) system properties under changing conditions - the
explicit statement of possible working conditions, addressing
fault assumptions, and assured system properties under these
conditions are also to be supported.
In this paper the known concept of ’operation mode’ [6]

is revisited - we use modes to structure system specification
to facilitate rigorous design and to integrate fault tolerance.
Due to the use of modes in different types of systems, such as
real-time [6], avionic and space systems [7], [8], the approach
is useful for building wide classes of dependable systems.
We use term mode in the same sense as [6]: both as

partitions of the state space, representing different working
conditions of the system, as well as a way to define control
information in large state machines, imposing structure on the
operation of the system. The modes are defined to allow the
modeller to explicitly state the property that must be respected,
called guarantee, in each working system condition, called
assumption. These notions are discussed in Section II.
Modes can be refined, allowing detalisation of the system

(see Section III), and can be used together with a state-
based formal method (see Section V). Mode refinement is
performed hand in hand with the refinement of the respective
formal model and offer a way for layered definition and
reasoning about system properties. This helps to assure that
the properties are easily traceable to requirements. The case
study in Section VI exemplifies this. Another advantage of
a refinement approach is that it offers a strategy to obtain
a correct implementation from the formal model. Moreover,
theorem proving strategies and tools sometimes offer an at-
tractive option to model-checking as they avoid the state-space
problem.
This paper is organized as follows: modes and mode refine-

ment are presented in Sections II and III; Section IV discusses
their use in the design of fault-tolerant systems; Section V
discusses the use of modes with the Event-B formalism; the
model of a Cruise Control system is presented in Section VI;
related work and conclusions make Sections VII and VIII.

II. OPERATION MODES

Operation modes help to reason about the behaviour of com-
plex systems by focusing on the principal system properties

observed under different situations. In this approach, a system
is seen as a set of modes partitioning the system functionality
over differing operating conditions. The term assumption is
used to denote the different operating conditions and guarantee
denotes the functionality ensured by the system under the
corresponding assumption. A system may switch from one
mode to another in a number of ways characterised by mode
transition. A mode is a pair A/G where:

• A(v) is an assumption - a predicate over the current
system state;

• G(v, v′) is the guarantee, a relation over the current and
next states of the system; and

Vector v is the set of variables, characterising a system state
and constrained by an invariant I(v). The purpose of an
invariant I(v) is to limit the possible states of v by excluding
undesirable or unsafe states. It also defines types for variables
v. To limit the scope of discussion, it is assumed that a
system is only in one mode at a time. Mode overlapping and
mode interference bring a number of interesting challenges
that cannot be sufficiently addressed in this paper due to space
limitations. Formally, it is required that mode assumptions
are mutually exclusive and exhaustive in respect to a model
invariant, as below. ⊕ is a set partitioning operator.

I(v) = A1(v) ⊕ · · ·⊕ An(v) (1)

Mode switching is realised with mode transitions. A mode
transition is an atomic step switching system from one source
to one destination mode. It is convenient to characterise a
mode transition by a pair of assumptions - the assumptions
of source and of destination modes. Assuming that mode is
assigned an index, a mode transition from A i/Gi to Aj/Gj

is a relation on mode indices i ! j.
A system starts executing one of initiating transitions " !

k. The transition switches the system on and places it into
some system mode Ak/Gk. A system terminates by executing
one of terminating transitions t ! ⊥ 1. Mode transitions i !
" and ⊥ ! j are not allowed. Also, it is required that during
its lifetime a system enters at least in one operation mode
and thus transition " ! ⊥ is not possible. There can be any
number of initiating and terminating mode transitions.
There are certain restrictions on the way mode assumptions

and guarantees are formulated. One obvious condition is that
a guarantee may not require or permit a mode to violate an
invariant, that is, the states described by a guarantee must be
wholly included into valid model states:

I(v) ∧ A(v) ∧ G(v, v′) ⇒ I(v′) (2)

The assumption and guarantee of a mode must be non-
contradictory. I.e. a mode should permit a concrete implemen-
tation2:

∃v, v′ · (I(v) ∧ A(v) ⇒ G(v, v′)) (3)

1Not every system has to have this transition: a control system would be
typically designed as never aborting.
2An example of malformed mode is x ∈ NAT/x′ ∗ x′ < x.

A system is characterised by a collection of modes and a
vector of mode transitions:

A1/G1
. . .

An/Gn

i ! j
. . .

(4)

The state of a system described using operation modes is
a tuple (m, v) where m is the index of a current operation
mode and v is the current system state. Mode index helps
to clarify how mode switching is done although it may be
computed from v alone due to condition 1. The evolution of
a system like above is understood as follows. While it is in
some mode m the state of model variables evolves so that
the next state is any state v′ satisfying both the corresponding
guarantee G(v, v′) and the modes assumption A(v ′):

internal Am(v) ∧ Gm(v, v′) ∧ Am(v′)
〈m, v〉 → 〈m, v′〉

If there is a mode transition originating from a current mode,
the transition could be enabled to switch the system to a new
mode.

switching m ! n ∧ Am(v) ∧ An(v′)
〈m, v〉 → 〈n, v′〉

These two activities compete with each other: at each step a
non-deterministic choice is made between the two. There are
two types of non-deterministic choice: one when it is resolved
by a system itself; the other relies on an entity beyond system
boundaries. In this approach, the latter case is applied. An
important implication is that the only way to ensure proper
functioning of a system in spite of unfavourable behaviour
of an environment is to sufficiently constrain model non-
determinism. An initiating transition is a special case: it must
find an initial system state without being able to refer to any
previous state:

start * ! k ∧ Ak(v)
〈*, undef〉 → 〈k, v〉

where undef denotes a system state prior to the execution
of an initiating transition. System termination is addressed
by the switching rule above. Note that all of the three rules
also assume that an invariant holds in current and new states:
I(w) ∧ I(w′). This is a corrolary of conditions 1 and 3.

III. MODE REFINEMENT
Refinement is formal technique for transitioning from an ab-

stract model to a concrete one [9]. Terms abstract and concrete
are relative here: a concrete model of one step is another’s
step abstract model. There are a number of benefits in apply
refinement in model construction: it combats complexity by
splitting design process into a number of simple steps; it helps
to organise the process of modelling by allowing a modeller to
focus on one aspect of a model a time; it makes proofs easier
as for each refinement one only has to proof the correctness
of new behaviour3.
3Strictly speaking, this only applies to cases when refinement is monotonic.

However, all the popular formal methods enjoy this property and heavily rely
on it.

At a very general level, refinement is a partial order relation
on model universe. This relation is denoted as % and it
is reflexive, transitive and antisymmetric. For the operation
modes mechanism the refinement technique is used to gradu-
ally evolve a system description by adding or replacing modes
and transitions. Such evolution is completely formal in a sense
that a refined model may be used in place of its abstraction.
Refinement itself is a combination of a number of tech-

niques: data refinement, when data types are changed and data
structures are introduced; behavioural refinement, when sys-
tem behaviour becomes more deterministic and also described
in a finer level of details; and superposition refinement (or
model elaboration), when new functionality is added without
changing an existing model. All the three are applicable and
discussed for modes in the following.

a) Data Refinement: With data refinement, the vector of
model variables v is changed to some new vector u and model
invariant I(v) is replaced with new invariant J(v, u), often
called a gluing invariant. The mentioning of old variables v in
new invariant J allows modeller to expresses a linking relation
between the state of concrete and abstract models.

b) Behavioural Refinement: Behaviour refinement details
the mode view on a system. One case is changing a mode
assumption or guarantee or both. It is postulated mode as-
sumption cannot be strengthened during refinement. This is
based on understanding that an assumption is a requirement
of a mode to its environment. As a system developer cannot
assume control over the environment of a modelled system, a
stronger requirement to an environment may not be realisable.
On the other hand, a weaker requirement to an environment
means that a system is more robust as it would remain
operational in a wider range of environments. Symmetrically,
a mode guarantee cannot be weakened as a mode guarantee is
understood as a contract of a mode with the rest of a system
and the system environment. In other words, weakening a
mode guarantee could violate expectations of another system
part. The following condition summarises this refinement rule:

A(v)/G(v, v′) + A′(u)/G′(u, u′),

iff
{

I(v) ∧ J(v, u) ∧ A(v) ⇒ A′(u)
J(v, u) ∧ G′(u, u′) ⇒ G(v, v′)

(5)

Another case is when an abstract mode is a modelling
abstraction for several concrete modes. Thus, a single mode
in an abstract model evolves into a two or more concrete
modes. The general rule for such refinement step is that the
combination of new modes must be a refinement of an abstract
mode. In more concrete terms, a disjunction of concrete mode
assumptions must be not stronger than the abstract mode
assumption and the disjunction of concrete guarantee must be
not weaker than the abstract guarantee:

A(v)/G(v, v′) + A1(u)/G1(u, u′)
A2(u)/G2(u, u′) ,

iff
{

I(v) ∧ J(v, u) ∧ A(v) ⇒ A1(u) ∨ A2(u)
I(v) ∧ J(v, u) ∧ G1(u, u′) ∨ G2(u, u′) ⇒ G(v, v′)

(6)

c) Superposition Refinement: Sometimes it is needed to
add new modes without having to split an abstract mode.
This is accomplished using superposition refinement. With

superposition refinement, a refined model contains additional
modes. Assumptions and guarantees of these modes must
be expressed on new variables (variables for u that are not
mapped onto abstract variables v). Formally, this is possible by
refining an implicit skip mode false/true. This is the weakest
form of a mode and it can be refined into any other mode.

d) Refinement of Transitions: A refinement of a mode
or an introduction of a new mode requires changes to mode
transitions. The general rule is that a transition present in
an abstract model must have a corresponding transition in a
refined model and no new transitions may appear. Changing
mode assumptions and guarantees does not affect mode transi-
tions. Splitting a mode into sub-modes, however, leads to the
distribution of the mode transitions associated with the refined
mode among the new modes. Thus, if a mode with a transition
is split into two new modes, the transition can be associated
with any one of the new modes or both.

e) Visual Notation: To assist in application of the oper-
ation modes approach, a simple visual notation is proposed.
It is loosely based on modechards [6]. A mode is represented
by a box with mode name; a mode transition is an arrow
connecting two modes. The direction of an arrow indicates
the previous and next modes in a transition. Special modes
" and ⊥ are omitted in a diagram so that initiating and
terminating transitions appear to be connected with a single
mode. This is also how they can be distinguished from other
transitions. Refinement is expressed by nesting boxes. Figure
1(B) presents a mode M1 refined into modes M1.1 and M1.2.
The mode transitions depicted are only one possibility. A
refined diagram with an outgoing arrow from an abstract mode
is equivalent to having outgoing arrows from each of the
concrete modes (this feature is used in the case study).

M1.1 M1.2M1
M1

(A) (B)
Fig. 1. Mode Diagrams.

IV. MODES FOR FAULT TOLERANT SYSTEMS

The use of modes together with a refinement approach, as
introduced in the previous sections, offers suitable abstractions
to modelling and reasoning about fault tolerant systems, as
discussed in the following.
Due to the use of a state-based approach, state representa-

tion, manipulation and reasoning becomes natural. The support
provided by modes allows to partition the state space into
normal and erroneous: mode assumptions allow this separation
to be declared and erroneous states made explicit. Refinement
allows further definition of erroneous states into more specific
ones. Assumptions on normal and erroneous states can be
suitably associated to modes in charge of performing normal
system operation and fault tolerance measures, respectively.
Generally speaking, a recovery mode should be associated

with a particular normal mode, which it recovers, and mode

switching is in some sense reminiscent to calling an excep-
tion handler in programming languages. Error detection is
immediate, embedded in the erroneous state assumption of
a recovery mode. As soon as a state transition leads to the
characterization of an erroneous state, the recovery mode is
enabled. A more concrete view is to consider the existence of a
detection mechanism, which is active during normal operation.
In such case the detection mechanism affects the state used in
the assumptions of normal and recovery modes. By refinement
one could start with the first and reach the second, more
detailed model. Any of the possibilities allow switching to
recovery mode from any normal mode state. For reasoning
purposes, one can introduce the possibility of fault occurrences
in parallel with the model. In an event based formalism this
takes the form of an enabled event that affects the state to
satisfy the erroneous state assumption.
The recovery mode has access to the state of the respective

normal mode. Analogously to assumptions, guarantees asso-
ciated to normal or recovery modes assist to define properties
of the system in absence or presence of errors, respectively.
Depending on the severity of the detected error, the recovery
mode guarantees may assert that the recovery procedure: (i)
successfully recovers the state and thus switches back to
normal mode to proceed execution (Figure 2(B) or (C)); (ii)
provides degraded service in cases where full functionality is
not recoverable (Figure 2(D)); (iii) fails to recover, in which
case measures to stop safely may be taken (Figure 2(A) and
part of (D)). Using the graphical notation introduced in the
previous section, the following configurations exemplify some
possible use of modes for fault tolerance.

masking

Normal

Fail-safe Fault
masking

Normal2Normal1Normal

Fault

Normal 1
Degraded

Fail-safe 2
Degraded

(B) (C)(A) (D)
Fig. 2. Modes for fault tolerance.

V. OPERATION MODES FOR EVENT-B
The operation modes method is not intended to be used

as a modelling method on its own as it lacks the facilities
for expressing detailed design. The schematic nature of the
approach makes it it well suited to integration with an existing
formalism. One such case is presented in this section. A
well known formalism - Event-B - is extended with operation
modes. The rules for deriving formal conditions for reasoning
about a combination modes and Event-B models are presented.
Event-B is a state-based formalism closely related to Classi-

cal B [10] and Action Systems [11]. The step-wise refinement
approach is the corner stone of the Event-B development
method. The combination of model elaboration, atomicity re-
finement and data refinement helps to formally transition from
high-level architectural models to very detailed, executable
specifications ready for code generation.
An extensive tool support through the Rodin Platform makes

Event-B especially attractive [12]. An integrated Eclipse-

based development environment is actively developed, well-
supported, and open to third-party extensions in the form of
Eclipse plug-ins. The main verification technique is theorem
proving supported by a collection of powerful theorem provers.
The development environment is also equipped with model
checking capabilities.
An Event-B model is defined by a tuple (c, s, P, v, I, RI , E)

where c and s are constants and sets known in the model; v is
a vector of model variables; P (c, s) is a collection of axioms
constraining c and s. I is a model invariant limiting the possi-
ble states of v: I(c, s, v). The combination of P and I should
characterise a non-empty collection of suitable constants, sets
and model states: ∃c, s, v·P (c, s)∧I(c, s, v). The purpose of an
invariant is to express model safety properties (that is, unsafe
states may not be reached). In Event-B an invariant is also used
to deduce model variable types. RI is an initialisation action
computing initial values for the model variables; it is typically
given in the form of a predicate constraining next values of
model variables without, however, referring to previous values
- RI(c, s, v′). Finally, E is a set of model events. An event is
a guarded command:

H(c, s, v) → S(c, s, v, v′) (7)

where H(c, s, v) is an event guard and S(c, s, v, v ′) is
a before-after predicate. An event may fire as soon as the
condition of its guard is satisfied and no other event executes
at the same time. In case there is more than one enabled event
at a certain state, the demonic choice semantics is applies.
The result of an event execution is some new model state
v′. The semantics of an Event-B model is usually given in
the form of proof semantics, based on Dijkstra’s work on
weakest precondition [13]. A collection of proof obligations is
generated from the definition of the model and these must be
discharged in order to demonstrate that the model is correct.
Putting it as a requirement that an enabled event produces a

new state v′ satisfying a model invariant, the following would
define the model consistency condition: whenever an event on
an initialisation action is attempted there exists a suitable new
state v′ such that a model invariant is maintained - I(v ′). This
is usually stated as two separate proof obligations: a feasibility
obligation requiring the existence of (any) new state v ′ and the
invariant satisfaction obligation showing that any new state v ′

maintains an invariant. The invariant satisfaction obligation
requires that a new state produced by an event must satisfies
a model invariant:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ∧ S(c, s, v, v′) ⇒ I(c, s, v′) (8)

An event must also be feasible, in a sense that an appropriate
new state v′ must exist for some given current state v:

I(c, s, v) ∧ P (c, s) ∧ H(c, s, v) ⇒ ∃v′ · S(c, s, v, v′) (9)

Conceptually, operation modes and Event-B models are
related by requiring that every mode and mode transition has
a suitable implementation in an Event-B model. A mode is

related to a non-empty subset of Event-B model events and
mode transition is mapped into a single Event-B event:

A1/G1 -→ E1
. . .

An/Gn -→ En
(i ! j) -→ Ek

. . .

(10)

Event sets E1, . . . , En may overlap but may not be identical.
The latter is due to the fact that two modes Ai/Gi '→ E
and Aj/Gj '→ E are equivalent to a single mode Ai ∨
Ai/Gi ∧ Gj '→ E and thus there is no advantage in allowing
configurations where modes have identical event sets. The
mapping between transitions and events is one-to-many: a
transition is mapped into a non-empty set of events. Each
event associated with a transition must properly implement
the transition, that is, it must be proven it gets enabled in
a stated assumed by a source mode and establishes a state
corresponding to the assumption of a target mode. To establish
mapping, for some transition (i ! j) '→ Ek it is required to
demonstrate the following:

∀e · (e ∈ Ek ∧ I(c, s, v)∧He(c, s, v)∧Se(c, s, v, v′) ⇒ Ai(v)∧Aj(v
′))
(11)

The composition of modes and Event-B clarifies how a
system evolves when it is in a mode, how mode switching
is done and the way system is initialised. The old internal
rule is changed to reflect the way a new system state is
computed: assuming that a system is mode Ai/Gi '→ Ei and
the current state is valid (I(v) holds) and satisfies the mode
assumption (Ai holds) the next state is some state v ′ such
that mode guarantee G(v, v ′) holds along with before-after
predicate Re(v, v′) of one of enabled (He(v)) mode events
(e ∈ Ei):

internal1

I(v) ∧ Am(v) ∧ Gm(v, v′) ∧ Am(v′)
∃e · e ∈ Ei ∧ He(v) ∧ Re(v, v′)
〈m, w〉 → 〈m, w′〉

The above states that an execution cannot progress if none
of the events establishes a mode guarantee or there is no
enabled event. To ensure that in a given mode a system evolves
correctly, it is required to show for every mode event that
the event establishes mode guarantee and the event guard is
compatible with the mode assumption. Rules switching1 and start1
are analogously obtained from rules switching and start in Section
II. The rule above gives a rise to a number of conditions on
Event-B. Firstly, all the events of a mode must satisfy the
mode guarantee provided the mode assumption holds:

I(v) ∧ A(v) ∧ H(v) ∧ R(v, v′) ⇒ G(v, v′) (12)

Also, the partitioning of the events into modes must be in
an agreement with the event guards. When event is enabled
then the assumption of its mode must hold. Since an event is
potentially associated with multiple modes, the disjunction of
all the relevant assumptions must hold:

H(v) ⇒ A1(v) ∨ · · · ∨ Ak(v)
Ak+1(v) ∨ · · · ∨ An(v) ⇒ ¬H(v) (13)

where A1, . . . , Ak are the assumptions of the modes con-
taining an event with guard H(v) and Ak+1, . . . , An are those
not containing the event.
It is required to show that a system is always able to

progress once it is in a given mode. For this, it must be shown
that there is always at least one enabled event among the events
of the mode:

I(v) ∧ A(v) ⇒ H1(v) ∨ · · · ∨ Hn(v) (14)

Provided the three conditions above are discharged, it is
guaranteed that, once in a given mode, a system would
unfailingly progress in accordance with the mode conditions
for the system lifetime or until the system transitions into a
different mode.

a) Operation Modes and Event-B Co-refinement: The
cornerstone of the Event-B development method is a gradual,
refinement-based, model detailing. To refine model M one
constructs a new model M ′ such that at a certain level of
observation new model is at least as good as the old one.
Formally, this is demonstrated by constructing a refinement
mapping between M ′ and M that would show that for any
valid state of M ′ there is a corresponding state in M . In
Event-B, this is accomplished by discharging a number of
refinement proof obligations formulated for each model event.
As refinement in Event-B is monotonic, a model refinement
could be constructed by changing only a part of a model
and demonstrating the relevant conditions for just that part.
Event-B refinement is a combination of data, superposition,
behavioural and atomicity refinement. Atomicity refinement
permits introduction of a finer level of atomic steps needed
to realise a given functionality. What would appear as an
one atomic event in an abstract model may be refined into
a complex of events with all the properties of the abstraction
retained. The Event-B notion of data refinement follows the
same generic style used for operation modes data refinement.
Event-B behavioural refinement allows a modeller to replace

an event guard and event before-after predicate. The rules link-
ing abstract and concrete guards and before-after predicates are
as follows. The guard of the concrete version of an event must
be stronger than its abstract counterpart:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u) ⇒ G(s, c, v) (15)

A new before-after predicate must be a stronger version of
its abstraction:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u)∧
S(s, c, u, u′) ⇒ v′ · (R(s, c, v, v′) ∧ J(s, c, v′, u′))

(16)

An event may be split into two or more events. In this
case, the refinement relation is proved for each new event in
the same manner for as for on-to-one event refinement. New
events may be introduced but may only update new variables.
Standard consistency conditions apply.
A composition of operation modes and Event-B models has

to be refined in such a manner that it obeys both operation

mode refinement and Event-B refinement. For rule 5, it is
required that a refined operation mode is made of events
refining events from an abstract mode and also each event
from the abstract mode is present as a copy or a refined event
in the refined mode.

A(v)/G(v, v′) -→ E + A′(u)/G′(u, u′) -→ E′,

iff

I(v) ∧ J(v, u) ∧ A(v) ⇒ A′(u)
I(v) ∧ J(v, u) ∧ G′(u, u′) ⇒ G(v, v′)
∀e · e ∈ E′ ⇒ ∃a · a ∈ E ∧ e + a
∀e · e ∈ E ⇒ ∃a · a ∈ E′ ∧ a + e

(17)

Rule 6 for refinement of modes into a collection of new
modes is changed in a similar manner.

A(v)/G(v, v′) -→ E + A1(u)/G1(u, u′) -→ E1
A2(u)/G2(u, u′) -→ E2

,

iff

I(v) ∧ J(v, u) ∧ A(v) ⇒ A1(u) ∨ A2(u)
I(v) ∧ J(v, u) ∧ G1(u, u′) ∨ G2(u, u′) ⇒ G(v, v′)
∀e · e ∈ E1 ∪ E2 ⇒ ∃a · a ∈ E ∧ e + a
∀e · e ∈ E ⇒ ∃a · a ∈ E1 ∪ E2 ∧ a + e

(18)

Conditions 17 and 18 state how mode refinement is related
to Event-B model refinement. They are the basis for generating
proof obligations that would determine the correspondence
between an Event-B model and a modes model.

b) Tool Support for Modes Modelling: As already
mentioned, the Rodin platform supports modelling and rea-
soning with Event-B models. Extensions to the Rodin platform
can be integrated with: tool interface, modelling process and
verification infrastructure. An extension providing the support
for modelling with modes would let a designer to visually
construct a modes model and would take care of generating the
proof obligations required to demonstrate the correspondence
between the modes model and the associated Event-B model
(defined by relation (10)). Proof obligations are delegated to
the proof infrastructure of the Platform that passes them on to
one or of automated theorem provers and also an interactive
prover should a theorem prover find a problem or fail to
discharge a proof obligation.

VI. CRUISE CONTROL CASE STUDY
A simplified version of one of the DEPLOY case studies

[14] developed in cooperation with industrial partners, the case
study illustrates the application of the proposed technique to
the development of a cruise control system.
The purpose of the system is to assist a driver in reaching

and maintaining some predefined speed. Due to the nature of
the system, a lot of attention is given to the interaction of a
driver, cruise control and the controlled parts of a car. In the
current modelling we assume an idealised car and idealised
driving conditions such that the car always responds to the
commands and the actual speed is updated according to the
control system commands.

a) A Mode for the Ignition Cycle: At the most abstract
level we introduce mode IGNITION CYCLE to represent the
activity from the instant the ignition is turned on to the instant
it is turned off. The initial model includes: the state of ignition
(on/off), modelled by a boolean flag ig; the current speed of
the car (a modelling approximation of an actual car speed),

stored in variable sa; a safe speed limit speedLimit above
which the car should not be in any case; and a safe speed
variationmaxSpeedV ariation. No memory is retained about
the states in the previous ignition cycle. Initially, the current
speed is zero and ignition is off: sa ∈ 0 ∧ ig ∈ FALSE.
Independently of the operation of the car - by the driver or

by the cruise control - the following has to be ensured during
an ignition cycle (we present the intuition in the first line and a
formal representation of the same assumptions and guarantees,
based on the variables introduced, in the second line).

mode assumption guarantee
IGNITION ignition is on keep speed under limit and

CYCLE (ac/de)celarate safely
ig = true (sa < speedLimit) ∧

(|sa′ − sa| <
maxSpeedV ariation)

Figure 3 presents the diagram of the system. At this level
of abstraction it is composed only by the IGNITION CYCLE
mode. An event happens in the system that establishes the
assumption for that mode: ignitionOn. While ignition is on,
the corresponding guarantees have to be ensured. Another
event may change the conditions of the system and the
assumptions for this mode may become false: ignitionOff .

ignitionOn ignitionOff

IGNITION CYCLE

Fig. 3. Abstract model diagram: the ignition cycle.

b) DRIVER and CRUISE CONTROL Modes: When the
ignition is turned on, control is with the driver. While the
ignition is on, control can be passed from the driver to the
cruise control and back. It is assumed that a driver has two
buttons on a control panel: the on button switches on the cruise
control; the off button returns to the driving mode. A third
input is available to set the target speed to be achieved by
the cruise control. The system is naturally represented with
two modes: DRIVER corresponding to the activity when cruise
control is off and CRUISE CONTROL when cruise control is
active. The on/off buttons mentioned are mapped to transition
events ccOn and ccOff . The diagram in Figure 4 depicts the
two possible modes during an ignition cycle.

CRUISE CONTROL

ignitionOn ignitionOff

DRIVER

IGNITION CYCLE

ccOn ccOff setSt

Fig. 4. Introduction of Driver and Cruise Control modes

This refinement introduces: the state of cruise control
(on/off), modelled by boolean flag cc; the target speed that
a cruise control is to achieve and maintain, represented by
variable st; an allowance interval isp that determines how
much actual speed could deviate from a target speed when
cruise control tries to maintain a target speed. Initially, the

target speed is undefined and cruise control is off: st ∈
N ∧ cc ∈ FALSE. The description of the modes:

mode assumption guarantee
DRIVER ignition cycle ignition cycle

assumptions and guarantees
cruise control off
ig = true (sa < speedLimit) ∧
∧ (|sa′ − sa| <
cc = false maxSpeedV ariation)

CRUISE ignition cycle ignition cycle
CONTROL assumptions and guarantees and

cruise control on maintain target speed or
approach target speed

ig = true (sa < speedLimit) ∧
∧ (|sa′ − sa| <
cc = true maxSpeedV ariation) ∧

(|sa′ − st′| ≤ isp ∨
|sa′ − st′| < |sa − st|)

c) Refining the CRUISE CONTROL Mode: If the differ-
ence between current (sa) and target (st) speeds is within
an acceptable error interval (isp), the cruise control works to
MAINTAIN the current speed. Otherwise, it employs different
procedures to APPROACH the target speed, characterizing
two modes refining CRUISE CONTROL with assumptions and
guarantees are as follows.

mode assumption guarantee
APPROACH cruise control cruise control

assumptions and guarantees and
speed not close approach
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′ − sa| <
|sa′ − st′| > isp maxSpeedV ariation) ∧

(|sa′ − st′| < |sa − st|)
MAINTAIN cruise control cruise control

assumptions and guarantees and
speed close maintain
to target target speed
ig = true ∧ (sa < speedLimit) ∧
cc = true ∧ (|sa′ − sa| <
|sa′ − st′| ≤ isp maxSpeedV ariation) ∧

(|sa′ − st′| ≤ isp)

Figure 5 depicts these modes. Switching from DRIVER to
CRUISE CONTROL may either establish the assumptions of
APPROACH or MAINTAIN, depending on the difference between
st and sa. In either of these two modes the cruise control can
be switched off and the control returned to the driver.

MAINTAIN APPROACH

DRIVER

ccOff

setSt

sa=st setSt

IGNITION CYCLE

setSt

ccOnccOn

ignitionOn

CRUISE CONTROL

ignitionOff

Fig. 5. Introduction of Internal Cruise Control modes

d) Fault handling: at any time failures in other compo-
nents (e.g. airbag activated, low energy in battery, etc.) may

AND

APPROACHMAINTAIN

ERRORH

DRIVE
DEGRADED

MODE

DRIVE
NORMAL
MODE

DRIVE

sa=st

setSt

eoIEH

faultfault

eoREH
DRIVER

CRUISE CONTROL
ccOff

IGNITION CYCLE

ignitionOffignitionOn

faultccOn ccOn

setSt

setSt

Fig. 6. Introduction of Fault Handling and Degraded modes

happen and affect the cruise control system, being considered
faults for the latter. These faults are signaled to the system
and can be reversible or irreversible: reversible faults cause
the control to be returned to the driver, handling measures to
be undertaken, and the cruise control becomes available again;
irreversible faults are handled and the cruise control becomes
unavailable during the ignition cycle.
The signaling of fault situations is registered in an error

variable. We introduce a normal (DRIVE NORMAL MODE),
a degraded service (DRIVE DEGRADED MODE) and an er-
ror handling mode (DRIVE AND ERRORH). While in any
mode of the system a fault may be signaled, switch-
ing the system to DRIVE AND ERRORH where control is
with the driver. Eventually the error handling reestablishes
DRIVE NORMAL MODE, with full functionality available, or
switches to DRIVE DEGRADED MODE where the cruise con-
trol is not available. This exemplifies situations (C) and (D)
of Figure 2. Figure 6 shows these modes. An eHand variable
is used to register that error handling is taking place. The
following is a representation based on the variables introduced.

mode assumption guarantee
DRIVE driver driver

NORMAL assumptions guarantees and
MODE and no error cruise control available

ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = false maxSpeedV ariation) ∧

(cc′ ∈ BOOL)
DRIVE driver driver guarantees and
AND assumptions cruise control not available and

ERRORH and error and recovery measures
handling restore normal mode or
not finished swich to degraded mode
ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = true∧ maxSpeedV ariation) ∧
eHand = true (cc′ ∈ FALSE) ∧

eHand′, error′ ∈
{(true , true), (false, BOOL)}

DRIVE driver driver
DEGRA- assumptions guarantees and
DED and error and cruise control not available
MODE handling finished

ig = true∧ (sa < speedLimit) ∧
cc = false∧ (|sa′ − sa| <
error = true∧ maxSpeedV ariation) ∧
eHand = false (cc′ ∈ FALSE)

VII. RELATED WORK

Several applications, structured in modes, can be found in
the literature. In [7], [8] efforts were invested to the formal
modelling and analysis of space and avionic systems, respec-
tively. In [15] the extension of an Automated Highway System
to tolerate several kinds of faults is discussed, and modes are
used to characterize degraded operation. Such contributions
focus on specific applications and not on general means to
model and reason using modes.
In [16] the authors discuss characteristics of mode-driven

distributed applications and a software architecture with ex-
tensions to mode-driven fault-tolerance. An infrastructure is
proposed to support mode-driven fault tolerance in run time.
In [17], the representation of degraded service outcomes and
exceptional modes of operation using UML use cases, activity
diagrams and state charts is discussed. Formal modelling and
reasoning is not discussed in these contributions.
In [6] a specification language for real-time systems, called

Modechart, is presented. The notion of modes is closely related
to the one discussed in this paper, however [6] is focused on
the specification and analysis of timing properties of systems.
Functional properties are not discussed.
In the context of refinement based methods, the most related

work found is by Back and von Wright [18], where guarantees
(of an action system) are introduced to reason about the par-
allel composition of action systems. Guarantees of composed
action systems have to mutually respect the invariants. Since
there is no notion of assumptions (they are embedded in the
invariants), the flexibility of changing assumptions, allowing
different modes and mode switching, is not offered.
Finally, Jones, Hayes and Jackson, in [19], address the

problem of obtaining a starting specification for a class of
systems, namely those that describe behaviour in the physical
world, like control systems. A method is discussed that leads
the designer to explicitly state rely conditions (to be compared
with assumptions) about the physical world before deriving
a first specification of the system. The notion of ’layer’ is
briefly discussed, where one layer would be associated to a
set of rely/guarantee predicates and could be compared to a
mode. Different layers could be used to state the behaviour
under distinct conditions. Fault tolerance is briefly mentioned,
where one could have assumptions to characterize absence of
component failures or presence of faults.

VIII. CONCLUSIONS
In this paper the notions of modes and mode refinement

are formally defined and their representations in a state-
base formalism (Event-B) are established. These notions allow
explicit characterization of various system conditions, through
expressing assumptions, and the properties of the system
working under such conditions, through the use of guarantees.
The complexity of design is reduced by structuring systems
using modes and by detailing this design using refinement.
This approach makes it easier for the developers to map re-
quirements to models and to trace requirements. More specif-
ically, the approach suits well for dealing with fault-tolerance

requirements: assumptions allow the explicit mapping of the
error coverage provided by the system, whereas guarantees and
mode switching configurations allow the explicit mapping of
requirements for different levels of fault-tolerance.
In addition to developing a tool support, in the near future

we plan to investigate mode concurrency and mode hierarchy
(nesting). The former needs further work to support concurrent
modes acting on shared states. The latter should allow us to
express recursive structuring for fault tolerance [20]. Another
important issue we intend to address is state consistency during
distributed execution of modes.

REFERENCES
[1] J.-C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[2] F. Cristian, Exception handling, T. Anderson, Ed. Blackwell Scientific
Publications, 1989.

[3] A. Romanovsky, “A looming fault tolerance software crisis?” SIGSOFT
Softw. Eng. Notes, vol. 32, no. 2, pp. 1–4, 2007.

[4] J. Peleska, “Formal methods and the development of dependable systems
- habilitationsschrift,” 1996.

[5] F. C. Gärtner, “Transformational approaches to the specification and ver-
ification of fault-tolerant systems: formal background and classification,”
Journal of Univ. Computer Science, vol. 5, no. 10, pp. 668–692, 1999.

[6] F. Jahanian and A. Mok, “Modechart: A specification language for real-
time systems,” IEEE Transactions on Software Engineering, vol. 20,
no. 12, pp. 933–947, 1994.

[7] R. W. Butler, “Nasa tech. memo. 110255 an introduction to requirements
capture using pvs: Specification of a simple autopilot,” 1996.

[8] S. P. Miller, “Specifying the mode logic of a flight guidance system
in core and scr,” in FMSP ’98: Proc. of the 2nd workshop on Formal
methods in software practice. New York, USA: ACM, 1998, pp. 44–53.

[9] R.-J. J. Back and J. V. Wright, Refinement Calculus: A Systematic
Introduction. Springer-Verlag New York, Inc., 1998.

[10] J. R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[11] R.-J. Back and K. Sere, “Stepwise Refinement of Action Systems,” in
Proceedings of the International Conference on Mathematics of Program
Construction, 375th Anniv. of the Groningen Univ., J. L. A. van de
Snepscheut, Ed. London, UK: Springer-Verlag, 1989, pp. 115–138.

[12] “Event-b and the rodin platform,” http://www.event-b.org/ (last accessed
8 March 2009). Rodin Development is supported by European Union
ICT Projects DEPLOY (2008 to 2012) and RODIN (2004 to 2007).

[13] E. Dijkstra, A Discipline of Programming. Prentice-Hall Int., 1976.
[14] J.-R. Abrial, J. Bryans, M. Butler, J. Falampin, T. S. Hoang, D. Ilic,

T. Latvala, C. Rossa, A. Roth, and K. Varpaaniemi, “Deploy deliverable
d5 1dj1 (draft) - report on knowledge transfer,” p. 321, Jan. 2009.

[15] J. Lygeros, D. N. Godbole, and M. E. Broucke, “Design of an extended
architecture for degraded modes of operation of ivhs,” in In American
Control Conference, 1995, pp. 3592–3596.

[16] D. Srivastava and P. Narasimhan, “Architectural support for mode-driven
fault tolerance in distributed applications,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1–7, 2005.

[17] S. Mustafiz, J. Kienzle, and A. Berlizev, “Addressing degraded service
outcomes and exceptional modes of operation in behavioural models,” in
SERENE ’08: Proceedings of the 2008 RISE/EFTS Joint International
Workshop on Software Engineering for Resilient Systems. New York,
NY, USA: ACM, 2008, pp. 19–28.

[18] R.-J. Back and J. von Wright, “Compositional action system refinement,”
Formal Asp. Comput., vol. 15, no. 2-3, pp. 103–117, 2003.

[19] C. B. Jones, I. J. Hayes, and M. A. Jackson, “Deriving specifications for
systems that are connected to the physical world,” in Formal Methods
and Hybrid Real-Time Systems, 2007, pp. 364–390.

[20] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice,
J. C. Laprie, A. Avizienis, and H. Kopetz, Eds. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1990.

