Tutorials for RODIN

October 26, 2007

Introduction

This tutorial should provide the user with a tour through the most important functional-
ities of RODIN, so that he gets a understanding of how the program works. The tutorial
is divided into 5 sections:

In the first section, a very simple project is created from scratch. The essential steps
in working with components are illustrated here.

The second section provides an example that shows how events of different machines
can be connected together. It also gives an introduction on working with the prover

After section 1 and 2, the user should have developed a feel of the basic windows
of RODIN, and when they are needed. He might want to combine the two default
perspectives into one. Section 3 explains how this can be done. This section may be
omitted by users who feel comfortable switching between two perspectives.

Section 4 shows how to use apply reasoning on models in the prover.

Section 5 shows a proof in a mathematical setting, and then provides a few examples,
on which the user can work on by himself. In these proofs, everything except the basic
rewrite rules has to be done by the user.

Files
For this tutorial, you will be needing 4 example files. They are:
e Celebrity.zip, which will be needed in section 2.
e Doors.zip, which contains the model that is used in section 4.

e Closure.zip. This is the model on which you perform proofs in section 5.



e Galois.zip. This model is not really needed, but serves as an explanation to why

the proof in section 5 works.

1 A First Example: The Birthday Book

To begin with, let us start with a simple model of a “birthday book”, similar to the one
in the Z Notation Reference Manuall} This little book is a simple tool that can be used
to keep birthdays of different people. All we can do with it is writing people’s birthdays
into it. So, the initial model only has one event. We create the model as follows:

1.1 The Event-B Perspective

1.

Start RODIN. You should be directed automatically to the Event-B perspective. If
this does not happen, you will have to change to this perspective manually (Eclipse
help describes how this is done).

Create a new Project as described in section 1.3 of the Manual. Name the project
BirthdayBook.

. Create a new Context Component named BirthdayBook_CO in the Project you

created. This can be done similarly to creating the new project. (See also Section
1.8 of the Manual)

In this model, we are not interested in the specific structure of the date. All we
want this context to contain are two carrier sets, one for dates and one for people.
We will call them DATE and PERSON. You can add them to the context as described
in section 2.1 of the manual. Now either press Ctrl+S or click on the save Icon to
save the context.

. Now, we need to create a Machine Component. Proceed as you did to create

the Context Component, just choose “Machine” this time. Give the Machine
Component the name BirthdayBook_0. Once the component is created, a window
with the machine’s dependencies appears. Add BirthdayBook_CO to the seen
contexts so that you can access the carrier sets.

. We need a variable that reflects the contents of the book. We call it “birthday’.

The following information on the variable can be entered into the New Variable
Wizard (Manual Section 3.2.1), which can be accessed by an icon on the tool bar.
Since every person has at most one entry in the birthday book, but not every
person has an entry in it, “birthday” should be a partial function from PERSON to
DATE. At initialization, we want the book to be empty. (The symbol for partial
functions can be written by typing in +-> . Section 8 of the Manual contains all
on how to write Event-B symbols in ASCII.)

'The Z Notation Reference Manual can be found at http://spivey.oriel.ox.ac.uk/mike/zrm/index.html



7. Last, we create the event. Open the New Event Wizard (as seen in Section 3.5.1 of
the Manual) on the top tool bar. Name the new Event AddBirthday. It has two
parameters, p and d, where p is a PERSON and d is a DATE (enter these as guards).
As action, write birthday := birthday U {p — d} (Remember, Section 8 of the
manual explains how to write Event-B symbols). Now, save the machine. If you
have done everything correctly, the type checker should not return anything to the
problems window at the bottom of the screen. It appears that we have successfully
created a model of the birthday book. But have we?

1.2 The Proving Perspective

Now, we switch to the proving perspective. You see several windows on the screen:

e The Proof Obligation Explorer (Section 5 of the Manual): Here you can browse
through proof obligations. As you can see, BirthdayBook_CO has no proof obliga-
tion and BirthdayBook_O has two. The A in the icons of the obligations means
that the automatic prover attempted both obligations. The green icon next to the
first proof obligation indicates that it already has been proved, and the red icon
next to the second proof obligation tells that the proof is not yet completed. Proof
obligations can have three colors, red, green and blue. The blue color means that
the proof has been reviewed, meaning that it has been discharged without proof
by the user. Click on the second prove obligation to display the proof. This fills a
couple of other windows.

e The Proof Tree (Section 6.2 of the Manual): Here you see a tree of the proof that
you have done so far and your current position in it. By clicking in the tree, you
can navigate inside the proof. Currently, you have not started with the proof yet,
so there is no new place to move to.

e The Proof Control (Manual, section 6.4): This is where you perform interactive
proofs.

e The Selected Hypothesis window (Manual, section 6.7): The hypothesis that are
currently being used for the proof are displayed here. You can add hypothesis into it
from the Search Hypothesis window and from the Cached Hypothesis window(See
section 6.4 in the Manual on how to open these windows).

e The goal window (Manual, section 6.3): This window shows what needs to be
proved at the current position inside the proof tree. Currently we need to show
that birthday is still a partial function from PERSON to DATE if it is extended by an
entry.

There is no way to prove the goal if a birthday is already entered into the book for
a certain person. So, our event needs an additional guard that restricts p to people for
whom there is no entry yet in the book. This can be done in the proving perspective.
Just switch to the machine and add the additional guard (p ¢ dom(birthday)) using



the editor (On adding guards: Manual, section 3.5.2). If you save the document now,
you will see that the auto-prover can conclude.

Congratulations! You have built your first model with RODIN.

2 The Celebrity Problem

The next model that you will work with is the so-called celebrity problem. In the setting
for this problem, we have a “knows” relation. This relation is defined so that

- no one knows himself,
- the celebrity knows nobody, but

- everybody knows the celebrity.

The goal is to find the celebrity. The provided development, once completed, yields a
linear-time algorithm for the problem.

2.1 Modeling

1. Make sure that you have no existing Project named Celebrity. If you do, then re-
name it (Section 1.7 in the Manual). Then import the archive file Celebrity.zip.
For this, choose “Import...” in the File menu, and then select “Existing Projects
into Workspace”. Then, select the according archive file. (Read more on importing
projects in section 1.6 of the Manual)

2. The tool takes a few seconds to extract and load all the files. Once it is done, it
shows that there are a few problems with this project. In the first part of this
section, our goal is to fix these problems and conclude the proofs.

3. First of all, we take a look at the error. It states that an event called “celebrity”
is not refined. Double-click on the error in the Problem Window to open the
Celebrity_1 machine. If you look at its events (by pressing the “Events” tab),
you can see that it actually does have a “celebrity” event. The problem is that it is
not declared as a refinement. In order to do so, right-click on the event and select
“New Refine Event”. This declares that the event is a refinement of an event with
the same name in the abstract machine. As this is the case here, we can now save
the project and the error disappears. (If the event in the abstract machine had a
different name, you would have to edit it. For more on this issue, see Section 3.9.1
of the Manual).

4. Next, we deal with the warnings. The three remaining warnings state that wit-
nesses are missing. In any abstract event that uses parameters, if the concrete event
has no parameter with the same name, the tool needs a witness so that it notices
what value the parameter should take. Witnesses are also needed for variables



that have a nondeterministic assignment in an abstract event and do not appear
in the concrete model. (See also Section 3.9.4 of the Manual) To create the wit-
ness, double-click on the warning to open the concrete model (here Celebrity_2).
Then, right-click on the “celebrity” event and select “New Witness”.

. An empty witness has been created, which we need to fill. Its name will have to

be z if we want it to be a witness for the parameter . Next, for the content. If
we switch between the two machines (either by pressing Ctrl+F6 or by clicking on
their tabs), we see that the abstract event has the assignment r := x, while the
concrete one has the assignment r := b. So, x = b is the witness. Edit the Details
and save the file. One warning will disappear, two to go.

. Try completing the other two witnesses on your own. A hint: Both witnesses

are simple equalities, and both can be found by comparing the third guard of the
abstract event with the second guard of the concrete one. Remember to give the
witness the name of the variable it stands for. If you completed this step correctly,
there should be no warning, info or error left on the Problems window.

2.2 Proving

1.

All we have to do now is prove. Switch to Proving Perspective. Browsing around in
the Obligation Explorer (Section 5 of the Manual shows you how), you can see that
the auto-prover did quite a good job. If you have chosen the witnesses correctly,
all except for five proofs already should be completed. Except for the last one of
them, all of them could be proved with a different external prover, but in order to
learn a few new techniques, we will prove them with the pO prover.

. Let’s start with the proof in Celebrity_0. Select the proof by clicking on it. What

you need to prove is that P is not empty. Enter P in the proof control and open
the Search Hypothesis Window. Like this, you get all hypothesis that have P in
them. We need to find one that works toward the goal. ¢ € P does that, so add it
to the selected hypothesis (Section 6.7 of the manual explains how) and click on
p0 in the Proof Control. The proof succeeds.

. Next, we look at celebrity/act1/SIM of Celebrity_1. Here we need to prove

x = ¢. You have no hypothesis about ¢ selected, so look for them, like you did for
hypothesis with P in the last proof. This time, you can see that ¢ € @ is all you
need to conclude the proof. So add it to the selected hypothesis and the proof will
succeed using p0.

. remove_1/inv2/INV, is a little more complex. In order to prove the statement,

it suffices to prove x # c¢. so type this into the proof control and press the Add
Hypothesis button (ah). Now, press p0 until it does not get you any further. Now,
try selecting the right hypothesis by yourself in order to complete the proof. If you
cannot find it, you may also just select all hypotheses.



5. In order to move to the next proof obligation, you may also use the Next Undis-
charged PO button of the Proof Control. The next proof can be solved the same
way as the last one. You just need to add at least two hypotheses this time.

6. In the proof in Celebrity_2, you have to fill in an existential quantifier. First,
look in the list of hypothesis if you find any variable that is in P, and select
that hypothesis. Then, instantiate b’ and R’ correctly (For instance, if you want to
instantiate ' with ¢, then P\{c} is a good choice for R’) by typing the instantiations
in the Goal Window and then clicking on the red existential quantifier. Now,
all open branches of the proof tree can be proved with p0. After this, we have
completed all the proofs, and the model is ready for use.

3 Customizing a perspective suitable for RODIN

So far, you needed two different perspectives to work with RODIN. But really, it is
possible to work with only one perspective. In this section, we try to customize a
perspective so that we do not need any other. If you have experience with customizing
Eclipse perspectives, you may only want to read the next paragraph which contains a
few thoughts about a good perspective for RODIN.

As a start, we should think about what we want the perspective to look like. The
proving perspective already is pretty nice. We just could use little bit more editing space
and the windows of the Event-B perspective. To create more space, we could move all
windows that currently are on both sides of the editing area onto one side, as they never
really need to be used simultaneously. For even a bit more space, we could dock all
of these windows onto the so-called Fast View Bar, so that they disappear when they
are not needed. Like that, there should be enough space to even work split-screen with
different components, for example, we could have an abstract machine on one side of the
editing surface, and the concrete machine on the other.

Most of the perspective editing is simply drag and drop. First of all, you need to find
the Fast View Bar. Usually, it is at the bottom end of the Eclipse window. But it also
can be on the side or hidden inside the Shortcut Bar. For our purposes, it probably is
best to have it on the right side of the screen. Place it there by dragging it with the
mouse. Now, add some items to it. To do that, press the New Fast View button on the
bar. It might be useful to leave the Goal, the Problems and the Proof Control window
at the bottom of the screen, as you may want them to stay open while editing. A good
choice for the Fast view may be:

e Project Explorer,
e Obligation Explorer,

e Search Hypothesis,
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Figure 1: Our self-made Quick perspective

e Cache Hypothesis,
e Proof Tree,
e Proof Information

e Progress Window.

All of the windows that you cannot create directly when clicking on the New Fast View
Bar can be found in Others/General. Once you are done, the window should look
like in Figure Click on “Save Perspective As...” in the Window menu to save the
perspective.

4 Location Access Controller

In this section, we will take a closer look at a few more complex proofs. For this, we
will use the model of the Location Access Controller, which is saved in the doors.zip
project archive. Explanations on the model can be found in the chapter entitled
Location Access Controller” of the Event-B book. Our task is to develop the proofs for
deadlock freeness of the initial model and of the first refinement.



Import doors.zip. Looking through it, you will see that everything already has been
proved. This is true, however, RODIN does not do any deadlock freeness proof yet, so
you will have to add them yourself.

4.1 Initial Model

First, let us look at the initial model, constisting of doors_ctx1 and doors_0. There
are two carrier sets in the model, one for people and one for locations. Then, there is
a location called outside and a relation aut which reflects where people are allowed to
go. Everyone is allowed to outside. The model only has one event, which changes the
location of a person. So, proof of deadlock freeness means proving, that someone can
always change room.

1. Add a new theorem to doors_0 called “DLF” and change the predicate so that
it is the disjunction of all guards (since there is only one guard here, it would be
Ip,l- (p—1 € aut A sit(p) #1).

2. Save the machine. You will see that the autoprover fails to prove the theorem
(DLF/THM). Let us analyze whether this is an inconsistency in the model. In order
to succeed with the proof, we need a tuple p — [ that is in aut, but not in sit.
Searching the hypotheses, we find AXM4 of doors_ctx1, which states that there
is a room [, where everyone is permitted to. So, for every person p in P, p — [
and p — outside is in aut. Since these are different, at least one of them cannot
be in the function sit. Now, all we would need to prove is that P is nonempty.
This holds, as carrier sets always are nonempty, but is a bit hard to derive. Add
the hypothesis P # @ using the ah button. Then, click on the Auto Prover button
(The button with a robot on it). Other provers do not work here. After successfully
adding the hypothesis, we can conclude the proof as follows:

3. Add AXM4 (the one with the existential quantifier) to the selected hypothesis. You
see that it automatically is instantiated as [. Next, click on the “=” of = P = @ in
the search hypothesis window. This creates a selected hypothesis © € P. We can
now instantiate p in the goal with x.

4. In order to instantiate [, we need a case distinction. Type sit(z) = [ this into the
proof control and click on Case Distinction (dc) to look at the two cases sit(z) =1
and sit(x) # . Before starting with the cases, the prover now wants you to prove
that x € dom(sit). This can be done with p0, as sit is a total function. In the first
case x is situated in [, so it cannot be in outside. So, you can instantiate [ with
outside. In order to prove that x is allowed to outside, you will need to select the
hypothesis P x outside C aut. Then you can finish this case with p0. If you look
at the proof tree, you see that you now have reached the other branch of the case
distinction. In this case, you can simply instantiate [ with [, as z is not situated
there. Finally, click on p0 to finish the proof.



4.2 First Refinement

Now we get to the a bit harder proof: The deadlock freeness proof for the first refinement.
There is not much that has changed. The constant com has been added in order to
describe which rooms are connected. Additionally, we have a constant exit, which will
be explained later.

1. Open door_1 and add a theorem called DLF stating 3¢, m-(q — m € autAsit(q) —
m € com) to it, then save the file. Once again, the prover fails to prove deadlock
freeness automatically.

2. At the beginning of the proof, there are no selected hypothesis at all. So we
need to select a few. The old deadlock freeness theorem will be useful, AXM7 of
doors_ctx2 too. To begin with, we try to avoid using exit, as we want to keep
things as simple as possible. But since sit and aut are inside the theorem, we also
are likely to need sit C aut, sit € P — L and aut € P < L.

3. Once again, the prover automatically rewrites the existential quantifiers in the
hypotheses. We now look at the proof. There is an easy case if sit(p) = outside.
Solve it.

4. For the other case, we will need the notion of exit. The axioms about exit state
that

(AXM 3) Every room except the outside has exactly one exit.

(AXM 4) An exit must be a room that communicates with the current one.

(AXM 5) A chain of exits leads to the outside without any cycles or infinite
paths.

(AXM 6) Everyone allowed in a room is allowed to go through its exit.

In our proof, we still need to show that anyone who is not outside can walk through
a door. For this, AXM 5 is useless, so we add all hypothesis containing exit except
for AXM 5. Now we only need to instantiate ¢ and m correctly and concluding the
proof should not be too hard. For ¢, the choice p is obvious. But it is not quite as
easy for m. Expressed in language, m must be the room behind the exit door of
the room that p is currently in. Try translating this into set theory. But do not
worry if you get it wrong. You can still go back in the proof by righ-clicking at
the desired point in the proof tree and choosing prune.

5 Mathematical proofs

By now, you should know how to create and edit models, and how to do simple proofs
with help of the predicate prover. In this section, we will look at more complex proofs
in mathematical settings. For this, it is advisable for you to have some knowledge of the
theory, but you can also see this as a pure proving exercise. First, we try to perform a



proof without the predicate prover in order to get familiar with all the tools. Then, you
can try proving three further theorems by yourself.

5.1 First proof on Transitive Closure

1. Open the “Closure” project. it is a simple mathematical model, in which f is a
binary relation. The axiom defines t so that it is the transitive closure of f. You
will have to prove that ¢;t C .

2. For that, we have to instantiate the s of Vs - (f C sAs;f C s=1t¢ C s) with
(N xN)\(t ~;((NxN)\t)). This instantiation is a Galois transform. The project
Galois shows the properties of galois transforms. Simply said, these transforms
are a sort of inverse for the subset relation between relations. In the proof, this is
useful, as we can easily derive the goal from the implication (Because of the main
property of the Galois transform, ¢ C s is equivalent to t;¢ C t). The first part of
the condition of the axiom also becomes easy to prove, as f C s is equivalent to
t; f C t. However, the second part of the condition, s; f C s does not have such
an easily provable equivalence. We will just have to believe that the instantiation
also works here.

3. If you want to check that the instantiation really does work, you can use the
predicate prover now and it will succeed. Afterwards, prune the predicate prover
step so that you can do the proof yourself.

4. If the instantiation succeeded, you now should have a new, quite lengthy new
hypothesis which has the form pl A p2 = p3, where pl, p2 and p3 are predicates.
This hypothesis will help us to split the proof into three parts. First, we will prove
pl, then p2, and last, we will derive our goal out of p3. To split the proof, click
on the red arrow of the implication and choose “Apply Modus Ponens using this
hypothesis”. If you now look at the pending subgoals by using the “Next Pending
Subgoal” button in the Proof Control, you will see that the proof has been split
into the three described parts above.

5. We will start off proving the first subgoal f C (N x N)\ (¢t ~; ((N x N)\t)). First
of all, we need to translate the statement a bit more towards predicate logic. Click
on the subset symbol in the goal and choose the first option (Remove inclusion in
goal). As described, this translates the inclusion into predicate logic. If you look
at the proof tree, you will see that the prover automatically has done another two
steps, removing the quantifier and then the implication in the goal.

6. Now, you will need to completely translate the goal into predicate logic. For this,
click on any red symbol that appears in the proof goal until there is none left.
Should you have any tilde operators or cross products in the selected hypothesis,
then it will not hurt to translate them, too. To do that, click on the red “€” next
to then. In the end, your proof should look like in Figure [2}

10
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Figure 2: The proof after step 6

. As the goal appears to be provable from ¢; f C ¢, x — 20 € f and 21 — z € t,

remove all the other hypotheses, if you like to keep your workbench tidy. This can
be done by choosing the three hypotheses and then clicking the “Inverse selection”
button first and then the “Remove hypotheses” button.

To prove the current goal, we first prove that z1 — z0 € (¢;f). From that,
xl — 20 € t follows, because of t; f C t. Add the hypothesis z1 — z0 € (¢t; f)
by entering it in the proof control and pressing the (ah) button. Once more, the
proof will branch. For the first branch, click on the red “€” symbol in the Proof
Goal window to translate the goal into predicate calculus. You will then need to
instantiate a variable, but the choice should be obvious if you look at the selected
hypotheses. The second part of the proof can be solved by removing the “C” in
t; f C t and then instantiating correctly.

. For the time being, we do not yet want to prove the second subgoal, but proceed

with the last one. So review this subgoal by pressing the blue button in the proof
control. The prover automatically skips to the next subgoal.

The proof of the third subgoal will only require the hypothesis t C (N x N)\ (¢t ~
;((N x N)\ t)). So you can remove all the others. Remove the inclusion in the
hypothesis and in the goal in order to transform them towards predicate calculus.
Then, click on the “€” of the hypothesis  +— 20 € ¢;¢ in order to introduce x1.

11



11.

12.

13.

14.

15.

16.

You can now instantiate x with x1 and x0 with 20 in the hypothesis with the
quantifiers, as is done in the proof of the theorem in the Galois project.

After translating the hypothesis into predicate logic by pressing all “€”, you get a
rule that states =(3z - 21 — x € t ~ A x — 20 € (N x N) \ t). Click on the “=”
to get a hypothesis with a universal quantifier.

Now, you will want to get this hypothesis into a better appliable form. By using
rewrites (clicking on the red symbols), you should be able to transform it into
Ve-x —xl €etAz € NAzl € N=z+— 20 € t. Try to get the hypothesis into the
right form yourself. Should you completely mess something up, you can still go a
few steps back in the proof tree by clicking on the “Backtrack from the current
node” button in the proof control.

The instantiation for x should now be obvious. After the instantiation, you get a
new hypothesis. If you Apply the Modus Ponens on this, the smiley in the Proof
Control will turn blue. This means that all the non-reviewed goals have been
proven. So, you will now have to prove the second subgoal. Click on “Select the
next review subgoal” to get there.

The proof of the second subgoal begins similar to the others. Remove the inclusion
in the goal and simplify the goal as far as possible. Next, translate the new selected
hypotheses into predicate logic by clicking on the “€” symbols in the selected
hypothesis until there is none left. There should be one selected hypothesis that
starts with a negation. Remove the negation in it. Now we get a hypothesis
beginning with a universal quantifier. It should look like this, just the variable
names might differ: V20 - = (z+— 20 €t ~A20— 22 € (N x N)\ t).

The hypothesis stated above can also be brought into a more easily comprehendible
and directly appliable form. In the end, it should state something like Vz0 - (20 —
x €tNx0 € NANz2 € N =20 — 22 € t, where names may vary. Get the
hypothesis into the right form yourself using rewrites (similar to step 12). Now,
the instantiation for 20 should be obvious, as there is only one variable that maps
to z (In Figure [3 x1).

The rest of the subproof is the same to steps 7 and 8, except for the variable
names. So you can either repeat these steps or try to copy the proof. To copy the
proof, right-click on the part that you need on the proof tree where you added the
hypothesis and choose copy. Then right-click on your current location and select
paste. By all chance, the proof did not work due to the different names. Look in
the proof tree for where the wrong name has been used and prune that part. You
will have to redo that bit of the proof again.

5.2 Exercise: Theorem 2

In Theorem 2, you have to prove that ¢ = f union(¢; f). For this, you have to prove both
directions (¢t C f U (¢; f) and f U (¢; f) C f). Start with the second part, as it is much

12
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Figure 3: The proof at step 15

easier. The first part also should not be too hard, if you instantiate the hypothesis with
the quantifier as early as possible.

5.3 Exercise: Theorem 3

Theorem 3 is very similar to Theorem 2. Proving also works in a very similar fashion,
except that it takes a few steps more, as we do not have any axioms on (f;¢). Then,
Theorem 1 usually is useful.

5.4 Exercise: Theorem 4

Theorem 4 states that Vb - f[b] C b= t[b] C b. Once again, you will need the right
instantiation of a hypothesis to succeed with the proof at some stage. Here, ((IV '\
b) x N) U (b x b) will be a good instantiation. This proof is quite lengthy, as there
are many proofs by cases that you will need to perform. A lot of the cases can be
solved by successfully adding the negation of a selected hypothesis and thus creating a
contradiction.
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